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PREFACE TO THE THIRD EDITION

This book studies the dynamics of iterated holomorphic mappings from a
Riemann surface to itself, concentrating on the classical case of rational
maps of the Riemann sphere. It is based on introductory lectures given at
Stony Brook during the fall term of 1989-90 and in later years. I am grateful
to the audiences for a great deal of constructive criticism and to Bodil Bran
ner, Adrien Douady, John Hubbard, and Mitsuhiro Shishikura, who taught
me most of what I know in this field. Also, I want to thank a number of
individuals for their extremely helpful criticisms and suggestions, especially
Adam Epstein, Rodrigo Perez, Alfredo Poirier, Lasse Rempe, and Saeed
Zakeri. Araceli Bonifant has been particularly helpful in the preparation of
this third edition.

There have been a number of extremely useful surveys of holomorphic
dynamics over the years. See the textbooks by Devaney [1989], Beardon
[1991], Carleson and Gamelin [1993], Steinmetz [1993], and Berteloot and
Mayer [2001], as well as expository articles by Brolin [1965], Douady [1982
83, 1986, 1987], Blanchard [1984], Lyubich [1986], Branner [1989], Keen
[1989], Blanchard and Chiu [1991], and Eremenko and Lyubich [1990]. (See
the list of references at the end of the book.)

This subject is large and rapidly growing. These lectures are intended
to introduce the reader to some key ideas in the field, and to form a basis for
further study. The reader is assumed to be familiar with the rudiments of
complex variable theory and of 2-dimensional differential geometry, as well
as some basic topics from topology. The necessary material can be found
for example in Ahlfors [1966], Hocking and Young [1961], Munkres [1975],
Thurston [1997], and Willmore [1959]. However, two big theorems will be
used here without proof, namely the Uniformization Theorem in §1 and the
existence of solutions for the measurable Beltrami equation in Appendix F.
(See the references in those sections.)

The basic outline of this third edition has not changed from previous
editions, but there have been many improvements and additions. A brief
historical survey has been added in §4.1, the definition of Lattes map has
been made more inclusive in §7.4, the Ecalle-Voronin theory of parabolic
points is described in §10.12, the residu iteratif is studied in §12.9, the
material on two complex variables in Appendix D has been expanded, and
recent results on effective computability have been added in Appendix H.
The list of references has also been updated and expanded.

John Milnor
Stony Brook, August 2005

vii
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RIEMANN SURFACES

§1. Simply Connected Surfaces

The first three sections will present an overview of some background mate
rial.

If Vee is an open set of complex numbers, a function f: V --7 C is
called holomorphic (or "complex analytic") if the first derivative

z ~ f'(z) == lim (f(z + h) - f(z))jh
h-1-0

is defined and continuous as a function from V to C, or equivalently if
f has a power series expansion about any point Zo E V which converges
to f in some neighborhood of zoo (See, for example, Ahlfors [1966].)
Such a function is conformal if the derivative f' (z) never vanishes. Thus
our conformal maps must always preserve orientation. It is univalent (or
schlicht) if it is conformal and one-to-one.

By a Riemann surface S we mean a connected complex analytic man
ifold of complex dimension 1. Thus S is a connected Hausdorff space.
Furthermore, in some neighborhood U of an arbitrary point of S we can
choose a local uniformizing parameter (or "coordinate chart") which maps
U homeomorphically onto an open subset of the complex plane C, with
the following property: In the overlap U n U' between two such neighbor
hoods, each of these local uniformizing parameters can be expressed as a
holomorphic function of the other.

s

Figure 1. Overlapping coordinate neighborhoods.

1



2 RIEMANN SURFACES

By definition, two Riemann surfaces Sand S' are conformally isomor
phic (or biholomorphic ) if and only if there is a homeomorphism from S
onto S' which is holomorphic in terms of the respective local uniformizing
parameters. (It is an easy exercise to show that the inverse map S' ~ S
must then also be holomorphic.) In the special case S == S', such a confor
mal isomorphism S ~ S is called a conformal automorphism of S.

Although there are uncountably many conformally distinct Riemann
surfaces, there are only three distinct surfaces in the simply connected case.
(By definition, the surface S is simply connected if every map from a circle
into S can be continuously deformed to a constant map. Compare §2.)
The following result is due to Poincare and to Koebe.

Theorem 1.1 (Uniformization Theorem). Any simply con
nected Riemann surface is conformally isomorphic either

(a) to the plane <C consisting of all complex numbers z
== x + iy,

(b) to the open disk JI]) c <C consisting of all z with
Izl 2 == x2 + y2 < 1, or

(c) to the Riemann sphere e consisting of <C together with a
point at infinity, using (== 1/z as local uniformizing param
eter in a neighborhood of the point at infinity.

This is a generalization of the classical Riemann Mapping Theorem.
We will refer to these three cases as the Euclidean, hyperbolic, and spherical
cases, respectively. (Compare §2.) The proof of Theorem 1.1 is nontrivial
and will not be given here. However, proofs may be found in Koebe [1907],
Ahlfors [1973], Beardon [1984]' Farkas and Kra [1980], Nevanlinna [1967],
and in Springer [1957]. (See also Fisher, Hubbard, and Wittner [1988].)
By assuming this result, we will be able to pass more quickly to interesting
ideas in holomorphic dynamics.

The Open Disk JI]). For the rest of this section, we will discuss these
three surfaces in more detail. We begin with a study of the unit disk JI]).

Lemma 1.2 (Schwarz Lemma). If f : JI]) ~ JI]) is a holo
morphic map with f(O) == 0, then the derivative at the origin
satisfies 1/'(0)1::; 1. If equality holds, 1/'(0)1 == 1, then f is a
rotation about the origin. That is, f(z) == cz for some constant
c == f' (0) on the unit circle. On the other hand, if 1f' (0)I < 1,
then If(z) I < Izi for all z =1= O.

(The Schwarz Lemma was first proved, in this generality, by Caratheo
dory.)
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Remarks. If If'(O)1 == 1, it follows that f is a conformal automor
phism of the unit disk. But if If'(O)1 < 1 then f cannot be a conformal
automorphism of llJ), since the composition with any 9 : (llJ),0) ---7 (llJ),0)
would have derivative g'(O)f'(O) =I 1. The example f(z) == z2 shows that
f may map llJ) onto itself even when If(z)1 < Izi for all z =I 0 in llJ).

Proof of Lemma 1.2. We use the Maximum Modulus Principle, which
asserts that a nonconstant holomorphic function cannot attain its maximum
absolute value at any interior point of its region of definition. First note
that the quotient function q(z) == f(z)/z is well defined and holomorphic
throughout the disk llJ), as one sees by dividing the local power series for f
by z. Since Iq(z)1 < l/r when Izi == r < 1, it follows by the Maximum
Modulus Principle that Iq(z)1 < l/r for all z in the disk Izi :::; r. Since
this is true for all r ---7 1, it follows that Iq(z)1 :::; 1 for all z E llJ). Again by
the Maximum Modulus Principle, we see that the case Iq(z)1 == 1, for some
z in the open disk, can occur only if the function q(z) is constant. If we
exclude this case f(z)/z c, then it follows that Iq(z)1 == If(z)/zl < 1 for
all z =I 0, and similarly that Iq(O) 1 == If' (0) 1 < 1. D

Here is a useful variant statement.

Lemma 1.2' (Cauchy Derivative Estimate). If f maps
the disk of radius r about Zo into some disk of radius s, then

If'(zo)1 < s]r .

Proof. This follows easily from the Cauchy integral formula (see, for
example, Ahlfors [1966]): Set g(z) == f(z + zo) - f(zo) , so that 9 maps
the disk llJ)r centered at the origin to the disk llJ)s centered at the origin.
Then

f'(zo) = g'(O) = ~ 1 g(z) dz
21rZ Jlzl=rl z2

for all rl < r, and the conclusion follows easily. D

(An alternative proof, based on the Schwarz Lemma, is described in
Problem l-a at the end of this section. With an extra factor of 2 on the right,
this inequality would follow immediately from Lemma 1.2 simply by linear
changes of variable, since the target disk of radius s must be contained in
the disk of radius 28 centered at the image f (zo) .)

As an easy corollary, we obtain the following.

Theorem 1.3 (Liouville Theorem). A bounded function f
which is defined and holomorphic everywhere on ce must be con
stant.
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For in this case we have s fixed but r arbitrarily large, hence f' must
be identically zero. D

As another corollary, we see that our three model surfaces really are
distinct. There are natural inclusion maps II)) --+ C --+ e. Yet it follows
from the Maximum Modulus Principle that every holomorphic map e --+ C
must be constant, and from Liouville's Theorem that every holomorphic map
<C -t II)) must be constant.

Another closely related statement is the following. Let U be an open
subset of C.

Theorem 1.4 (Weierstrass Uniform Convergence Theo
rem). If a sequence of holomorphic functions I« : U --+ C
converges uniformly to the limit function i, then f itself is
holomorphic. Furthermore, the sequence of derivatives f~ con
verges, uniformly on any compact subset of U, to the derivative

I'.
It follows inductively that the sequence of second derivatives f~ con

verges, uniformly on compact subsets, to i", and so on.

Proof of Theorem 1.4. Note first that the sequence of first derivatives
f~, restricted to any compact subset K c U, converges uniformly. For
example, if Ifn(z) - fm(z)1 < E for m, n > N, and if the r-neighborhood
of any point of K is contained in U, then it follows from Lemma 1.2' that
If~(z)-f:n(z)1< Elr for m,n > N and for all z E K. This proves uniform
convergence of {f~} restricted to K to some limit function g, which
is necessarily continuous since any uniform limit of continuous functions
is continuous. It follows that the integral of f~ along any path in U
converges to the integral of 9 along this path. Thus f =: lim fn is an
indefinite integral of g, and hence 9 can be identified with the derivative
of f. Thus f has a continuous complex first derivative and therefore is a
holomorphic function. D

Conformal Automorphism Groups. For any Riemann surface S,
the notation 9 (S) will be used for the group consisting of all conformal
automorphisms of S. The identity map will be denoted by I == Is E 9(S).

We first consider the case of the Riemann sphere e and show that
9(C) can be identified with a well-known complex Lie group. Thus 9(C)
is not only a group, but also a complex manifold, and the product and
inverse operations for this group are both holomorphic maps.
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Lemma 1.5 (Mobius Transformations). The group Q(C)
of all conformal automorphisms of the Riemann sphere is equal
to the group of all fractional linear transformations (also called
Mobius transformations)

g(z) == (az + b)/(ez + d),

where the coefficients are complex numbers with ad - be =f O.

Here, if we multiply numerator and denominator by a common factor,
then it is always possible to normalize so that the determinant ad - be is
equal to +1. The resulting coefficients are well defined up to a simulta
neous change of sign. Thus it follows that the group Q(C) of conformal
automorphisms can be identified with the complex 3 -dimensional Lie group
PSL(2, C), consisting of all 2 x 2 complex matrices with determinant +1
modulo the subgroup {±I}. Since the complex dimension is 3, it follows
that the real dimension of PSL(2, C) is 6.

Proof of Lemma 1.5. It is easy to check that Q(C) contains this
group of fractional linear transformations as a subgroup. After composing
the given 9 E Q(t) with a suitable element of this subgroup, we may
assume that g(O) == 0 and g(oo) == 00. But then the quotient g(z)/z is
a bounded holomorphic function from <C" {O} to itself. (In fact, g(z)/z
tends to the nonzero finite value g' (0) as z ~ O. Setting ( == 1/z and
G(() == l/g(I/() , evidently g(z)/z == (/G(() tends to the nonzero finite
value I/G'(O) as z ~ 00.) Setting z == e'", it follows that the composition
w ~ g(eW)/ew is a bounded holomorphic function on C. Hence it takes
a constant value c by Liouville's Theorem. Therefore g(z) == ez is linear,
and hence 9 itself is an element of PSL(2, C) . 0

Next we will show that both Q(C) and Q(Il))) can be considered as Lie
subgroups of Q(C).

Corollary 1.6 (The Affine Group). The group Q(C) of all
conformal automorphisms of the complex plane consists of all
affine transformations

f(z) == AZ + e

with complex coefficients A =f 0 and e.

Proof. First note that every conformal automorphism f of C extends
uniquely to a conformal automorphism of C. In fact lim z-+oo f(z) == 00, so
the singularity of 1/ f(I/() at (== 0 is removable. (Compare Ahlfors [1966,
p. 124].) It follows that Q(C) can be identified with the subgroup of Q(C)
consisting of Mobius transformations which fix the point 00. Evidently this
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is just the complex 2-dimensional subgroup consisting of all complex affine
transformations of C. 0

Theorem 1.7 (Automorphisms of IIJ)). The group Q(IIJ)) of
all conformal automorphisms of the unit disk can be identified
with the subgroup of Q(C) consisting of all maps

f(z) ==
°0 z - a
e~--

1- iiz
(1: 1)

where a ranges over the open disk IIJ) and where eiO ranges
over the unit circle aIIJ).

This is no longer a complex Lie group. However, Q(IIJ)) is a real 3-dimen
sional Lie group, having the topology of a "solid torus" IIJ) x aIIJ).

Proof of Theorem 1.7. Evidently the map f defined by (1: 1)
carries the entire Riemann sphere e conformally onto itself. A brief com
putation shows that

If(z)1 < 1 ¢=::> (z - a)(z - a) < (1 - az)(l - az)
¢=::> (1 - zz) (1 - aa) > 0 .

For any a E IIJ), it follows that If (z)I < 1 ¢=::> Iz I < 1. Hence f maps
"-J

IIJ) onto itself. Now if g: IIJ) ~ IIJ) is an arbitrary conformal automorphism
and a E IIJ) is the unique solution to the equation g(a) = 0, then we
can consider f(z) == (z - a)/(l - az), which also maps a to zero. The
composition go r' is an automorphism fixing the origin, hence it has the
form 9 0 f- 1(z) = eiOz by the Schwarz Lemma, and g(z) = eiOf (z), as
required. 0

It is often more convenient to work with the upper half-plane IHI, con
sisting of all complex numbers w = u + iv with v > o.

Lemma 1.8 (IIJ) rv IHI). The half-plane IHI is conformally iso
morphic to the disk IIJ) under the holomorphic mapping

w r-+ (i - w)/(i + w),

with inverse
Z r-+ i(l - z)/(l + z),

where z E IIJ) and w E IHI.

Proof. If z and w = u + iv are complex numbers related by these
formulas, then Izl 2 < 1 if and only if Ii - wl 2 = u2 + (1 - 2v + v2 ) is
less than Ii + wl 2 = u2 + (1 + 2v + v2 ) , or in other words if and only if
v> O. 0
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Corollary 1.9 (Automorphisms of H). The group Q(H)
consisting of all conformal automorphisms of the upper half
plane can be identified with the group of all fractional linear
transformations W l--* (aw + b)j (ew + d), where the coefficients
a, b,e, d are real with determinant ad - be > o.

7

If we normalize so that ad - be == 1, then these coefficients are well
defined up to a simultaneous change of sign. Thus Q(IHI) is isomorphic to
the group PSL(2, JR), consisting of all 2x 2 real matrices with determinant
+1 modulo the subgroup {±I}.

Proof of Corollary 1.9. If f(w) == (aw + b)j(ew + d) with real
coefficients and nonzero determinant, then it is easy to check that f maps
JR U 00 homeomorphically onto itself. Note that the image

f(i) == (ai + b)(-ei + d)j(e2 + d2
)

lies in the upper half-plane IHI if and only if ad - be > o. It follows easily
that this group PSL(2, JR) of positive real fractional linear transformations
acts as a group of conformal automorphisms of H. This group acts tran
sitively. In fact the subgroup consisting of all w l--* aw + b with a > 0
already acts transitively, since such a map carries the point i to a com
pletely arbitrary point ai + b E IHI. Furthermore, PSL(2, JR) contains the
group of "rotations"

g(w) == (wcosO+sinO)j(-wsinO+cosO), (1:2)

which fix the point g(i) == i with derivative g'(i) == e2i O. By Lemmas
1.2 and 1.8, there can be no further automorphisms fixing i, and it follows
easily that Q(H) rv PSL(2, JR). 0

To conclude this section, we will try to say something more about the
structure of these three groups. For any map f : X ---+ X, it will be
convenient to use the notation Fix(f) C X for the set of all fixed points
x == f (x ). If f and 9 are commuting maps from X to itself, fog == go f ,
note that

f(Fix(g)) C Fix(g). (1: 3)

For if x E Fix(g) , then f(x) == f 0 g(x) == 9 0 f(x), hence f(x) E Fix(g).
We first apply these ideas to the group Q(C) of all affine transformations
of C.

Lemma 1.10 (Commuting Elements of Q(C). Two non
identity affine transformations of C commute if and only if they
have the same fixed point set.
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It follows easily that any 9 -# I in the group Q(C) is contained in a
unique maximal abelian subgroup consisting of all f with Fix(f) == Fix(g) ,
together with the identity element.

Proof of Lemma 1.10. Clearly an affine transformation with two fixed
points must be the identity map. If 9 has just one fixed point zo, then
it follows from (1: 3) that any j which commutes with 9 fixes this same
point. The set of all such j forms a commutative group, consisting of all
j(z) == Zo + A(Z - zo) with A -# O. Similarly, if Fix(g) is the empty set,
then 9 is a translation Z ~ Z + c, and jog == 9 0 j if and only if f is
also a translation. 0

Now consider the group Q(C) of automorphisms of the Riemann sphere.
By definition, an automorphism 9 is called an involution if gog == I, but
9 -# I.

Theorem 1.11 (Commuting Elements of Q(C)). For every
f -# I in Q(C), the set Fix(f) C C contains either one point
or two points. In general, two nonidentity elements t, 9 E Q(C)
commute if and only if Fix(f) == Fix(g). The only exceptions to
this statement are provided by pairs of commuting involutions,
each of which interchanges the two fixed points of the other.

(Compare Problem l-c. As an example, the involution f(z) == -z
with Fix(f) == {O, oo} commutes with the involution g(z) == IIz with
Fix(g) == {±l}.)

Proof of Theorem 1.11. The fixed points of a fractional linear trans
formation can be determined by solving a quadratic equation, so it is easy
to check that there must be at least one and at most two distinct solutions
in the extended plane C. (If an automorphism of C fixes three distinct
points, then it must be the identity map.)

If f commutes with g, which has exactly two fixed points, then since
f(Fix(g)) == Fix(g) by (1: 3), it follows that f either must have the same
two fixed points or must interchange the two fixed points of g. In the first
case, taking the fixed points to be 0 and 00, it follows that both f and
9 belong to the commutative group consisting of all linear maps z ~ AZ
with A E C" {O}. In the second case, if f interchanges 0 and 00, then it
is necessarily a transformation of the form j(z) == TJI z, with j 0 f(z) == z.
Setting g(z) == AZ, the equation 9 0 j == fog reduces to A2 == 1, so that
9 must also be an involution.

Finally, suppose that 9 has just one fixed point, which we may take
to be the point at infinity. Then by (1: 3) any f which commutes with 9



1. SIMPLY CONNECTED SURFACES 9

must also fix the point at infinity. Hence we are reduced to the situation of
Lemma 1.10, and both f and 9 must be translations z ~ z + c. (Such
automorphisms with just one fixed point, at which the first derivative is
necessarily +1, are called parabolic automorphisms.) This completes the
proof. D

We want a corresponding statement for the open disk JIJ). However, it
is better to work with the closed disk JIJ), in order to obtain a richer set of
fixed points. Using Theorem 1.7, we see easily that every automorphism of
the open disk extends uniquely to an automorphism of the closed disk.

Theorem 1.12 (Commuting Elements of Q(JIJ))). For ev
ery f =F I in Q(JIJ)) r-v Q(D), the set Fix(f) C JIJ) consists of
either a single point of the open disk JIJ), a single point of the
boundary circle 8JIJ), or two points of 8ll}. Two nonidentity au
tomorphisms f, 9 E Q(]I))) commute if and only if they have the
same fixed point set in ]I)).

Remark 1.13. (Compare Problem I-d.) An automorphism of ]I))

is often described as "elliptic," "parabolic," or "hyperbolic" according to
whether it has one interior fixed point, one boundary fixed point, or two
boundary fixed points. We can describe these transformations geometri
cally as follows. In the elliptic case, after conjugating by a transformation
which carries the fixed point to the origin, we may assume that 0 == g(O).
It then follows from the Schwarz Lemma that 9 is just a rotation about
the origin. In the parabolic case, it is convenient to replace ]I)) by the upper
half-plane, choosing the isomorphism JIJ) r-v lHI so that the boundary fixed
point corresponds to the point at infinity. Using Corollary 1.9, we see that 9
must correspond to a linear transformation w ~ aw + b with a, b real and
a > O. Since there are no fixed points in IR C 8lHI, it follows that a == 1,
so that we have a horizontal translation. Similarly, in the hyperbolic case,
taking the fixed points to be 0, 00 E 8lHI, we see that 9 must correspond
to a linear map of the form w ~ aw with a > O. (It is rather inelegant
that we must extend to the boundary in order to distinguish between the
parabolic and hyperbolic cases. For a more intrinsic interpretation of this
dichotomy see Problem 1-f, or Problem 2-e in §2.)

Proof of Theorem 1.12. In fact every automorphism of ]I)) or ]I)) is a
Mobius transformation and hence extends uniquely to an automorphism F
of the entire Riemann sphere. This extension commutes with the inversion
map a(z) == l/z. In fact the composition a 0 F 0 a is a holomorphic map
which coincides with F on the unit circle and hence coincides with F
everywhere. Thus F has a fixed point z in the open disk IIJ) if and only
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if it has a corresponding fixed point a(z) in the exterior C" lIJ). It now
follows from Theorem 1.11 that two elements of 9 (lIJ)) commute if and only
if they have the same fixed point set in lIJ), providing that we can exclude
the possibility of two commuting involutions. However, if F E 9(C) is an
involution, note that the derivative F' (z) at each of the two fixed points
must be -1. Thus, if F maps ]I) onto itself, neither of these fixed points
can be on the boundary circle, hence one fixed point must be in lIJ) and
one in C,,]I). Therefore, a second involution which commutes with F
and interchanges these two fixed points cannot map ]I) onto itself. This
completes the proof. D

Concluding Problems

Problem I-a. Alternate proof of Lemma 1.2'. (1) Check that an
arbitrary conformal automorphism

g(z) == eiB(z - a)/(1 - az)

of the unit disk satisfies 1g' (0) I == 11 - on 1 ::; 1. (2) Since any holomorphic
map f : lIJ) ---t lIJ) can be written as a composition 9 0 h where 9 is an
automorphism mapping 0 to f(O) and where h is a holomorphic map
which fixes the origin, conclude using Lemma 1.2 that If'(O)1 ::; 1 even
when f(O) =I- O. (3) More generally, if f maps the disk of radius r
centered at z into some disk of radius s, show that If' (z) 1 ::; s / r .

Problem I-b. Triple transitivity. (1) Show that the action of the
group 9(C) on C is simply 3-transitive. That is, there is one and only one
automorphism which carries three distinct specified points of C into three
other specified points. (2) Similarly, show that the action of 9(C) on C
is simply 2-transitive. (For corresponding statements for the disk ]I), see
Problem 2-d.)

Problem I-c. Cross-ratios. (1) Show that the group 9(C) is gen
erated by the subgroup of affine transformations z r--t az + b together with
the inversion z r--t 1/z. (2) Given four distinct points Zj in C, show that
the cross-ratio *

"Caution: Several variant notations for cross-ratios are in common use. This particular
version, characterized by the property that X(O, 1, Z, 00) == z, is particularly convenient
for our purposes. Compare Problem 2-c and note that x(a, b,c, d) > 1 whenever a, b,c, d
are real with a < b < c < d.
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is invariant under fractional linear transformations. (If one of the Zj is
the point at infinity, this definition extends by continuity.) (3) Show that
X is real if and only if the four points lie on a straight line or circle.
(4) Given two points Zl =f Z2 show that there is one and only one involu
tion f with Fix(f) = {Zl' Z2} and show that a second involution 9 with
Fix(g) = {zi, z~} commutes with f if and only if X(Zl' Z2, zi, z~) = 1/2.

Problem I-d. Conjugacy classes in Q(lHI). By definition, a con
formal automorphism of llJ) or lHI is elliptic if it has a fixed point, and
otherwise is parabolic or hyperbolic according to whether its extension to
the boundary circle has one or two fixed points. (1) Classify conjugacy
classes in the group Q(lHI) rv PSL(2, IR) as follows. Show that every auto
morphism of lHI without fixed point is conjugate to a unique transformation
of the form W f---t W + 1 or W f---t W - 1 or W f---t AW with A > 1; and show
that the conjugacy class of an automorphism 9 with fixed point WQ E lHI
is uniquely determined by the derivative A = g'(wQ), where IAI = 1.
(2) Show also that each nonidentity element of PSL(2, JR) belongs to one
and only one "one-parameter subgroup" and that each one-parameter sub
group is conjugate to either

[I t ] [e
t 0] [ cos t sin t ]

t f---t 0 1 or 0 e-t or - sin t cos t

according to whether its elements are parabolic or hyperbolic or elliptic.
Here t ranges over the additive group of real numbers.

Problem I-e. The Euclidean case. Show that the conjugacy class of
a nonidentity automorphism g(z) = AZ+C in the group Q(C) is uniquely
determined by its image under the derivative homomorphism 9 f---t g' - A E

C" {O}.

Problem I-f. Antiholomorphic involutions. By an antiholomorphic
mapping from one Riemann surface to another, we mean a transformation
which, in terms of local coordinates Z and w, takes the form Z f---t W = TJ(z)
where TJ is holomorphic. By an antiholomorphic involution of S we mean
an antiholomorphic map a: S ~ S such that a 0 a is the identity map.
(1) If L is a straight line in C, show that there is one and only one
antiholomorphic involution of C having L as fixed point set and show
that no other fixed point sets can occur. (2) Show that the automorphism
group Q(C) acts transitively on the set of straight lines in C. (3) Similarly,
if L is either a straight line or a circle in C, show that there is one and
only one antiholomorphic involution of C having L as fixed point set
and show that no other nonvacuous fixed point sets can occur. (4) Show
that the automorphism group Q(C) acts transitively on the set of straight
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lines and circles in e. (5) For an antiholomorphic involution of IIJ), show
that the fixed point set is either a diameter of IIJ) or a circle arc meeting
the boundary (JIIJ) orthogonally, and show that Q(IIJ)) acts transitively on
the set of all such diameters and circle arcs. (6) Finally, show that an
automorphism of IIJ) without interior fixed point is hyperbolic if and only
if it commutes with some antiholomorphic involution, or if and only if it
carries some such diameter or circle arc into itself.

Problem I-g. Fixed points of Mobius transformations. (1) For
a nonidentity automorphism 9 E Q(C), show that the derivatives g'(z) at
the two fixed points are reciprocals, say A and A-I. (2) Show that the
average a = (A+A- 1)/ 2 is a complete conjugacy class invariant which can
take any value in <C. (In the special case of a fixed point at infinity, one must
evaluate the derivative using the local uniformizing parameter ( = 1/z .)
(3) Show that a == 1 if and only if the two fixed points coincide and that
-1 ::; a = cos e < 1 if and only if 9 is conjugate to a rotation through
angle ~.

Problem I-h. Convergence to zero. (1) If a holomorphic map
f : IIJ) -t IIJ) fixes the origin and is not a rotation, prove that the successive
images fon (z) converge to zero for all z in the open disk IIJ). (2) Prove
that this convergence is uniform on compact subsets of IIJ). (Here fon
stands for the n-fold iterate f 0 · · · 0 f. The example f(z) = z2 shows
that convergence need not be uniform on all of IIJ).)



§2. Universal Coverings and the Poincare Metric

First recall some standard topological constructions. (Compare Munkres
[1975], as well as Appendix E.) A map p : M ---t N between connected
manifolds is called a covering map if every point of N has a connected
open neighborhood U within ,N which is evenly covered; that is, each
component of p-l (U) must map onto U by a homeomorphism. The man
ifold N is simply connected if it has no nontrivial coverings, that is, if every
such covering map M ---t N is a homeomorphism. (Equivalently, N is
simply connected if and only if every map from a circle to N can be con
tinuously deformed to a point.) For any connected manifold N, there exists
a covering map N ---t N such that N is simply connected. This is called
the universal covering of N and is unique up to homeomorphism. By a
deck transformation associated with a covering map p : M ---t N we mean
a continuous map '"'( : M ---t M which satisfies the identity p 0 '"'( == p, so
that the diagram M .L; M

p~ /p
N

is commutative. For our purposes, the fundamental group 1I"l(N) can be de
fined as the group r consisting of all deck transformations for the universal
covering N ---t N. Note that this universal covering is always a normal cov
ering of N. That is, given two points x , x' E M == N with p(x) == p(x') ,
there exists one and only one deck transformation which maps x to x'.
It follows that N can be identified with the quotient N Ir of N by this
action of r. A given group r of homeomorphisms of a connected manifold
M gives rise in this way to a normal covering M ---t M Ir if and only if

(1) r acts properly discontinuously; that is, any compact set K c M
intersects only finitely many of its translates '"'((K) under the action of I";
and

(2) r acts freely; that is, every nonidentity element of r acts without
fixed points on M.

__ Now let S be a Riemann surface. Then the universal covering manifold
S inherits the structure of a Riemann surface, and every deck transforma
tion is a conformal automorphism of S. According to the Uniformization
Theorem 1.1, since this universal covering surface S is simply connected,
it must be conformally isomorphic to one of the three model surfaces. Thus
we have the following.

13
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Theorem 2.1 (Uniformization for Arbitrary Riemann
Surfaces). Every Riemann surface 8 is conformally isomor-
phic to a quotient of the form SIr, where S is a simply con
nected Riemann surface, which is necessarily isomorphic to ei
ther IT)) , e, or C, and where r rv 1fl (8) is a group of conformal
automorphisms which acts freely and properly discontinuously on
8.

The group 9(8) consisting of all conformal automorphisms of 8 has
been studied in §1. It is a Lie group, and in particular has a natural topology.
Since the action of r on 8 is properly discontinuous, it is not difficult to
check that r must be a discrete subgroup of 9(8); that is, there exists a
neighborhood of the identity element in 9(8) which intersects r only in
the identity element. (Compare Problem 2-a.)

As a curious consequence, we obtain a remarkable property of com
plex I-manifolds, which was first proved by Rado. (Compare Ahlfors and
Sario [1960].) By definition, a topological space is a-compact if it can be
expressed as a countable union of compact subsets.

Corollary 2.2 (a-Compactness). Every Riemann surface can
be expressed as a countable union of compact subsets.

(It can be shown that a connected manifold is a-compact if and only if it
is paracompact, or metrizable, or has a countable basis for the open subsets.
However, in general, manifolds need not satisfy any of these conditions.)

Proof of Corollary 2.2. This follows from Theorem 2.1, since the
corresponding property is clearly true for each of the three simply connected
surfaces. D

We can now give a very rough catalogue of all possible Riemann surfaces.
The discussion will be divided into two easy cases and one hard case.

Spherical Case. According to Theorem 1.12, every conformal auto
morphism of the Riemann sphere C has at least one fixed point. Therefore,
if 8 ~ cC/r is a Riemann surface with universal covering 8 rv C, then the
group r C Q(C] must be trivial, and hence S itself must be conformally
isomorphic to C.

Euclidean Case. By Corollary 1.6, the group 9(C) of conformal
automorphisms of the complex plane consists of all affine transformations
Z r-t AZ + c with A =I- o. Every such transformation with A =I- 1 has a

fixed point. Hence, if S ~ e/r is a surface with universal covering 8 ~ e,
then r must be a discrete group of translations Z r-t Z + c of the complex
plane e. There are three subcases:
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• If r is trivial, then S itself is isomorphic to ee.
• If r has just one generator, then S is isomorphic to the infinite cylinder
eel'll, where 'll c C is the additive subgroup of integers. Note that this
cylinder is isomorphic to the punctured plane ee,,{O} under the isomorphism

z ~ exp(21riz) E C" {Ole

• If r has two generators, then it can be described as a 2-dimensional
lattice Ace, that is, an additive group generated by two complex numbers
which are linearly independent over lR. (Two generators, such as 1 and
J2, which are dependent over IR would not generate a discrete group.)
The quotient 1[':=: CCIA is called a torus.

In all three subcases, note that our surface inherits a locally Euclidean
geometry from the Euclidean metric Idzl on its universal covering sur
face. As an example, the punctured plane ee" {O}, consisting of points
exp(21riz) :=: W, has a complete locally Euclidean metric 21rldzl:=: Idwlwl.
(Such a metric is well defined only up to multiplication by a positive con
stant, since we could equally well use a coordinate of the form z':=:"\z + c
in the universal covering, with Idz'l :=: 1,,\ dzl. Compare Corollary 1.6.) It
will be convenient to use the term Euclidean surface for these Riemann sur
faces, which admit a complete locally Euclidean metric. The term parabolic
surface is also commonly used in the literature.

Hyperbolic Case. In all other cases, the universal covering S must
be conformally isomorphic to the unit disk. Such Riemann surfaces are said
to be hyperbolic. It follows from the discussion above that c, c, CCI'll, and
the various tori eel ('ll E9 T'll) are the only nonhyperbolic Riemann surfaces,
up to conformal isomorphism. In particular:

Any Riemann surface which is not homeomorphic to the sphere
or torus (in the compact case), or homeomorphic to the plane
or cylinder ( in the noncompact case), must necessarily be hyper
bolic, with universal covering surface conformally isomorphic to
the unit disk.

For example, any Riemann surface of genus 2: 2, or more generally any Rie
mann surface with nonabelian fundamental group, is hyperbolic. (Compare
Problem 2-g.)

Remark. Here the word "hyperbolic" is a reference to hyperbolic Ge
ometry, that is, the non-Euclidean geometry of Lobachevsky and Bolyai.
(Compare Corollary 2.10 below.) Unfortunately the term "hyperbolic" has
at least three quite distinct well-established meanings in holomorphic dy
namics. We may refer to a hyperbolic periodic orbit (with multiplier off the
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unit circle), or to a hyperbolic map (see §19), or to a hyperbolic surface, as
here. In order to avoid confusion, I will sometimes use the more explicit
phrase conformally hyperbolic when the word is used with this geometric
meaning, and reserve the phrase dynamically hyperbolic for the other two
meanings.

The inclusions IIJ) ----* <c ---+ e provide examples of nonconstant holomor
phic maps from the hyperbolic.....surface IIJ) to the Euclidean surface <C and
then to the Riemann sphere C. However, no maps in the other direction
are possible:

Lemma 2.3 (Maps between Surfaces of Different Type).
Every holomorphic map from a Euclidean Riemann surface to a
hyperbolic one is necessarily constant. Similarly, every holomor
phic map from the Riemann sphere to a Euclidean or hyperbolic
surface is necessarily constant.

Proof. Any holomorphic map f : 8 ----* 8' can be lifted to a holo
morphic map 7:8 ---+ 8' between universal covering surfaces. (Compare
Problem 2-b at the end of this section.) However, as noted following The-
orem 1.3, any holomorphic map t ---+ C or <C ---+ IIJ) must be constant, by
the Maximum Modulus Principle and by Liouville's Theorem. 0

Example 2.4. The Annulus and the Punctured Disk. We have
seen that all Euclidean Riemann surfaces have abelian fundamental group,
either trivial or isomorphic to Z or Z E9 Z. However, there also exist
hyperbolic surfaces with fundamental group Z. The punctured disk IIJ)" {O}
provides one example, and each annulus

Ar == {z E C; 1 < Izl < r}

provides another example. It follows immediately from Lemma 2.3 that
these surfaces are indeed hyperbolic. We can also see this by a more explicit
construction as follows. The exponential map z ~ eZ carries the left half
plane {x + iy; x < O} onto the punctured disk by a universal covering
map. Hence the fundamental group 7fl (IIJ) <, {O}) can be identified with the
group of deck transformations for the exponential map, which is free cyclic,
generated by the translation z ~ z + 27fi. Similarly, the exponential map
carries the vertical strip {x + iy; 0 < x < log r} onto the annulus Ar by a
universal covering map. But it is easy to see that such a strip is conformally
isomorphic to the upper half-plane JHI, since the exponential map carries
the analogous horizontal strip {x + iy ; 0 < Y < 7f} diffeomorphically onto
IHI. Again the group of deck transformations is isomorphic to Z.

In fact annuli and the punctured disk are the only hyperbolic surfaces
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with abelian fundamental group, other than the disk itself. A closely related
property is that annulus, punctured disk, and disk all have a nontrivial Lie
group of automorphisms. This is not possible for any other hyperbolic
surface. (See Problems 2-f and 2-g.)

The next example will playa fundamental role in later sections. (Com-
pare Theorem 3.7.)

Lemma 2.5 (The Triply Punctured Sphere). If we remove
three or more points from the Riemann sphere, then the resulting
Riemann surface S is hyperbolic, with universal covering S
conformally isomorphic to the disk.

Proof. This follows immediately from the discussion above, since S
is clearly not homeomorphic to the plane or cylinder, for example, since
its fundamental group is nonabelian. A more elementary argument, not in
volving the fundamental group, can be given as follows. For any sufficiently
large compact set K c S, note that the complement S" K has at least
three connected components. We say that the thrice punctured sphere has
three ends, while any nonhyperbolic surface has at most two ends. D

For an explicit description of the universal covering map lHI ---t C,,{O, I}
for a thrice punctured sphere, see, for example, Ahlfors [1966], and compare
Problem 7-g.

Closely related is the statement that any Riemann surface can be made
hyperbolic by removing at most three points. (In the case of a torus, it
suffices to remove just one point, since that will correspond to removing
infinitely many points in the universal covering of the torus.)

Theorem 2.6 (Picard's Theorem). Every holomorphic map
f : C ---t C which omits two different values must necessarily be
constant.

This follows immediately from Lemmas 2.3 and 2.5. For if f omits two
values a, b, then it can be considered as a map from the Euclidean surface
C to the hyperbolic surface C" {a, b}. D

The Poincare Metric. Every hyperbolic surface has a preferred Rie
mannian metric, constructed as follows. We first consider the simply con
nected case.

Lemma 2.7 (The Poincare Metric on IIJ). There exists one
and, up to multiplication by a positive constant, only one Rie
mannian metric on the disk IIJ) which is invariant under every
conformal automorphism of ]IJ).
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As an immediate corollary, we get exactly the same statement for the
upper half-plane IHI, or for any other surface which is conformally isomorphic
to IIJ).

Proof of Lemma 2.7. Geometrically, we can prove this statement
as follows. To define a Riemannian metric on a smooth manifold M, we
must assign a length Ilvll to every tangent vector v at every point of M.
Consider then a tangent vector v to the open disk IIJ) at some point Zo E IIJ).

Choose an automorphism 9 E Q(IIJ)) which maps Zo to the origin. Then
the first derivative of 9 at Zo yields a linear map Dgz Q from the tangent
space of IIJ) at Zo onto the tangent space at the origin. We define Ilvll to
be twice the Euclidean length of the image vector Dgz Q (v). (The factor of
2 is inserted for convenience; compare formula (2: 3) below.) Since 9 is
unique up to composition with a rotation of the disk, this length Ilvll is
well defined and is clearly invariant under all automorphisms of IIJ). Finally,
since the correspondence v ~ Ilv11 2 , for tangent vectors at a specified point
of IIJ), is clearly a homogeneous quadratic function, this construction does
indeed yield a Riemannian metric.

Alternatively, using classical notations, we can prove Lemma 2.7 more
explicitly as follows. A Riemannian metric on an open subset of C can be
described as an expression of the form

ds2 == 911 dx2 + 2912dxdy + 922dy2,

where [9jk] is a positive definite matrix which depends smoothly on the
point z == x + iy. Such a metric is said to be conformal if gIl == 922

and 912 == 0, so that the matrix [9ij] , evaluated at any point z, is some
positive multiple of the identity matrix. In other words, a conformal metric
is one which can be written as ds2 == l'(x + iy)2(dx2+ dy2) , or briefly as
ds == l'(z)ldzl, where the function l'(z) is smooth and strictly positive.
By definition, such a metric is invariant under a conformal automorphism
w == f(z) if and only if it satisfies the identity l'(w)ldwl == l'(z)ldzl, or in
other words,

l'(f(z)) == l'(z)/lf'(z)l· (2: 1)

Equivalently, an f satisfying this condition is called an isometry with
respect to the metric.

As an example, suppose that a conformal metric l'(w)ldwl on the upper
half-plane is invariant under every linear automorphism f(w) == aw + b
(where a > 0). Since f(i) == ai + b, equation (2: 1) takes the form
l'(ai + b) == l'(i)/a. After multiplying the metric by a positive constant, we
mayassumethat l'(i) == 1. Thus we are led to the formula l'(u+iv) == l/v,
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or in other words
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ds == Idwi/v for W == U + iv E IHI. (2: 2)

In fact, the metric defined by this formula is invariant under every conformal
automorphism 9 of IHI. For, if we select some arbitrary point WI E IHI and
set 9(WI) == W2, then 9 can be expressed as the composition of a linear
automorphism of the form 91(w) == aw + b which maps WI to W2 and an
automorphism 92 which fixes W2. We have constructed the metric (2: 2)
so that 91 is an isometry, and it follows from Lemmas 1.2 and 1.8 that
192 (W2) I == 1, so that 92 is an isometry at W2. Thus our metric is invariant
at an arbitrarily chosen point under an arbitrary automorphism.

To complete the proof of Lemma 2.7, we must show that a metric which
is invariant under all automorphisms of II) or IHI is necessarily conformal.
For this purpose, given any point WQ E IHI choose the unique automorphism
f which fixes the point WQ and has derivative f'(wQ) == V=1. A brief
computation shows that the induced map on Riemannian metrics takes the
expression 911du2 + 2912du dv + 922dv2 at the point WQ to the expression
922dv2 - 2912du dv +911dv2 at WQ. Thus invariance implies that 911 == 922
and 912 == 0 at the arbitrary point wQ, as required. D

Definition. This metric ds == Idwi/v is called the Poincare metric on
the upper half-plane IHI. The corresponding expression on the unit disk II)

is
ds == 2ldzl/ (1 - Iz12) for z E II) , (2: 3)

as can be verified by a brief computation using Lemma 1.8 and (2: 1).
Remark. The most basic invariant for a Riemannian metric on a sur

face S is the Gaussian curvature function K : S ---+ ffi.. Since there is an
isometry carrying any point of II)) (or of IHI) to any other point, it follows
that the Poincare metric has constant Gaussian curvature. In fact this met
ric, as defined above, has Gaussian curvature K -1. (Compare Problem
2-h.)

Caution. Some authors call Idzl/(1 - Iz1 2) the Poincare metric on
II)), and correspondingly call ! IdwI/v the Poincare metric on IHI. These
modified metrics have constant Gaussian curvature equal to -4.

Thus there is a preferred Riemannian metric ds on II) or on lHI. More
generally, if S is any hyperbolic surface, then the universal covering S
is conformally isomorphic to II)), and hence has a preferred metric which
is invariant under all conformal isomorphisms of S. In particular, it is
invariant under deck transformations. It follows that there is one and only
one Riemannian metric on S so that the projection S ---+ S is a local
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isometry, mapping any sufficiently small open subset of S isometrically
onto its image in S. By definition, the metric ds constructed in this way
is called the Poincare metric on the hyperbolic surface S.

Example 2.8. The Punctured Disk. The universal covering surface
for the punctured disk llJ)" {O} can be identified with the left half-plane
{w == u + iv ; u < O} under the exponential map

w ~ z == eW E llJ) <, {O},

with dz/ z == dw. Evidently the Poincare metric Idw/ u I on the left half
plane corresponds to the metric Idz/r log rl on the punctured disk, where
r == Iz I and u == log r. (Thus the circle Iz I == r has length 21f/ Ilog r I,
which tends to zero as r --+ 0, although this circle has infinite Poincare dis
tance from the boundary point z == 0.) A neighborhood of zero, intersected
with llJ)" {O} , can be embedded isometrically as a surface of revolution in
Euclidean 3-space. (The generating curve is known as a "tractrix.")

Figure 2. A surface of revolution of constant negative curvature.

Definition. Let S be a hyperbolic surface with Poincare metric ds.
The integral Jp ds along any piecewise smooth path P : [0,1] --+ S is called
the Poincare length of this path. For any two points Zl and Z2 in S, the
Poincare distance dist.tzj , Z2) == dists(Zl ,Z2) is defined to be the infimum,
over all piecewise smooth paths P joining Zl to Z2, of the Poincare length
Jp ds. In fact we will see that there always exists a path of minimal length.

Lemma 2.9 (Completeness Lemma). Every hyperbolic sur
face S is complete with respect to its Poincare metric. That
'ls:

(a) every Cauchy sequence with respect to the metric dist., con
verges, or equivalently:

(b) every closed neighborhood

Nr(zo, distc) == {z E S ; dists(z, zo) ::; r}

is a compact subset of S. Furthermore:

(c) any two points of S are joined by at least one minimal
geodesic.



2. COVERINGS AND POINCARE METRIC 21

(In the simply connected case, there is exactly one geodesic between any
two points.)

Proof of Lemma 2.9. First consider the special case S = lI}. Given
any two points of IIJ) we can first choose a conformal automorphism which
moves the first point to the origin and the second to some point r on the
positive real axis. For any path P between 0 and r within IIJ) we have

r ds = r 21 dzl > r 21dxl > r 2dx = log 1 + r
Jp Jp 1 - Izl 2 - Jp 1 - x 2 - Jo 1 - x2 1 - r '

with equality if and only if P is the straight line segment [0,r]. For any
z E IIJ), it follows that the Poincare distance from 0 to z is given by

. 1 + [z]
8 = dlStll1l(O, z) = log I I'1- z

(Compare Problem 2-c. Equivalently, we can write Izi = tanh(8/2).) Fur
thermore, the straight line segment from 0 to z is the unique minimal
Poincare geodesic. This proves (b) and (c) in the simply connected case.
The general case follows immediately, and assertion (a) then follows easily.
(Compare Willmore [1959].) 0

Corollary 2.10 (Constant Curvature Metrics). Every Rie
mann surface admits a complete conformal metric with constant
curvature which is either positive, negative, or zero according to
whether the surface is spherical, hyperbolic, or Euclidean.

In fact, in the hyperbolic case there is one and only one conformal
metric which is complete, with constant Gaussian curvature equal to -1.
(Compare Problem 2-i.) In the Euclidean case, the corresponding metric is
unique only up to multiplication by a positive constant. In the spherical
case, identifying the Riemann sphere C with the unit sphere in ]R3 under
stereographic projection, we obtain the standard spherical metric

ds = 2Idzl/(1 + Iz1 2
) , (2: 4)

with constant Gaussian curvature +1. (See Problem 2-h.) This spherical
metric is smooth and well behaved, even in a neighborhood of the point at
infinity. In fact the inversion map z ~ 1/z is an isometry. However, the
spherical metric is far from unique, since it is not preserved by most Mobius
transformations. Its group of orientation-preserving isometries 80(3) is
much smaller than the full group Q(C) of all conformal automorphisms. 0

Remark. For computer calculations, a more convenient metric for C
is given by the chordal distance formula
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21 z1 - z21
dist'{zj , Z2) == == 2sin(s/2), (2: 5)J(1 + IZlI 2

) (1 + IZ2 1
2

)

where s == dist(Zl, Z2) is the usual spherical distance. As an example, using
(2: 5) the distance between Z and the "antipodal" point -liz is always
equal to +2.

These nonhyperbolic metrics of curvature ~ 0 are certainly of interest.
However, in the hyperbolic case, the Poincare metric with curvature -1
is of fundamental importance because of its marvelous property of never
increasing under holomorphic maps.

Theorem 2.11 (Pick Theorem). If f : 8 ~ 8' is a holo
morphic map between hyperbolic surfaces, then exactly one of the
following three statements is valid:

• f is a conformal isomorphism from 8 onto 8', and it maps
8 with its Poincare metric isometrically onto 8' with its Poin
care metric.

• f is a covering map but is not one-to-one. In this case, it is
locally but not globally a Poincare isometry. Every smooth path
P : [0, 1] ~ 8 of arclength f in 8 maps to a smooth path foP
of the same length f in 8', and it follows that

dists,(f(p), f(q)) :S dists(p, q)

for every p, q E 8. Here equality holds whenever p is suffi
ciently close to q, but strict inequality will hold, for example, if
f(p) == f(q) with p # q.

• In all other cases, f strictly decreases all nonzero distances.
In fact, for any compact set K c 8 there is a constant CK < 1
so that

dists,(f(p) , f(q)) :S CK dists(p, q)

for every p, q E K and so that every smooth path in K with
arclength f (using the Poincare metric for 8) maps to a path
of Poincare arclength :S cKf in 8'.

Here is an example to illustrate Theorem 2.11. The map f(z) == z2 on
the disk II)) is certainly not a covering map or a conformal automorphism.
Hence it is distance decreasing for the Poincare metric on II)). On the other
hand, we can also consider f as a map from the punctured disk II)) -, {O}
to itself. In this case, f is a two-to-one covering map. Hence f is a local
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isometry for the Poincare metric on II))<, {O}. In fact, the universal covering
of II)) <, {O} can be identified with the left half-plane, mapped onto II))-, {O}
by the exponential map. (Compare Example 2.8.) Then I lifts to the
automorphism F : w r----t 2w of this half-plane, which evidently preserves
the Poincare metric.

Proof of Theorem 2.11. Let TSp be the tangent space of 8 at p.
This is a complex J-dimensional vector space. We will think of the Poincare
metric on S as specifying a norm Ilvll for each vector v E T8p , with
Ilvll > 0 for v =f O. The holomorphic map I : 8 ~ 8' induces a linear
first derivative map Dfp : TSp ---+ TSf(p)' Let us compare the Poincare
norm Ilvll of a vector v E T8p with the Poincare norm of its image in
TSf(p)' Evidently the ratio

II D l p(v)II/llvll

is independent of the choice of nonzero vector v and can be described
as the norm IIDlp11 of the first derivative at p. In the special case of a
fixed point z = I(z) of a map on a hyperbolic open subset of C, note
that II D Iz II can be identified with the absolute value of the classical first
derivative I' (z) = dl / dz. Therefore, for a holomorphic map I : II)) ~ II))

with I (0) = 0, the Schwarz Lemma asserts that II D10 II ::; 1, with equality
if and only if I is a conformal automorphism. More generally, if I : S ~ 8'
is a holomorphic map between simply connected hyperbolic surfaces, and if
p E 8, it follows immediately that liDIpll ::; 1, with equality if and only
if I is a conformal isomorphism. Now consider the case where Sand 8'
are not necessarily simply connected. Choose some lifting F : 8 ~ 8'
to the universal covering surfaces and some point p over p. From the
commutative diagram

TSp -+ TShp)

1 1
TSp -+ TSf(p)

where the vertical arrows preserve the Poincare norm and where both 8
and 8' are conformally isomorphic to II)), we see that IIDlpl1 ::; 1, with
equality if and only if F is a conformal isomorphism from 8 onto 8', or
in other words if and only if I : 8 ~ 8' is a covering map. (Compare
Problem 2-b.)

In particular, if I is not a covering map, then F cannot be a conformal
isomorphism, and hence liDIpll < 1 for all pES. If K is a compact
subset of S, it follows by continuity that liDIpll attains some maximum
value c < 1 as p varies over K. Now for any smooth path P: [0, 1]~ 8
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the derivative DPt carries the unit tangent vector at t E [0,1] to a vector
in TSp(t) which is called the velocityvector P'(t) for the path P at P(t).
By definition the Poincare arclength of P is the integral

lengths(P) = 10
1

IIP'(t)11 dt.

Similarly

lengths'U 0 P) = 10
1

II Djp(t)(P'(t))11 dt,

so if liDfpll :::; c throughout K, it follows that

lengths,(f 0 P) :::; c lengths(P)

for every smooth path within K. In order to compare distances within K,
it is necessary to choose some larger compact set K' c S so that any two
points p and q of K can be joined by a geodesic of length dists(p, q)
within K'. If CK < 1 is the maximum of liDfpll for p E K', then it
follows that

dists,(f(p), f(q)) :::; CK dists(p, q),

as required. 0

Remark. In the distance-reducing case, it may happen that there is a
uniform constant C < 1 so that

dists,(f(p), f(q)) :::; c dists(p, q)

for all p and q in S. In the special case of a map from S to itself,
a standard argument then shows that f has a (necessarily unique) fixed
point. (See Problem 2-j.) However, the example of the map f(w) == w + i
from the upper half-plane into itself shows that a distance-reducing map
need not have a fixed point. Even if f does have a fixed point, it does
not follow that such a constant c < 1 exists. For example, if f(z) == z2,
mapping the unit disk onto itself, then a brief computation shows that
IIDfzl1 == 2Izl/(1 + IzI 2

) , taking values arbitrarily close to +1.

One important application of Theorem 2.11 is to the inclusion
i : S ~ S' where 3' is a hyperbolic Riemann surface and S is a con
nected open subset. If 3 =I 3' then it follows from Theorem 2.11 that

dists,(p,q) < dists(p,q) (2:6)

for every p =I q in 3. Thus distances measured relative to a larger Riemann
surface are always smaller. For sharper forms of this inequality see Theorem
3.4, as well as Corollary A.8 in the appendix.
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Concluding Problems

Problem 2-a. Properly discontinuous groups. (1) Let 8 be
a simply connected Riemann surface, and let r c 9(8) be a discrete
group of automorphisms; that is, suppose that the identity element is an
isolated point of r within the Lie group 9(8). If every nonidentity el
ement of r acts on 8 without fixed points, show that the action of r
is properly discontinuous. That is, for every compact K c 8 show that
only finitely many group elements , satisfy K n ,(K) =I- 0. Show that
each Z E 8 has a neighborhood U whose translates ,(U) are pairwise
disjoint. Conclude that 8/r is a well-defined Riemann surface with S as
its universal covering. (More generally, analogous statements are true for
any discrete group of isometries of a Riemannian manifold.) (2) On the
other hand, show that the free cyclic group consisting of all transformations
Z J---7 2n z of C, with nEZ, forms a discrete subgroup of 9(C), but is not
properly discontinuous.

Problem 2-b. Lifting to the universal covering. (1) If S ~

IIJ)Ir and 8'~ IIJ)tt: are hyperbolic surfaces, show that any holomorphic
f : 8 ~ 8' lifts to a holomorphic map ] : IIJ) ~ IIJ), unique up to composition
with an element of r-. (2) Show that ] induces a group homomorphism
, J---7,' from r to r, satisfying the identity

f 0, == ,'0]
for every ,E r. (3) Show that f is a covering map if and only if f is a
conformal automorphism.

WI

ex

Figure 3. Cross-ratio and hyperbolic distance. a

Problem 2-c. Poincare geodesics. (1) Show that each geodesic
for the Poincare metric in the upper half-plane is a straight line or semi
circle which meets the real axis orthogonally. (Compare Problem I-f. A
related statement, for any Riemannian manifold, is that a curve which is
the fixed point set of an isometric involution must necessarily be a geodesic.)
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(2) If the geodesic through WI and W2 meets alHI == IR U 00 at the points
a and {3, show that the Poincare distance between WI and W2 is equal
to the logarithm of the cross-ratio x(a , WI , W2 , {3), as defined in Prob
lem J-c. (3) Show that each Poincare neighborhood N; (wQ ,distIHI) in the
upper half-plane is bounded by a Euclidean circle, but that WQ is not its
Euclidean center. Prove corresponding statements for the unit disk.

Problem 2-d. The action of Q(IIJ)). (1) Show that the action
of the automorphism group Q(IIJ)) carries two points of IIJ) into two other
specified points if and only if they have the same Poincare distance.
(2) Show that the action of Q(IIJ)) on the boundary circle aIIJ) carries three
specified points into three other specified points if and only if they have the
same cyclic order.

Problem 2-e. Classifying automorphisms of IIJ). Show that an
automorphism of lHI or IIJ) is hyperbolic (Problem I-d) if and only if it
carries some Poincare geodesic into itself without fixed points.

Problem 2-f. Infinite strip, cylinder, and annulus. Define the
infinite strip Bee of height 7f to be the set of all z == x + iy with
IyI < 7f / 2 . (1) Show that the exponential map carries B isomorphically
onto the right half-plane. (2) Show that the Poincare metric on B takes
the form

ds == Idzl/ cos y. (2: 7)

(3) Show that the real axis is a geodesic whose Poincare arclength coincides
with its usual Euclidean arclength, and show that each real translation
z ~ z + c is a hyperbolic automorphism of B having the real axis as its
unique invariant geodesic. (4) For any c > 0, form the quotient cylinder
Se == B / (cZ) by identifying each z E B with z + c. By definition, the
modulus mod(Se) of the resulting cylinder is the ratio 7f / c of height to
circumference. Show that this cylinder, with its Poincare metric, has a
unique simple closed geodesic, with

length == c == 7f /mod(Se).

(5) Show that Se is conformally isomorphic to the annulus

Ar == {z E C; 1 < Izi < r}

where log r == 27f2 / c, and conclude that

logr
mod(Ar ) ==

27f
is a conformal invariant.
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Problem 2-g. Abelian fundamental groups. (1) Show that every
hyperbolic surface with abelian fundamental group is conformally isomor
phic to either the disk JI)), to the punctured disk JI))" {O}, or to the an
nulus Ar for some uniquely defined r > 1. (Compare Theorem 1.12 and
Problems l-e, 2-f.) (2) Show that this annulus has a unique simple closed
geodesic, which has length P = 21T2/ log r. On the other hand, show that
the punctured disk JI))" {O} has no closed geodesic. (Either the punctured
disk or the punctured plane <C" {O} might reasonably be considered as the
limiting case of an annulus, as the modulus tends to infinity.) (3) Show
that the conformal automorphism group Q(JI))" {O}) of a punctured disk is
isomorphic to the circle group 80(2), while the conformal automorphism
group of an annulus is isomorphic to the nonabelian group 0(2). What is
the automorphism group for <C" {O}? (4) Using Lemma 1.10, Theorem
1.12, and Problem 2-b, show that a Riemann surface admits a one-parameter
group of conformal automorphisms if and only if its fundamental group is
abelian.

Problem 2-h. Gaussian curvature. The Gaussian curvature of a
conformal metric ds = fi(w)ldwl with w = u + iv is given by the formula

K = ,~+ ,; - ,buu + ,vv)
fi4

where the subscripts stand for partial derivatives. (Compare Willmore
[1959, p.79].) Check that the Poincare metrics (2: 2), (2: 3) and (2: 7)
have curvature K - -1 and that the spherical metric (2: 4) has curva
ture K = +1.

Problem 2-i. Metrics of constant curvature. A theorem of Heinz
Hopf asserts that for each real number K there is one and only one com
plete, simply connected surface of constant curvature K, up to isometry.
(See Willmore [1959, p. 162].) (1) Using this result, show that any nonspher
ical Riemann surface has one and, up to a multiplicative constant, only one
conformal Riemann metric which is complete, with constant Gaussian cur
vature. (2) On the other hand, show that the Riemann sphere C has a
3-dimensional family of distinct conformal metrics with curvature + 1.

Problem 2-j. Fixed points and contracting maps. (1) If S is
hyperbolic, show that a holomorphic map f : S -+ S can have at most
one fixed point, unless some iterate fOk is the identity map. (The case of
a covering map from S to itself requires special care.) On the other hand,
show that any nonhyperbolic surface has a nonidentity holomorphic map
with more than one fixed point.

We will say that a map f : X -+ X from a metric space to itself is



28 RIEMANN SURFACES

strictly contracting if there is a constant 0 < c < 1 so that

dist(f(x), f(y)) :S c dist(x, y) (2: 8)

for every x, y EX. (2) If X is a complete metric space, show that all orbits
under a strictly contracting map must converge towards a unique fixed point.
In particular, this statement applies to a self-map of a hyperbolic surface,
whenever (2: 8) is satisfied. (However, the example z ~ z2 on the unit
disk shows that a map with a unique fixed point need not satisfy (2: 8),
and the example w ~ w + i on the upper half-plane shows that a map
which simply reduces Poincare distance need not have any fixed point.)

Problem 2-k. No nontrivial holomorphic attractors. In real dy
namics, one often encounters extremely complicated attractors, that is, com
pact sets K with f(K) == K such that for any orbit XQ ~ Xl ~ X2 ~ •••

in some neighborhood of K the distance dist(xn , K) converges uniformly
to zero. (1) Show that no such behavior can occur for a holomorphic
f : S ~ S. If K c S is compact with f(K) == K, and if f maps
some connected hyperbolic neighborhood U of K into a proper subset of
itself, show that f must be strictly contracting on K with respect to the
metric distu, and hence that K must consist of a single point.

Problem 2-£. Functions on the punctured disk. Every holomor
phic function f: II)) <, {O} ~ <C can be expressed as the sum of a Laurent
series

where

Here the sum of anzn for n > 0 defines a holomorphic function throughout
the unit disk II)), while the sum for n < 0 defines a function which is
holomorphic throughout the punctured plane <C" {O}. (1) Show that the
maximum of If(z)1 on the circle of radius r satisfies

max If(z) I 2: lanl r
n

Izl=r

for every n E Z and for every r with 0 < r < 1. (2) If f takes values in
II)), conclude that f extends to a holomorphic function from II)) to II)).

Problem 2-m. The Picard Theorem near infinity. Prove the
following statement in two steps, as indicated.

Any holomorphic map f: II)) <, {O} ~ t <, {a, b, c} to the triply
punctured sphere extends to a holomorphic map from II)) to c.

(1) In the special case where f (z) converges to a as z ~ 0, use Problem
2-f to prove this statement. (2) On the other hand, suppose that f(z) does
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not converge to a, b, or c as z ~ O. Show then that there must exist
some point p E c ,{a, b, c} which is an accumulation point of images f (z)
as z ~ O. Using the Poincare metric as described in Example 2.8, show
that the image of some small circle Izl = r lies in a small neighborhood
of p. Conclude that f restricted to this circle lifts to the universal cover
ing space of c , {a, b, c}, and hence that f on the entire punctured disk
lifts to this covering space. Again, complete the proof using Problem 2-£.
(3) Now apply this result for a disk centered at infinity to prove the follow
ing.

Strong Picard Theorem. If f : C ~ C is holomorphic but
not a polynomial, then for every neighborhood C" JI))r of infinity
the image f(C" JI))r) omits at most a single point of C. In
fact, f takes on every value in C, with at most one exception,
infinitely often.



§3. Normal Families: Montel's Theorem

Let Sand T be Riemann surfaces. This section will study compact
ness in the function space Hol(S, T) consisting of all holomorphic maps
with source S and target T. We first define a topology on this space, and
on the larger space Map(S, T) consisting of all continuous maps from S to
T. This topology is known to complex analysts as the topology of uniform
convergence on compact subsets, or more succinctly as the topology of locally
uniform convergence. It is known to topologists as the compact-open topology
(Problem 3-a), or when dealing with smooth manifolds as the CD-topology.

Definition. Let X be a locally compact space and let Y be a metric
space. For any f in the space Map(X, Y) of continuous maps from X to
Y we define a family NK,f.(f) of basic neighborhoods of f as follows. For
any compact subset K c X and any E > 0, let NK,f.(f) be the set of all
g E Map(X, Y) satisfying the condition that

dist(f(x), g(x)) < E for all x E K.

A subset U c Map(X, Y) is defined to be open if and only if, for every
fEU, there exist K and E as above so that the basic neighborhood
NK,f.(f) is contained in U.

Lemma 3.1 (The Topology of Locally Uniform Conver
gence). With these definitions, Map(X, Y) is a well defined
Hausdorff space. A sequence of maps fi E Map(X, Y) con
verges to the limit g in this topology if and only if
(a) for every compact K eX, the sequence of maps filK :

K --t Y converges uniformly to glK,
or equivalently if and only if
(b) every point of X has a neighborhood N so that the sequence

{fiIN} converges uniformly to giN.
This topology on Map(X, Y) depends only on the topologies of
X and Y and not on the particular choice of metric for Y.
Furthermore, if X is a-compact, then Map(X, Y) is itself a
metrizable topological space.

Proof. The first two statements follow immediately from the defini
tions. To prove that the topology is independent of the metric on Y, we
describe a slightly different form of the definition, which depends only on

30
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the topology of Y. Let U be any neighborhood of the diagonal in the prod
uct space Y x Y. For any compact K C X and any f E Map(X, Y),
let

NK,U(f) = {g E Map(X, Y) ; (f(x), g(x)) E U for all x E K }.

Given K and U, it is not difficult to construct an E > 0 so that every
pair (f(x), y) with x E K and dist(f(x), y) < E belongs to this set U,
and it then follows that NK,E(f) C NK,U(f). On the other hand, if U(E) is
the set of all pairs (y,y') with dist(y,y') < E, then NK,E(!) = NK,u(E)(f).
Thus, if we take {NK,u(f)} as our collection of "basic neighborhoods," then
we obtain the same topology, without mentioning any particular choice of
metric.

Now suppose that X is a-compact; that is, suppose that X is a
countable union of compact subsets. Since X is also assumed to be locally
compact, we can choose compact sets Kl C K2 C ... with union X, so
that each K n is contained in the interior of Kn+l. It will be convenient
to replace the given metric dist(y, y') by the bounded metric

J-l(y, y') = Min( dist(y, y'), 1) :S 1,

which evidently gives rise to the same topology. Define the "locally uniform
distance" between two maps from X to Y by the formula

/-l'(f,g) = L 2: Max{/-l(f(x),g(x)) ; x E Kn } .
n

We must show that this metric gives rise to the required topology on
Map(X, Y). Let N~(f) be the e-neighborhood of f in this metric J-l'.
Given E, we can choose n so that 1/2n < E/2, and set K = K n . It is
then easy to check that NK,E/2(f) C N~(f). Conversely, given K and E

we can choose n so that K c K n and check that N~/2n(f) C NK,E(f).
Thus the two topologies are indeed the same. D

Now we can specialize to maps between two Riemann surfaces Sand
T. Since every Riemann surface is a-compact by Corollary 2.2 and metriz
able, for example, by Corollary 2.10, we obtain a well-defined metrizable
topological space Map(S, T). It follows easily from the Weierstrass Theo
rem 1.4 that the space Hol(S, T) of holomorphic maps is a closed subset of
Map(S, T).

Theorem 3.2 (Hyperbolic Compactness). If Sand T
are hyperbolic Riemann surfaces, then the space Hol(S, T) of
holomorphic maps is locally compact and a -compact. Further
more, if K c Sand K' C Tare nonvacuous compact subsets,
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then the set of all holomorphic maps f : S -+ T satisfying
f(K) C K' forms a compact subset of Hol(S, T).

In particular, if T itself is compact, it follows that the entire space
Hol(S, T) is compact. More generally, if ko E S is any base point, it
follows that the evaluation map f r--+ f(ko) is a proper map

Hol(S, T) -+ T.

That is, the preimage of any compact set K' C T is a compact subset of
Hol(S, T).

Note that these statements are clearly false in the nonhyperbolic case.
For example, if S == T is either the Riemann sphere C or the com
plex numbers C or a quotient CI7l or CIA, then the sequence of maps
z r--+ nz in Hol(S, S) takes the compact set K == K' == {O} into itself,
and yet has no convergent subsequence since the first derivatives at zero do
not converge. The space Hol(C, C) of all rational maps is actually locally
compact but not compact, while the space Hol(C, C) is not even locally
compact (Problem 3-c).

Proof of Theorem 3.2. The proof will be based on the Bolzano
Weierstrass Theorem, which asserts that a metric space is compact if and
only if every infinite sequence of points in the space possesses a convergent
subsequence (Problem 3-d). Thus it will suffice to show that every sequence
of holomorphic maps I«: S -+ T with fn(K) C K' contains a convergent
subsequence.

It follows easily from Corollary 2.2 that the Riemann surface S pos
sesses a countable dense subset {8j}, where we may assume that 81 E K.
Since K' is compact, the sequence of image points fn(81) E K' certainly
contains a convergent subsequence. Thus we can first choose an infinite
set Q1 == {np } of positive integers so that the images f np (81) converge
to some point t1 E K' eTas p -+ 00. It then follows from Lemma 2.9
and Theorem 2.11 that the images fn p (82) of the point 82 lie within some
compact subset of T. Hence we can choose an infinite subset Q2 C Q1
so that the points f n (82) with n E Q2 converge to some limit t2 E T.
Continuing inductively, we can find infinite sets Q1 =:) Q2 =:) Q3 =:) ••• so
that the fn(8k) with n E Qk converge to a limit tk E T. Using a diagonal
procedure, let Q == {qj} consist of the first element in Q1, the second
element of Q2, and so on. Then limj---+oo fqj (8k) == tk for every Sk. We
claim that this new sequence of maps 9j == fqj converges, uniformly on
every compact subset of S, to a holomorphic map 9: S -+ T.

Given any compact set L c S and any E > 0, we can cover L by
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finitely many open balls of radius E, centered at points 8j. In other words,
we can choose finitely many points from {8j} so that every z E L has
Poincare distance dists(z, 8j) < E from one of these 8j. Further, we can
choose no so that distT (gm (8 j ), gn (8 j )) < c: for each of these finitely many
8j, whenever m, n > no. For any z E L it then follows using Theorem
2.11 and the triangle inequality that

distT(gm(z) , gn(z)) < 3c:

whenever m, n > no. Thus the gm(z) form a Cauchy sequence. It follows
that the sequence of functions {gm IL} converges uniformly to a limit. Since
L is an arbitrary compact set in S, this proves that {gm} converges locally
uniformly to a limit function, which must belong to Hol(S, T). Therefore,
by Bolzano-Weierstrass, the set of all f E Hol(S, T) with f(K) c K' is
compact.

In particular, it follows that the evaluation map f ~ f(ko) from
Hol(S, T) to T is proper. Since T is locally compact and cr-compact,
this implies that Hol(S, T) is also locally compact and a-compact. D

Normal Families. Here is a preliminary definition: A collection F of
holomorphic functions from a Riemann surface S to a compact Riemann
surface T is called a normal family if its closure j:: C Hol(S, T) is a compact
set, or equivalently if every infinite sequence of functions fn E F contains
a subsequence which converges locally uniformly to some limit function g:
S -+ T.

We will also need to consider the case of a noncompact target surface
T. For this purpose, we need the following definition: A sequence of points
{in} in the noncompact surface T diverges from T if for every compact set
K C T we have tn -I K for n sufficiently large. (Here the qualification
"from T" is essential. For example, the sequence of points i, i/2, i/3, ... ,
where i == yCT, diverges from the upper half-plane IHI, but converges to 0
within its closure IHI C C.) Similarly, we will say that a sequence of maps
fn : S -+ T diverges locally uniformly from T if, for every compact K C S
and K' C T, we have fn(K) n K' == 0 for n sufficiently large. (Of course
this can never happen if T itself is compact.)

Definition. A collection F of maps from a Riemann surface S to a
(possibly noncompact) Riemann surface T will be called normal if every
infinite sequence of maps from F contains either a subsequence which con
verges locally uniformly or a subsequence which diverges locally uniformly
from T. We can now restate Theorem 3.2 as follows.
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Corollary 3.3. If Sand T are hyperbolic, then every family
F of holomorphic maps from S to T is normal.

Proof. Choose base points So E S and to E T. If the set of images
{f(so) ; f E F} lies in some compact subset K' c T, then it follows
immediately from Theorem 3.2 that :F is compact. Otherwise, we can
choose an infinite sequence of maps I« E:F so that the Poincare distance
distT(to, fn(so)) tends to infinity. Using Pick's Theorem 2.11, it then fol
lows easily that this sequence of maps I« diverges locally uniformly from
T. 0

As an application of this result, we can compare the Poincare metrics
in a pair of Riemann surfaces S c S'. (Compare (2 : 6).) We will use the
notation Nr(p) C S for the open neighborhood of radius r consisting of
all q E S with dists(p, q) < r, using the S Poincare metric.

Theorem 3.4 (Poincare Metric near the Boundary). Sup
pose that S C S' are Riemann surfaces with S hyperbolic, and
let PI , P2, . .. be a sequence of points in S which converges (in
the topology of S') to a boundary point pEas c S'. Then for
any fixed r the entire neighborhood Nr(pj) converges uniformly
to p as j ~ 00. If S has compact closure in S', then choosing
some metric on S' compatible with its topology, we can make
the following sharper statement. The diameter in this S'-metric
of the neighborhood N; (Pj) converges uniformly to zero as Pi
converges towards as.

s

1\

P

Figure 4. Poincare neighborhoods with respect to a subset S c 8'.

(See Corollary A.8 in Appendix A for a more quantitative estimate when
S is a simply connected open subset of C.)

Proof of Theorem 3.4. First note the following preliminary state
ment: If K is any compact subset of S and if {Pj} converges to as,
then N; (Pj) n K == 0 for j sufficiently large. To see this, let ko be a
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basepoint in K and let r K be the diameter of K. Then Nr +r K (ko) is
compact by Lemma 2.9. For j sufficiently large, Pi will be outside of this
compact set, and hence Nr(pj) will be disjoint from K.

Let N~ c I!)) be tEe disk of Poincare radius r about the central point
of the unit disk. If S is the universal covering of S, then composing a
suitable isomorphism llJ) ~ S with the projection S --t S, we can construct
a covering map fj : llJ) --t S with fj (0) == Pj. Evidently N: (Pj) can be
identified with the image fj (N~) of this standard disk.

For any sufficiently large compact set K c S, note that each component
of S'" K will be a hyperbolic Riemann surface. The maps fj INo , for j

r

sufficiently large, take values in S'" K and hence form a normal family. If
the Pj all lie in some compact subset of S' (for example, if {Pj} converges
to some point of S'), then we can choose a subsequence so that fj IN~
converges locally uniformly to a holomorphic limit map f: N~ --t S' <, K .
(In fact, since we can apply the same argument to a disk of radius r + 1, it

follows that this subsequence converges uniformly on the closed disk If;..)
We claim that f must map the entire disk N~ to a single point of

as c S'. For if this limit map were not constant, then its image f(N~)

would be an open subset of S'" K. Hence this image would have to
intersect S. But this is impossible since S can be exhausted by a sequence
of compact subsets KI C K2 C ' .. , and the argument above shows that
f(N~) must be disjoint from each K n .

The above discussion applied only to some subsequence of the N; (Pj) .
Now we must deal with the entire sequence. Choosing some metric
dist' (p, q) on the space S', let dj be the diameter of the set Nr(pj) C

ScS' with respect to this dist' metric. We must show that the sequence
dj converges uniformly to zero. Otherwise we could choose a subsequence
with dj 2: e. > 0 and then choose a subsequence of this so that IjIN~
converges uniformly to a constant map. Evidently this is impossible. 0

Lemma 3.5. Given Riemann surfaces Sand U C T, let
fj : S --t U be a sequence of holomorphic maps which diverges
locally uniformly from U but not from T. Then there exists a
subsequence which converges locally uniformly to a constant map
from S to a single point of au cT.

Proof. Since {fj} does not diverge locally uniformly from T, we can
choose compact sets K C Sand LeT so that fj(K) n L =I 0 for
infinitely many j. After passing to a subsequence, we may choose points
kji E K so that the images fji (kji) converge to a limit RE L.
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First suppose that Sand U are hyperbolic. Since K has finite di
ameter in the S-Poincare metric, it follows from Theorem 3.4 and Pick's
Theorem that the entire image fji (K) converges to R. Again using The
orem 3.4, it follows easily that this sequence of maps fji : S ~ U c T
converges locally uniformly to the constant map K r--t R E au c T, as
required.

If Sand U are not hyperbolic, then we can choose a hyperbolic neigh
borhood So of K c S with compact closure, and a hyperbolic set Uo
of the form Uo == U <, compact. The above argument shows that a subse
quence of the fj restricted to So converges locally uniformly to a constant
map. Since So can be arbitrarily large, this completes the proof. D

Corollary 3.6. Given Riemann surfaces Sand U C T, a
family of maps from S to U is normal if and only if it is
normal considered as a family of maps from S into the larger
surface T.

The proof is immediate. Combining Corollaries 3.6 and 3.3 with the fact
that the thrice punctured sphere is hyperbolic (see Lemma 2.5), we obtain
the following important consequence. (See, for example, Montel [1927].)

Theorem 3.7 (Montel). Let S be a Riemann surface and let
:F be a collection of holomorphic maps f : S ~ C which omit
three different values. That is, assume that there are distinct
points a, b, c E C so that f(S) C C" {a, b, c} for every f E :F.
Then :F is a normal family; that is, the closure :F C Hol(S, C)
is a compact set.

Concluding Problems

Problem 3-a. The compact-open topology. If X and Yare
locally compact spaces, the compact-open topology on the space Map(X, Y)
of all maps is defined to be the smallest topology (that is, the topology with
fewest open sets), such that, for every compact K C X and every open
U C Y, the set of f : X ~ Y with f(K) c U forms an open subset
of Map(X, Y). (1) If Y is metrizable, show that this coincides with the
topology of locally uniform convergence, as described above. (2) Show that
the composition operation

(f, g) r--t 9 0 f
is continuous as a mapping from Map(X, Y) x Map(Y, Z) to Map(X, Z).
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(3) If U is an open subset of Y, show that Map(X, U) embeds home
omorphically as a subset of Map(X, Y), but that this subset need not be
either open or closed.

(4) Now suppose that Sand T are Riemann surfaces and that U
is a connected open subset of T. Show that the topological boundary of
Hol(S, U) in Hol(S, T) consists completely of constant maps from S to
au.

Problem 3-b. Uniform convergence or divergence? Consider the
family of maps fn(z) = Z + n from C or C to itself. (1) Show that
this sequence diverges locally uniformly from C. However, in C show that
this sequence neither converges nor diverges locally uniformly, although it
does converge pointwise to the constant function which maps all of C to
the single point 00 E C. (2) Similarly, show that the sequence of degree 1
rational functions gn (z) = 1I (n2Z - n) converges pointwise, but not locally
uniformly, to the constant function g(z) = O.

Problem 3-c. Local compactness? (1) Show that Hol(C, C) is
not locally compact, since every neighborhood of the zero map contains a
sequence of polynomial maps of the form

fn(z) = E(l + EZ + E
2Z2 + ... + EnZn)

with no limit point in Hol(C, C). Similarly show that Hol(C, C) is not lo
cally compact. (2) However, if Sand T are compact, show that Hol(S, T)
is always locally compact. *

Problem 3-d. The Bolzano-Weierstrass Theorem. Let X be a
metric space with the property that every infinite sequence in X possesses
an accumulation point (or equivalently a convergent subsequence). (1) For
each n > 0, show that X can be covered by finitely many open balls
En,j of radius lin. (2) Given any collection of open subsets Ua with
union X, show that the collection of all of these balls En,j which are
contained in some Ua forms a covering of X by countably many open
sets. (3) Given a sequence VI, V2, ... of open sets with union X, show

~he space Hol(S, C) of meromorphic functions on S is of particular interest. As
an example, for each d 2:: 1 the space Ratd == Hold(C, C) of degree d rational maps
forms a complex (2d + 1)-dimensional manifold which is noncompact. In fact it can
be identified with an open subset of (2d + I)-dimensional projective space. (Compare
Segal [1979] or Milnor [1993].) On the other hand, there exists a surface S of genus 5
so that the space Hol(S, C) has singularities. (Private communication from J. Harris.)
If the target space T is a torus, still assuming that S is compact, then each connected
component of Hol(S, T) is a copy of T, while if T has genus 2:: 2 then Hol(S, T) is
a finite set.
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that VI U · · · U Vk = X provided that k is sufficiently large. Combining
these statements, show that finitely many of the Ua suffice to cover X,
thus proving that X is compact.

Problem 3-e. Locally normal families. Show that normality is a
local property. More precisely, let Sand T be any Riemann surfaces, and
let {fa} be a family of holomorphic maps from S to T. If every point
of S has a neighborhood U such that the collection {falu} of restricted
maps is a normal family in Hol(U, T), show by a diagonal argument, similar
to the proof of Theorem 3.2, that the family {fa} itself is normal.

Problem 3-f. Normality and derivatives. Let f : S ---T T be
holomorphic. Given Riemannian metrics on the Riemann surfaces Sand
T, we can define the norm of the derivative of f at a point 8 E S to be
the real number Ilf'(8)11 2: 0 such that the induced linear mapping from
the tangent space of S at 8 to the tangent space of T at f (8 ) carries
vectors of length 1 to vectors of length II f' (8 ) II. If T is compact, show
that a family F of maps f: S ---T T is normal if and only if the collection
of norms Ilf'(8)11 is uniformly bounded as f varies over F and 8 varies
over any compact subset of S.

Problem 3-g. The one-point compactification. For any locally
compact space X, let X U 00 be the topological space which is obtained
by adjoining a single point 00 to X, defining the basic neighborhoods of
00 to be the complements of compact subsets of X. (1) Show that XU 00

is a compact Hausdorff space, which is metrizable if X is metrizable and
a-compact. (2) Now let Sand T be noncompact Riemann surfaces. Show
that the closure of Hol(S, T) in the larger space Map(S, T U (0) consists
of Hol(S, T) together with the constant map [00] which carries all of S
to the point 00. (3) If Sand T are hyperbolic, show that this closure

Hol(S, T) U [00] C Map(S, T U (0)

is compact and can be identified with the one point compactification of
Hol(S, T).



ITERATED HOLOMORPHIC MAPS

§4. Fatou and Julia: Dynamics on the Riemann Sphere

4.1. A Brief History. * The study of iterated holomorphic mappings
began in the 19th century but only came to flower in the 20th. One primary
focus in the 19th century was the study of functional equations relating dif
ferent known or unknown functions. Charles Babbage [1815], "An essay
on the calculus of functions," set the stage with an attempt to understand
many such functional equations. In particular (on page 412), he implicitly
described what we now call a semiconjugacy ip between two different func
tions f and g, that is a map satisfying rp 0 f == gorp so that the following
diagram is commutative:

x --L X
rpl rpl

Y .s; Y.

It follows that any orbit XQ t---t Xl t---t ••• under f maps to an orbit
rp(xQ) t---t rp(XI) t---t ••• under g. In the special case where g(y) == y + 1,
such a semiconjugacy reduces to the Abel functional equation

rp(f(x)) == rp(x) + 1,

described by Niels Abel in an 1824 paper which was published only posthu
mously. In the special case g(y) == Ay, it reduces to the Schroder functional
equation

rp(f(x)) == Arp(X),

introduced in Ernst Schroder's 1871 paper "Ueber iterirte Functionen".
Although Schroder didn't think in dynamic terms, his paper was far ahead
of its time, and contained a wealth of ideas. In particular, he used elliptic
function theory to construct a one-parameter family of what we now call
Lsttes maps of the Riemann sphere, with explicitly understandable chaotic
dynamics. (Compare §7.) Another contribution, in 1879, was Cayley's
analysis of Newton's method for degree two polynomial equations. (See
Problem 7-a.) In 1884, Gabriel Kcenigs proved that this Schroder equation
had an essentially unique solution in the neighborhood of a fixed point ZQ ==
f (zQ), provided that the derivative (or "multiplier") A == f' (zQ) satisfies
IAI =1= 0, 1. Thus the dynamics in a neighborhood of such a fixed point

"Compare Alexander [1994], as well as Ghys [1999] and Milnor [2004b].

39
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can be completely understood in terms of the dynamics of the linear map
w .-t Aw. Leau in 1897 studied the more complicated case where the
multiplier A is a root of unit, and Bottcher in 1904 treated the case A = O.
(See §§8-10 below.) Bottcher was perhaps the first to try to understand the
global dynamics of iterated holomorphic functions and to try to distinguish
between predictable orderly behavior and chaotic behavior.

The case where IAI == 1 but A is not a root of unity is much more
difficult and was not understood until the work of Hubert Cremer in 1927
and Carl Ludwig Siegel in 1942. (Compare §11.)

Meanwhile, the global study of iterated holomorphic maps flowered dra
matically. In 1906, Pierre Fatou described a startling example: For the map
z .-t z2j(z2 + 2), he showed that almost every orbit under iteration con
verges to zero, even though there is a Cantor set of exceptional points for
which the orbit remains bounded away from zero (Problems 4-e, 4-f). This
aroused great interest. After a hiatus during the First World War, the sub
ject was taken up in depth by Fatou and by Gaston Julia (as well as others
such as Samuel Lattes [1918] and Joseph Fels Ritt [1920]). The most fun
damental and incisive contributions were those of Fatou himself. However,
Julia was a determined competitor and tended to get more credit because
of his status as a wounded war hero-in 1918, he was awarded the "Grand
Prix des Sciences Mathematiques" by the Paris Academy of Sciences.

For many years after this spate of activity, the subject seemed to be
forgotten. Interest began to revive with a 1965 paper by Hans Brolin, but
it was not until the 1980s that the subject really came back to life with
the work of Douady, Hubbard, and Sullivan, as well as Thurston (compare
Douady and Hubbard [1982]). The possibility of computer experimentation
and computer illustration for the complicated geometry which is involved
was also a dramatic influence.

Definition 4.2. The Fatou and Julia Sets. Let S be a compact
Riemann surface, let f: S ~ S be a nonconstant holomorphic mapping,
and let fon : S ~ S be its n-fold iterate. The domain of normality
for the collection of iterates {fon} is called the Fatou set * for i , and its
complement is called the Julia set. I will use the notation J = J(f) for the
Julia set and write the Fatou set simply as S" J.

Thus, for any point Po E S, we have the following basic dichotomy: If

*For the definition in the noncompact case, see §5. The choice as to which of these two
sets should be named after Julia and which after Fatou is rather arbitrary, but the term
"Julia set" now seems firmly established. (Note, however, that this form of the definition
of J is actually due to Fatou. For Julia's definition, see §14.) The Fatou set S" J is
sometimes called by other names, such as "stable set" or "normal set."
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there exists some neighborhood U of Po so that the sequence of iterates
{fon} restricted to U forms a normal family of maps from U to S,
then we say that Po belongs to the Fatou set of f. Otherwise, if no such
neighborhood exists, we say that Po belongs to the Julia set.

By its very definition, the Julia set J is a closed subset of S, while the
complementary Fatou set S" J is an open subset. We will see that a point
Po belongs to the Julia set if and only if dynamics in a neighborhood of
Po displays sensitive dependence on initial conditions, so that nearby initial
conditions lead to wildly different behavior after a large (or sometimes not
so large) number of iterations. (Compare Problem 4-h, as well as Corollary
14.2.)

The classical example, and the one which we will emphasize, is the
case where S is the Riemann sphere C == c U 00. Any holomorphic map
f :e~ e on the Riemann sphere can be expressed as a rational function,
that is, as the quotient f(z) == p(z)/q(z) of two polynomials. Here we
may assume that p(z) and q(z) have no common roots. The degree d of
f == p/ q is then equal to the maximum of the degrees of p and q. For all
but finitely many choices of constant c E e, this degree can be described as
the number of distinct solutions to the equation f(z) = c. We will usually
assume that d 2: 2 and always that d 2: 1 so that f is a nonconstant map
from e onto itself.

As a simple example, consider the squaring map s : z 1----* z2 on e.
The entire open disk IIJ) is contained in the Fatou set of s, since successive
iterates on any compact subset converge uniformly to zero. Similarly the
exterior e"IIJ) is contained in the Fatou set, since the iterates of s converge
to the constant function z 1----* 00 outside of IIJ). On the other hand, if zo
belongs to the unit circle, then in any neighborhood of zo any limit of
iterates son would necessarily have a jump discontinuity as we cross the
unit circle. Therefore the Julia set J(s) is precisely equal to the unit circle.

Such smooth Julia sets are rather exceptional. (See §7.) Figures 5
and 6 illustrate more typical rational maps. In each case, the Julia set is
black and the Fatou set is white. Figure 5 illustrates five different quadratic
polynomial maps. Figure 5a shows a rather wild Jordan curve, Figure 5b
a dendrite (that is, a compact, connected set without interior which does
not separate the plane), Figure 5c a rather thick totally disconnected set
(compare Problem 4-e), and the last two show Julia sets whose complement
has infinitely many connected components. In both cases, the critical orbit
is superattracting of period 3 (compare Definition 4.5). The arrows in Figure
5e give a rough indication of what maps to what. In each of these pictures,
since f(z) is an even function, the Julia set is centrally symmetric.
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Figure 5a. A simple closed curve,

z J---+ z2 + (.99 + .14i)z.

Figure 5b. A "dendrite, "

z J---+ z2 + i.

Figure 5c. A Cantor set,
z J---+ z2 + (-.765 + .12i).

Figure 5d. The Douady rabbit
z ~ z2 + (-.122 + .745i).

Figure 5e. The "airplane": z ~ z2 - 1.75488 ....
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6a. I(z) = 1- 1/z2 6b. I(z) = c+z
2

with c = l+iyj
l-z2 2

6c. I(z) -.138(z + l/z) - .303 6d. I(z) = (z5 - .00001)/z3
Figure 6. Julia sets for four rational maps.

Nonpolynomial Julia sets can be even more diverse, as illustrated in
Figure 6. The first example, on the upper left, has a superattracting cycle
{1 , 0, oo} containing both critical points 0 and 00. The second has two
superattracting cycles {-1, oo} and {O, W, w2 } , where w = e1ri / 3 . (This
example can be constructed by "mating" two quadratic polynomials-see,
for example, Milnor [2004a]. Note the distorted copy of the "rabbit" in the
middle.) The third example is a Sierpinsky carpet. That is, the Fatou set
is everywhere dense, and its various components are bounded by disjoint
simple closed curves. (Compare Devaney [2004]. These degree 2 examples
are all taken from Milnor [1993].) The last example, due to McMullen [1988],
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has uncountably many connected components which are topological circles.

Here are some basic properties of the Julia set.

Lemma 4.3 (Invariance Lemma). The Julia set J = J(f)
of a holomorphic map f : S ~ S is fully invariant under f.
That is, Z belongs to J if and only if the image f(z) belongs
to J.

A completely equivalent statement is that the Fatou set is fully invariant.
In fact, for any open set U C S, some sequence of iterates fonj converges
uniformly on compact subsets of U if and only if the corresponding sequence
of iterates fon j+1 converges uniformly on compact subsets of the open set
r: (U). Further details will be left to the reader. D

It follows that the Julia set possesses a great deal of self-similarity: When
ever f (ZI) = Z2 in J (f), with derivative f' (ZI) -# 0, there is an induced
conformal isomorphism from a neighborhood N; of ZI to a neighborhood
N2 of Z2, which takes Nl n J (f) precisely onto N2 n J (f). (Compare
Problem 4-d.)

Lemma 4.4 (Iteration Lemma). For any k > 0, the Julia set
J(fok) of the k-fold iterate coincides with the Julia set J(f).

Proof outline. Again we can equally well work with the Fatou set
S <, J. Suppose, for example, that Z belongs to the Fatou set of f 0 f .
This means that, for some neighborhood U of z, the collection of all even
iterates fo 2n lu is contained in a compact subset K c Hol(U, S). It follows
that every iterate of t , restricted to U, belongs to the compact set K U
(f 0 K) c Hol(U, S), hence z belongs to the Fatou set of f. Further details
will be left to the reader. D

Definition 4.5. Consider a periodic orbit or cycle

f : ZQ r--t ZI r--t ..• r--t Zm-l r--t Zm = ZQ

for a holomorphic map f: S ~ S. (Here S can be any Riemann surface,
compact or not.) If the points ZI, ... , Zm are all distinct, then the integer
m ~ 1 is called the period. The first derivative of the m-fold iterate fom at
a point of the orbit is a well-defined complex number called the multiplier of
the orbit. If the Riemann surface S is an open subset of C, then we have
the product formula

A = (fom)'(Zi) = f'(ZI)' f'(Z2)'" f'(zm).

In particular, A = 0 if and only if some point Zj of the orbit is a critical
point of i, that is, a point at which the first derivative f' vanishes. More
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generally, for self-maps of an arbitrary Riemann surface we have a corre
sponding product formula, using a local uniformizing parameter (that is, a
local coordinate chart) around each point of the orbit. The product A is
independent of the choice of uniformizing parameters. By definition, a peri
odic orbit is either attracting or repelling or indifferent (also called neutral)
according as, its multiplier satisfies IAI < 1 or IAI > 1 or IAI == 1. (Com
pare §8.) The orbit will be called superattracting if A == 0 and geometrically
attracting if 0 < IAI < 1. As examples, the maps illustrated in Figures 5d,
5e, 6a, 6b, and 6c all have superattracting orbits of period three.

Caution: In the special case where the point at infinity is periodic
under a rational map, fom ((0) == 00, this definition may be confusing.
The multiplier A is not equal to the limit as z -+ 00 of the derivative of
fom(z) , but rather turns out to be equal to the reciprocal of this number
(Problem 4-c). As examples, if f(z) == 2z then 00 is an attracting fixed
point with multiplier A == 1/2, while if f is a polynomial of degree d 2: 2
then 00 is a superattracting fixed point, with A == O.

Definition. If 0 is an attracting periodic orbit of period m, we define
the basin of attraction to be the open set A c S consisting of all points
z E S for which the successive iterates fom(z) , fo2m(z) , . .. converge
towards some point of O. Assuming once more that S is compact, we
have the following.

Lemma 4.6 (Basins and Repelling Points). Every attract
ing periodic orbit is contained in the Fatou set of f. In fact
the entire basin of attraction A for an attracting periodic orbit
is contained in the Fatou set. However, every repelling periodic
orbit is contained in the Julia set.

Proof. First consider a fixed point Zo == f(zo) with multiplier A. If
IAI > 1, then no sequence of iterates of f can converge uniformly near zo,
for the first derivative of fon at Zo is An, which diverges to infinity as
n -+ 00. (Compare the Weierstrass Uniform Convergence Theorem 1.4.)
On the other hand, if IAI < 1, then choosing IAI < c < 1 it follows from
Taylor's Theorem that If(z) - zol ::; clz - zol for z sufficiently close to
zo, hence the successive iterates of f, restricted to a small neighborhood,
converge uniformly to the constant function z ~ zo. (See Lemma 8.1
for details.) The corresponding statement for any compact subset of the
basin A then follows easily. These statements for fixed points generalize
immediately to periodic points, making use of Lemma 4.4, since a periodic
point of f is just a fixed point of some iterate fom. D

The case of an indifferent periodic point is much more difficult. (Com-
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pare §§10 and 11.) One particularly important case is the following.

Definition. A periodic point Zo == jon(zo) is called parabolic if the
multiplier A at Zo is equal to +1, yet fon is not the identity map, or
more generally if A is a root of unity, yet no iterate of f is the identity
map.

As an example, the rational map j(z) == z/(z-l) has two fixed points,
both with multiplier equal to -1. However, these do not count as parabolic
points since f 0 j(z) is identically equal to z. We must exclude such cases
so that the following will be true. (In any case, such examples cannot occur
for maps of degree 2 or more.)

Lemma 4.7 (Parabolic Points). Every parabolic periodic
point belongs to the Julia set.

Proof. Let w be a local uniformizing parameter, with w == 0 cor
responding to the periodic point. Then some iterate jom corresponds to
a local mapping of the w-plane with power series expansion of the form
w r-+ w + aqwq + aQ+lwQ+1 + ... , where q 2: 2, aq =I o. It follows that
jomk corresponds to a power series w r-+ w + kaqwq + ··.. Thus the qth
derivative of fomk at 0 is equal to q! k aq , which diverges to infinity as
k -t 00. It follows from Theorem 1.4 that no subsequence {fomkj} can
converge locally uniformly as kj -t 00. D

Now and for the rest of §4, let us specialize to the case of a rational map
f : C-t C of degree d 2: 2.

Lemma 4.8 (J Is not Empty). If j is rational of degree 2
or more, then the Julia set J(j) is nonvacuous.

Proof. If J(f) were vacuous, then some sequence of iterates fonj
would converge, uniformly over the entire sphere C, to a holomorphic limit
9 : C -t C. Here we are using the fact that normality is a local prop
erty (Problem 3-e). A standard topological argument would then show
that the degree of the map jonj is equal to the degree of 9 for large j.
(In fact, if two maps fj and 9 are sufficiently close that the spherical
distance a(jj(z) , g(z)) is uniformly less than the distance 1r between an
tipodal points, then we can deform fj(z) to g(z) along the unique shortest
geodesic; hence these two maps are homotopic and have the same degree.)
But the degree of fon cannot equal the degree of 9 for large n, since the
degree of Jon is equal to d"; which diverges to infinity as n -t 00. D

A different, more constructive proof of this lemma will be given in Corol
lary 12.8.

We will also need the following concepts.



4. DYNAMICS ON THE RIEMANN SPHERE 47

Definition. By the grand orbit of a point z under f: S ---+ S we mean
the set GO(z, f) consisting of all points z' E S whose orbits eventually
intersect the orbit of z. Thus z and z' have the same grand orbit if and
only if fom (z) == fon (z') for some choice of m ~ 0 and n ~ o. A point
z E S will be called grand orbit finite or (to use the classical terminology)
exceptional under f if its grand orbit GO(z, f) C S is a finite set. Using
Montel's Theorem 3.7, we prove the following.

Lemma 4.9 (Finite Grand Orbits). If f : C---+ C is rational
of degree d 2: 2, then the set &(f) of grand orbit finite points
can have at most two elements. These grand orbit finite points,
if they exist, must always be superattracting periodic points of f
and hence must belong to the Fatou set.

Proof. (Compare Problem 4-b.) Since f maps C onto itself, it must
map any grand orbit GO(z, f) onto itself. Hence, if this grand orbit is
finite, it must map bijectively onto itself, and hence constitute a single
periodic orbit ao t---t a1 t---t ••• t---t am == ao. Now note that an arbitrary
point z E e has exactly d preimages under i, counted with multiplicity,
where the multiplicity of Zj E f- 1 (z) as a preimage is greater than 1 if and
only if Zj is a critical point of f. Setting f (z) == p(z)/ q(z), and assuming
that z=I 00, f (00), this is just a matter of counting roots of the degree d
polynomial equation p(z) - zq(z) == 0, checking that the derivative of f
vanishes at any multiple root. It follows that every aj in this finite periodic
orbit must be a critical point of f. This proves that any finite grand orbit
is superattracting and hence contained in the Fatou set.

(Caution: This argument makes strong use of the compactness of C.
An entire map from C to itself, for example z t---t 2zez , may well have a
repelling point which is grand orbit finite. See Problem 6-c.)

If there were three distinct grand orbit finite points, then the union of
the grand orbits of these points would form a finite set whose complement
U in C would be hyperbolic, with f(U) == U. Therefore, the set of iterates
of f restricted to U would be normal by Montel's Theorem. Hence both
U and its complement would be contained in the Fatou set, contradicting
Lemma 4.8. D

Theorem 4.10 (Transitivity). Let Zl be an arbitrary point of

the Julia set 1(f) C C and let N be an arbitrary neighborhood
of Zl· Then the union U of the forward images fon(N) con
tains the entire Julia set and contains all but at most two points
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of e. More precisely, if N is sufficiently small, then U is the
complement C" E(f) of the set of grand orbit finite points.

In §14 we will prove the much sharper statement that the single forward
image fan (N) actually contains the entire Julia set (or the entire Riemann
sphere in the special case where there are no grand orbit finite points),
provided that n is sufficiently large.

Proof of Theorem 4.10. First note that the complementary set C"U
can contain at most two points. For otherwise, since f(U) C U, it would
follow from Montel's Theorem that U must be contained in the Fatou set,
which is impossible since Zl E U n J. Again making use of the fact that
f (U) C U, we see that any preimage of a point Z E c-,U must itself belong
to the finite set C" U. It follows by a counting argument that some iterated
preimage of Z is periodic; hence Z itself is periodic and grand orbit finite.
Since the set £(f) of grand orbit finite points is disjoint from J, it follows
that J cU. Finally, if N is small enough so that N C C" E(f) , it follows
easily that U == C<, £(f). D

Corollary 4.11 (Julia Set with Interior). If the Julia set
contains an interior point, then it must be equal to the entire
Riemann sphere.

For if J == J(f) has an interior point Zl, then choosing a neighborhood
N C J of zj , the union U C J of forward images of N is everywhere
dense, U == e. Since J is a closed set, it follows that J = C. (For
examples, see §7.) D

Corollary 4.12 (Basin Boundary = Julia Set). If Ace
is the basin of attraction for some attracting periodic orbit, then
the topological boundary 8A == A" A is equal to the entire Julia
set. Every connected component of the Fatou set ce" J either
coincides with some connected component of this basin A or
else is disjoint from A.

Proof. If N is any neighborhood of a point of the Julia set, then
Theorem 4.10 implies that some fon(N) intersects A, hence N itself
intersects A. This proves that J c A. But J is disjoint from A, so
it follows that J c 8A. On the other hand, if N is a neighborhood
of a point of 8A, then any limit of iterates fonlN must have a jump
discontinuity between A and 8A, hence 8A c J. Finally, note that any
connected Fatou component which intersects A, since it cannot intersect
the boundary of A, must coincide with some component of A. D



4. DYNAMICS ON THE RIEMANN SPHERE 49

Caution. 8A is not the same thing as the union of the boundaries of
the connected components of A, which tends to be much smaller when A
is not connected (for example in Figure 6). It may be instructive to compare
a Cantor set in the line, which is uncountably infinite although the union
of the boundaries of its complementary intervals is countable.

Corollary 4.13 (Iterated Preimages are Dense). If ZQ

is any point of the Julia set J(f), then the set of all iterated
preimaqes

{z E t; fon(z) = ZQ for some n ~ O}

is everywhere dense in J(f).

Because ZQ tt [(f), Theorem 4.10 shows that every point ZI E J(f)
can be approximated arbitrarily closely by points Z whose forward orbits
contain ZQ. D

Remark on computer graphics. (Compare Appendix H.) This corol
lary suggests an algorithm for computing pictures of the Julia set: Starting
with any ZQ E J(f), first compute all ZI with f(ZI) = ZQ; then for each
such ZI, compute all Z2 with f(Z2) = ZI, and so on, thus eventually com
ing arbitrarily close to every point of J(f). This method is most often
used in the quadratic case, since quadratic equations are very easy to solve
and since the number dn of n-fold iterated preimages is smallest when the
degree d is 2. The method is very insensitive to round-off errors, since f
tends to be expanding on its Julia set, so that r' tends to be contracting.
(Compare Problems 4-e, 4-f, as well as §19.) However, it does have disad
vantages: the number dn grows very rapidly with n, yet it may take an
enormous number of iterated preimages to get close to certain points of J.

Corollary 4.14 (No Isolated Points). If f has degree 2 or
more, then J(f) has no isolated points.

Proof. First note that J(f) must be an infinite set. For if J(f) were
finite it would consist of grand orbit finite points, contradicting Lemma
4.9. Hence J(f) contains at least one limit point ZQ. Now the iterated
pre images of ZQ form a dense set of nonisolated points in J (f) . D

Corollary 4.15 (Julia Components). For any rational map
of degree 2 or more, the Julia set J is either connected or else
has uncountably many connected components.

Proof. If J is not connected, then it can be expressed as the union
JOUJI of two disjoint, nonvacuous compact subsets. Note that both of these
subsets must be infinite, since J has no isolated points. To each Z E J
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Figure 7. A family of "rabbits" (compare Figure 5d). The Julia set
for the cubic polynomial,

f(z) == z3 - .48z + (.706260 + .502896i),

has infinitely many nontrivial connected components.

we can assign an infinite sequence (130, 131, 132, ... ) of bits 13n == 13n (z) E
{O, I} by the requirement that fon (z) E J{3n' Evidently the points in any
connected component of J must all have the same bit sequence. Thus, to
complete the proof, it suffices to show that uncountably many distinct bit
sequences can actually be realized by points of J. (In some cases it may be
possible to choose the partition J == Jo U J1 very carefully so that all bit
sequences will be realized. However, this is certainly not true for most such
partitions. )

Let (130, 131, ... ,13k) be a finite bit sequence which can actually be
realized by some point z' E J. We will first show that there is another
point z" E J with the same initial bit sequence, but with 13n (z') =I- 13n (z")
for some n > k .

The union of either J{3 with the Fatou set forms an open hyperbolic

neighborhood U{J = C-, J 1-{J' Let J{JO, ... ,{Jk be the compact set consisting
of all z E J with fon(z) E J{3n for 0 ~ n :s; k. and let U{3o, ... ,{3k be the
open neighborhood consisting of all points z E C with fon(z) E U{3n for
o ~ n ~ k. Assuming that all points of J{3o, ... ,{3k have the same infinite
bit sequence {13n} , we will prove that U{3o, ... ,{3k must be contained in the
Fatou set, which is impossible.

The sequence {,Bn} must contain either infinitely many zeros or in-



4. DYNAMICS ON THE RIEMANN SPHERE 51

finitely many ones or both. Hence any infinite sequence of iterates of f must
either contain an infinite subsequence {fonj} such that fonj (U(3o, ...,{3k) c
U« for all i, or an infinite subsequence such that fonj (U{3o, ... ,{3k) C Ul
for all j. Since Uo and Ul are hyperbolic, this would contradict the hy
pothesis that J{3o, ... ,{3k c U{3o, ... ,{3k is in the Julia set. Thus, every finite bit
sequence which is realized by a point of J can be extended in two or more
different ways. It then follows easily that it can be extended in uncountably
many different ways, as required. 0

Remark. In the polynomial case, it seems likely that all but count
ably many of these connected components must be single points. (Compare
Branner and Hubbard [1992].) However, this is certainly not true for ar
bitrary rational maps. (See McMullen's example, Figure 6d. For more on
disconnected Julia sets, see Blanchard [1986].)

For the last corollary, we will need some definitions. A topological space
X is called a Baire space if every countable intersection of dense open sub
sets of X is again dense. We will make use of Bsire's Theorem, which
asserts that every complete metric space is a Baire space, and also that ev
ery locally compact space is a Baire space. (Compare Problem 4-j.) It will
be convenient to say that a property of points in the Baire space X is true
for generic x E X if it is true for all points in some countable intersection
of dense open subsets of X. We apply this concept to the topological space
J(f)·

Corollary 4.16 (Topological Transitivity). For a generic
choice of the point z E J == J(f), the forward orbit

{z, f(z) , f02(z) , ... }

is everywhere dense in J.

Proof. (Compare Problem 4-j.) For each integer j > 0, we can cover
the Julia set J == J(f) by finitely many open sets Njk of diameter less
than 1/j, using the spherical metric. For each such Njk, let Ujk be the
union of the iterated preimages f-n(Njk). It follows from Corollary 4.13
that the closure Ujk n J is equal to the entire Julia set J. In other words,
Ujk n J is a dense open subset of the Julia set. Now if z belongs to the
intersection of these dense open sets, then the forward orbit of z intersects
everyone of the N jk and hence is everywhere dense in J. 0

Concluding Problems

Problem 4-a. Degree 1. If f: e~ e is rational of degree d == 1,
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show that the Julia set J(I) is either vacuous or consists of a single repelling
or parabolic fixed point.

Problem 4-b. Maps with grand orbit finite points. Now suppose
that I is rational of degree d 2:: 2. (1) Show that I is actually a polyno
mial if and only if 1-1 (00) == {oo}, so that the point at infinity is a grand
orbit finite fixed point for I. (2) Show that I has both zero and infinity
as grand orbit finite points if and only if I(z) == azn , where n == ±d and
a i- O. (3) Conclude that I has grand orbit finite points if and only if it
is conjugate, under some fractional linear change of coordinates, either to a
polynomial or to the map z ~ 1/zd .

Problem 4-c. Fixed point at infinity. If I is a rational function
with a fixed point at infinity, show that the multiplier A at infinity is equal
to limz~oo 1/I'(z). In particular, this fixed point is superattracting if and
only if I' (z) --+ 00 as z --+ 00. (Take (== 1/z and use the series expansion
1/1(1/() == A( + a2(2 + a3(3 + ... in some neighborhood of (== 0.)

Fi 8 J I· Fe I() 3 12 116 .tgure ° u la set or z == z + 25 z + 125~.

Problem 4-d. Self-similarity. With rare exceptions, any shape which
is observed about one point of the Julia set will be observed infinitely often,
throughout the Julia set. More precisely, for two points z and z' of J ==
J(I), let us say that (J, z) is locally conformally isomorphic to (J, z') if
there exists a conformal isomorphism from a neighborhood N of z onto a
neighborhood N' of z' which carries z to z' and J n N onto J n N'.
(1) Using Corollary 4.13, show that the set of z for which (J, z) is locally
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conformally isomorphic to (J, zo) is everywhere dense in J unless the
following very exceptional condition is satisfied: For every backward orbit

Zo f-I ZI f-I Z2 f-I ... under f which terminates at zo, some Zj with
j > ° must be a critical point of f. (2) As an example, for the map
f(z) == z2 - 2 studied in §7, show that this condition is satisfied for the
endpoints Zo == ±2. Similarly, show that it is satisfied for the point Zo == .8i
of Figure 8. (3) For any i, show that there can be only finitely many such
exceptional points zo.

Problem 4-e. A Cantor Julia set. By definition, a topological
space is called a Cantor set if it is homeomorphic to the standard middle
third Cantor set K c [0,1] consisting of all infinite sums ~r 2ak/3k
with coefficients ak E {O, I}. If X is a compact metric space, then a
standard theorem asserts that X is a Cantor set if and only if it is totally
disconnected (no connected subsets other than points), with no isolated
points. (Compare Hocking and Young [1961].) If f(z) == z2 - 6, show that
J(f) is a Cantor set contained in the intervals [-3, -J3] U [J3, 3]. More
precisely, show that a point in J(f) with orbit Zo rt ZI rt · .. is uniquely
determined by the sequence of signs Ej == Zj / IZj I == ±1. In fact

Zo = EOV6+ EIV6+ E2V6+ ....

(Use Corollary 4.13 and the fact that the branch Z rt V6 + Z of r' is a
strictly contracting map which carries the interval [-3, 3] onto [J3, 3].
Compare Problem 2-j.) Using Lemma 4.6, show that every orbit outside of
this Cantor set must escape to infinity.

Problem 4-f. Fatou [1906]. Similarly, let f(z) == z2 + c where
c > 1/4 is real. (1) Show that J is a Cantor set disjoint from the real axis
and that each orbit Zo J---+ ZI rt · .. is uniquely determined by the sequence
of signs En == sgn(Im(zn)). In fact

Zo == lim EOg(Elg(E2'" En-lg(En Z) .. ')),
n---+oo

where g(z) ==~ is the branch of f- 1 which maps the slit plane
U == ce <, [c, +(0) onto the upper half-plane, and Z is some fixed basepoint
in J, for example, the fixed point in the upper half-plane. (Use the fact
that 9 restricted to the compact set J C U is a strictly contracting map
for the Poincare metric pu.) (2) Show that every orbit outside of J must
escape to infinity. Using the substitution w == c] z, prove corresponding
statements for Fatou's 1906 example
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Problem 4-g. Newton's method. (See also Problem 7-a.) Let U
be an open subset of C and let F: U ---+ C be a holomorphic map with
derivative F'. Newton's method of searching for solutions to the equation
F(z) == 0 can be described as follows.* Consider the auxiliary function
N : U ---+ C, where

N(z) == z - F(z)/F'(z).

For example, if F is a polynomial of degree d, then N is a rational
function of degree ::; d. Starting with any initial guess Zo one can form
the successive images zk+l == N(Zk). With luck, these will converge towards
a fixed point z == N(z) and it follows immediately that F(z) == O.

By definition, z is a root of F of multiplicity m if the Taylor expansion
of F about z has the form

F(z) == a(z - z)m + (higher terms),

with a =I- 0 and m ~ 1. (1) Show that the fixed points of N in the finite
region U are precisely the roots of F, and in fact that every root of F is an
attracting fixed point for N with multiplier A == 1- 11m where m is the
multiplicity. Thus every simple root of F, with m == 1, is a superattracting
fixed point of N, while every root of higher multiplicity is a geometrically
attracting fixed point. (2) Now suppose that F is a polynomial of degree
d > 1, so that N is a rational map. Show that 00 is the unique repelling
fixed point of N, the multiplier at infinity being d/ (d - 1) > 1. Show that
N(z) == 00 for z E C only if F'(z) == 0, F(z) =I- o. Show that N has
derivative

N' ( ) = F(z)F"(z)
z F'(z)2'

Problem 4-h. Lyapunov stability. A point Zo E e is stable in the
sense of Lyapunov for a rational map f if the orbit of any point which is
sufficiently close to Zo remains uniformly close to the orbit of Zo for all
time. More precisely, for every E > 0 there should exist 8 > 0 so that if
z has spherical distance (J(zo, z) < 8 then (J(fon zo, fonz) < E for all n.
Show that a point is Lyapunov stable if and only if it belongs to the Fatou
set.

Problem 4-i. Fatou components. If [2 is a connected component
of the Fatou set of i , show that f(O) is also a connected component of

"Ever since the work of Cayley [1879] and Schroder [1871] in the 19th century, the

problem of understanding Newton's method has been a primary inspiration for the study

of iterated rational functions. For recent work, see, for example, Tan Lei [1997], Roesch

[1998], and compare Keen [1989].
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Fatou(f) .
Problem 4-j. Baire's Theorem and transitivity. For any locally

compact space X, prove Baire's Theorem that any countable intersection
U; n U2 n ·.. of dense open subsets of X is again dense. (Within any
nonvacuous open set V C X choose a nested sequence

Kl :J K2 :J K3 :J · · ·

of compact sets Kj C Uj with nonvacuous interior, and take the intersec
tion. )

A map f: X ~ X is called topologically transitive if for every pair U
and V of nonvacuous open subsets there exists an integer n 2:: 0 so that
fon(u) n V is nonvacuous. (Compare Theorem 4.10.) If this condition is
satisfied and if there is a countable basis for the open subsets of the locally
compact space X, show that a generic orbit under f is dense. (Compare
Corollary 4.16.)



§5. Dynamics on Hyperbolic Surfaces

This section will begin the discussion of dynamics on Riemann surfaces other
than the Riemann sphere. It turns out that the possibilities for dynamics
on a hyperbolic surface are rather limited. Let us first restate the definition
in greater generality, allowing Riemann surfaces which may be noncompact.

Definition. For a holomorphic map f : S -t S of an arbitrary Rie
mann surface, the Fatou set of f is the union of all open sets U C S such
that every sequence of iterates fonj lu either

(1) contains a locally uniformly convergent subsequence, or

(2) contains a subsequence which diverges locally uniformly from
S, so that the images of a compact subset of U eventually
leave any compact subset of S.

(If S is compact, then no sequence can diverge from S, so that case (2)
can never occur.) As usual, the complement of the Fatou set is called the
Julia set.

Remark. In the special case of a surface S which can be described
as an open subset with compact closure within a larger Riemann surface
T, a completely equivalent condition would be the following. A point
z E S belongs to the Fatou set of f if and only if, for some neighbor
hood U of z , any sequence of iterates fonl u considered as maps from U
to T contains a subsequence which converges locally uniformly to a map
U -t T. Furthermore, if the limit map does not take values in S, then it
is necessarily constant. (Compare Lemma 3.5 and Corollary 3.6.)

Lemma 5.1 (No Julia Set). For any map f : S -t S of a
hyperbolic surface, the Julia set J(f) is vacuous. In particu
lar, f can have no repelling points, parabolic points, or basin
boundaries.

Proof. This follows immediately from Corollary 3.3, together with the
proofs of Lemmas 4.6, 4.7, and Corollary 4.12. 0

In fact we can give a much more precise statement, essentially due to
Fatou. (Compare §16.)

Theorem 5.2 (Classification). For any holomorphic map
f : S -t S of a hyperbolic Riemann surface, exactly one of
the following four possibilities holds:

56
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• Attracting Case. If f has an attracting fixed point, then
it follows from Lemma 5.1 (or from Problem 1-h) that all orbits
under f converge towards this fixed point. The convergence is
uniform on compact subsets of 5.

• Escape. If some orbit under f has no accumulation point
in 5, then no orbit has an accumulation point. In fact, for
any compact set K c 5 there exists an integer n« so that
K n fon (K) == 0 for n 2: n K .

• Finite Order. If f has two distinct periodic points, then
some iterate fon is the identity map and every point of 5 is
periodic.

• Irrational Rotation. In all other cases, (5, f) is a rotation
domain. That is, 5 is isomorphic either to a disk II)) , to a
punctured disk IIJ)" {O}, or to an annulus

Ar == {z:I</zl<r},

and f corresponds to an irrational rotation, Z ~ e2nia Z with
a5t'Q.
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Much later, in §16, we will apply this theorem to the case where 5 is
an open subset of the Riemann sphere and f is a rational map carrying
this set into itself. Here is an important example.

Corollary 5.3 (Siegel Disks). Let f be a rational map of
degree d 2: 2. If a connected component U of the Fatou set
C"J contains an indifferent fixed point,

f (zQ) == ZQ, If' (ZQ )I == 1,

then U is conformally isomorphic to the unit disk II)) in such a
way that flu corresponds to an irrational rotation of the disk.

The proof, assuming Theorem 5.2, is immediate, since U is clearly hy
perbolic and maps into itself under f. (No iterate fon can be the identity
map on any open set, since f has degree 2: 2.) The actual existence of
nonlinear rational maps which possess such a rotation domain U is highly
nontrivial and will be discussed in §11.

In the special case where 5 is equal to the open unit disk II)) , the
following more precise version of Theorem 5.2 was proved in Denjoy [1926],
refining an earlier result by Wolff.
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Theorem 5.4 (Denjoy-Wolff). Let f : JI)) -+ JI)) be any holo
morphic map. Then either:

(a) f is a "rotation" (with respect to the Poincare metric) about
some fixed point Zo E JI)), or

(b) the successive iterates fon converge, uniformly on compact
subsets of JI)), to a constant function z r-+ Co, where Co may
belong either to the open disk JI)) or to the boundary circle aJI)).

(This is sharper than Theorem 5.2 only in the Escape Case: If some orbit
has no accumulation point in JI)), then every orbit must converge to a single
bou~dary point of JI)).) According to Lemma 1.8, there is an automorphism
of C carrying JI)) to the upper half-plane lHI, so the analog of Theorem
5.4 is true for lHI also. Here are three examples: If f : lHI -+ lHI is either
the parabolic automorphism z r-+ Z + 1 or the hyperbolic automorphism
~ r-+ 2z or the embedding z r-+ z + i, then all orbits in lHI converge within
C to the single boundary point 00.

Unfortunately, Theorem 5.4 is no longer true if we replace JI)) or lHI by
an arbitrary hyperbolic open subset of C. (See Problem 5-a.) However, we
can make the following statement, which will be important in §16.

Lemma 5.5 (Convergence to a Boundary Fixed Point).
Suppose that U is a hyperbolic open subset of a compact Rie
mann surface and that the map f : U -+ U extends continuously
to the boundary au, with at most a finite number of fixed points
in au. If some orbit of f in U has no accumulation point
within U, then all orbits in U must converge within the closure
U to a single boundary fixed point

z == f(z) E au.
This convergence is uniform on compact subsets of U.

The proofs follow.

Proof of Theorem 5.2. Choose some base point Po E S and consider
the orbit Po r-+ PI r-+ P2 r-+ ..• under f. It may happen that this orbit
diverges from S, so that the Poincare distance satisfies

lim dist (Pn , po) == 00.
n---+oo

If this happens, then for any point qo within the ball of radius r about
Po, the corresponding orbit qo r-+ ql r-+ · .. satisfies dist(qn, Pn) :::; r, and
hence

dist(qn, po) ~ dist(Pn, po) - r -+ 00.
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Thus all orbits diverge from S, and this divergence is uniform on compact
subsets of S.

Otherwise, if dist(Pn, po) does not tend to infinity, then we can find
infinitely many Pn within some bounded neighborhood of Po. These must
have some accumulation point pES. Choose integers n(l) < n(2) < · · ·
so that the sequence {Pn(j)} converges to p, and consider the sequence of
maps

9j = r(n(j+l)-n(j)).

Then gj maps Pn(j) to Pn(j+l). If Tj is the Poincare distance between
p and Pn(j) , it follows that dist(gj(P),Pn(j+l)) ::; Tj, hence

dist(gj(p), p) ::; Tj + Tj+l (5 : 1)

by the triangle inequality. Let T be the maximum of {Tj }. (This exists
since the T j converge to zero.) It follows that the points gj (p) all lie
within some compact ball B2r C S. Hence by the Hyperbolic Compactness
Theorem 3.7, it follows that the maps gj all lie within a compact subset of
the space Hol(S,S). Therefore we can choose an accumulation point 9 of
{gj} within Hol(S, S). Furthermore, since Tj + Tj+l ~ 0 as j ~ 00, it
follows from (5: 1) that g(p) == p. There are now two cases.

Distance-Decreasing Case. If f decreases Poincare distances, then
every iterate of f must satisfy

dist(fon(p) , fon(q)) < dist(f(p), f(q)) < dist(p, q)

for P i= q, and hence the limit 9 must also decrease Poincare distances.
The maps f and 9 commute, since 9 is a limit of iterates of i, and
hence f must map the fixed point p == g(p) to a fixed point f(p) ==
f(g(p)) == g(f(p)) of g. But 9 cannot have two distinct fixed points, since
it decreases the Poincare distance. This proves that p == f(p) is also a fixed
point for f. It is not hard to see that it must be an attracting fixed point,
so that all orbits under f converge to p.

Distance-Preserving Case. Now suppose that f is a local isometry
for the Poincare metric. Then we will show that some sequence of iterates
of f converges locally uniformly to the identity map of S. Proceeding as
above, some sequence of iterates gj of f converges to a map 9 which has
a fixed point p. The multiplier at this fixed point must have absolute value
equal to 1, say g' (p) == e21ria . Whether or not the angle a is rational we
can choose some multiple rna which is arbitrarily close to an integer, and
conclude that gom has multiplier arbitrarily close to +1 at p. On the
other hand, these iterates of 9 belong to a normal family by Theorem 3.7,
so we can choose a subsequence {gm(j)} which converges locally uniformly
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throughout 8, with multiplier at p converging to +1. The limit function
has multiplier equal to +1. Lifting to the universal covering and applying
the Schwarz Lemma, we see that this limit is indeed the identity map of 8.
Finally, it is not difficult to reduce this double limit of iterates of f to a
single limit.

To complete the proof of Theorem 5.2, we must prove the following.

Lemma 5.6 (Iterates near the Identity Map). If f : 8 ----*

8 is a map of a hyperbolic surface, with the property that some
sequence of iterates fom(i) converges locally uniformly to the
identity map, then either f has finite order, or else 8 is iso
morphic to ]IJ) or ]IJ)" {O} or to an annulus Ar , and f corre
sponds to an irrational rotation.

(A similar assertion holds for nonhyperbolic surfaces: Compare Problem
6-d.)

Proof of Lemma 5.6. First note that f must be one-to-one, for if
f(p) == f(q) with p i= q, then any limit of iterates of f must also map p
and q to the same point, so no such limit can be the identity map. Similarly,
note that f must be onto. Suppose to the contrary that f(8) is a proper
subset of 8 with say p f/. f(8). If B is a closed disk neighborhood of
p, then any map 9 sufficiently close to the identity map of 8 must map
B to a set g(B) containing p. Hence no such 9 can be an iterate of
f. Combining these two statements, we see that f must be a conformal
automorphism of the surface 8.

In the simply connected case, the automorphisms of 8 rv]J)) have been
described in Theorem 1.7. (See also Problems Ld and 2-e.) Evidently the
"hyperbolic" and "parabolic" automorphisms, with no interior fixed point,
behave as in the Escape Case, with no iterate close to the identity map.
Thus the only automorphisms satisfying the hypothesis of Lemma 5.6 are
the rotations about some fixed point.

For the non-simply connected case, we have to work a bit harder. Sup
pose that the sequence of maps r:» converges, uniformly on compact
sets, to the identity map of 8. Lifting to the universal covering surface, we
obtain a sequence of automorphisms Fom(j) : S ----* S which converge to
the identity modulo the action of the group r of deck transformations. In
other words, given a compact set K c S, for j sufficiently large, we can
find a deck transformation "'Ij so that the composition Fj == "'Ij 0 Fom(j) is
uniformly close to the identity throughout K.

Now note that each Fj induces a group homomorphism "'I ~ "'I' from
r to itself satisfying the identity Fj 0"'1 == "'I' 0 Fj. (See Problem 2-b. Since
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both Fj 0 ~ and Fj cover the same map from S to itself, it follows that
there is some deck transformation ~' carrying Fj 0 ~(p) to Fj (p), and it is
easy to check that ~' does not depend on the choice of p E 3.) Therefore

, F F- 1
~ == j o~o j .

If Fj is very close to the identity, then ~' will be very close to ~ through
out some large compact set. But f is a discrete group, so this implies that
~' == ~ or, in other words,

Fj 0 ~ == ~ 0 Fj,

provided that j is sufficiently large. If some Fj is actually equal to the
identity map, then some iterate of f is the identity map of S. Let us
assume that this is not the case, so that no Fj is the identity map.

Recall from Theorem 1.12 that each nonidentity element 9 in the auto
morphism group 9(3) rv 9(IIJ)) belongs to a unique maximal commutative
subgroup, which we will denote by C(g). Thus two nonidentity elements
gl and g2 in 9(3) commute if and only if C(gl) == C(g2). In particular,
any nonidentity ~ E r c 9(3) determines such a group C(~), and any r,
which is sufficiently close to the identity map must satisfy C(Fj) == C(~) .
But the same is true for any other nonidentity element of f. This proves
that the commutative group C(~) c 9(3) is independent of the particular
choice of ~. We will denote this group briefly by C(f).

In particular, it follows that I' is a commutative group. Since we have
assumed that S is not simply connected, this implies that S must be
either an annulus or a punctured disk. (Problem 2-g.) Furthermore, if j is
large then Fj == ~j 0 Fom(j) belongs to C(f), and hence Fom(j) does also.
But F commutes with Fom(j) , so F also belongs to C(f).

If the one-parameter group C(f) c 9(3) consists of parabolic transfor
mation, then it will be convenient to use the upper half-plane model S rv lHI
and to identify C(f) with the group of real translations w....-+ w + c. On
the other hand, if C(f) consists of hyperbolic transformations, then it is
convenient to use the infinite strip model, as in Problem 2-f. In this case
also, we can identify C(f) with the group of real translations w....-+ w + c.
In either case, the nontrivial discrete subgroup I' must be cyclic, generated
by some translation w....-+ w +Co, and the map F must correspond to some
other translation w ....-+ w + c'. Now setting z == e21ri w / Co we see that F
corresponds to a rotation of an annulus or punctured disk, as required. This
completes the proof of Lemma 5.6 and Theorem 5.2 D

Proof of the Denjoy-Wolff Theorem 5.4. Let f : JI)) ---t IIJ) be
any holomorphic map. The following argument is taken from a lecture
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of Beardon, as communicated to me by Shishikura. For any E > 0, let us
approximate f by the map fE(Z) == (l-E)f(z) from ID> into a proper subset
of itself. Each map fE has a unique fixed point ZE. (Compare Problem
2-j, or note that existence of a fixed point follows from the Brouwer Fixed
Point Theorem applied to the disk (1 - E)ID> and that uniqueness is clear
since fE decreases Poincare distances.) Since the closed disk ID> is compact,
we can choose a sequence {Ei} tending to zero so that the corresponding
fixed points ZEi converge to some limit z E ID>. If IzI < 1, then z is
a fixed point of f, and the conclusion follows easily from Theorem 5.2.
Assume then that z E aID>. Choose some arbitrary basepoint Zo E ID>,
and let Ti be the Poincare distance between Zo and ZEi. Let B; be the
closed neighborhood of Poincare radius Ti which is centered at ZEi and
has the basepoint Zo on its boundary. Since the map fEi reduces Poincare
distances, it necessarily carries B, into itself. These neighborhoods B; are
actually round disks with respect to the Euclidean metric also. (However
the Euclidean center is usually different from the Poincare center. Compare
Problem 2-c.) As i ~ 00, the round disks Bi must tend to a limit Boo,
which can only be the round disk which is tangent to the unit circle at z
and whose boundary passes through zo. (By definition, such a disk tangent
to the circle at infinity of IIJ) is called a "horodisk" in IIJ).) It follows by
continuity that f maps IIJ)nBoo into itself. In particular, it follows that the
entire orbit of Zo under f must be contained in Boo. On the other hand,
we know by Theorem 5.2 that the orbit of Zo must tend to the boundary
of ID>. But a sequence in Boo which tends to the boundary of ID> can only
tend to the point of tangency z. It follows easily that all orbits in ID> tend
to the same limiting point Z, as required. 0

Proof of Lemma 5.5. Let U be a hyperbolic open subset of the
Riemann surface S. Suppose that f : U ~ U is continuous on the compact
set U and maps U holomorphically into itself, and suppose that some orbit
Po ~ PI ~ P2 ~ ... in U has no accumulation point in U. It follows
that the Poincare distance distr, (po, Pn) must tend to infinity as n ~ 00.

Choose some continuous path P : [0, 1]~ U from the point Po == p(O) to
f(po) == p(l), and continue this path inductively for all t 2: 0 by setting
p(t + 1) == f(p(t)). Let 8 be the diameter of the image p[O,l] in the
Poincare metric for U. Then each successive image p[n, n + 1] must also
have diameter:::; 8. It follows that distu(po,p(t)) also tends to infinity as
t ~ 00.

Let p be any accumulation point of {p(t)} in au as t ~ 00. It
follows from Theorem 3.4 that, for any neighborhood V of p, we can find
a smaller neighborhood W, so that any set of Poincare diameter 8 which
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intersects U n W must be contained in v: Hence, for any such V, we can
find images p[n,n + 1] which are contained in v: Since f maps p(n) to
p(n + 1), it follows by continuity that f(p) = p. Thus every accumulation
point of the path P : [0, (0) -t U in 8U must be a fixed point of f. On
the other hand, it is not difficult to show that the set of all accumulation
points of p(t) as t -t 00 is a connected set (Problem 5-b).

Now assume that f has only finitely many fixed points in 8U. Since a
finite connected set can only be a single point, it follows that p(t) converges
to a single point p E au as t -t 00. In particular, the orbit Po ..-+ PI ..-+ •••

converges to p. Now consider an arbitrary orbit qo..-+ ql ~ ... under f:
If distu(po, qo) = r, then distu(Pn, qn) ~ r. Using Theorem 3.4, it follows
that the sequence {qn} also converges to p, and it is easy to check that
this convergence is uniform on compact subsets of U. D

Figure 9. Region with boundary which is not locally connected.

Concluding Problems

Problem 5-a. A badly behaved example. (Compare §17.) Given
a sequence of numbers 1 > al > a2 > · .. converging to 0, let U c C be
obtained from the open unit square (0,1) x (0,1) by removing the line

[an, 1] x {an} for each odd value of n, and removing

[0, 1 - an] X {an} for each even value of n,

as illustrated in Figure 9. Give U the Poincare metric. Given a basepoint
Zo in the open set U, for each unit vector v in the tangent space at Zo
there is a unique geodesic ray gv : [0, (0) -t U which starts at ZQ with
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initial velocity vector g~ (0). Evidently gv(t) tends towards the boundary
of U as t ~ co. Now consider the sequence of line segments

i; = U n ([0,1] x {an}),

each of which cuts U into two components. Let Vn be the set of all
unit vectors v at ZQ such that gv[0,00) intersects the line segment Ln.
(1) If ZQ lies near the top of U, show that each Vn contains the closure
of Vn+l and show that there exists a vector v which belongs to the in
tersection of the Vn . (2) Show that every point on the bottom edge of
the unit square is an accumulation point for the ray gv (t) as t ~ oo.
(3) Now consider the conformal automorphism f : U ~ U which maps
this geodesic to itself with f(gv(t)) = gv(t + 1). (Compare Problem 2-e.)
Show that every point of the bottom edge is also an accumulation point for
the orbit f: ZQ ~ Zl ~ · · · .

Problem 5-b. Some compact connected sets. (1) In any Haus
dorff space X, show that the closure of a connected set is connected and
show that the intersection of any nested sequence K; ~ K2 ~ · .. of com
pact connected sets is again connected. (2) Now consider an infinite path
p : [0,oo) ~ X in a compact Hausdorff space. Show that the set of all ac
cumulation points of p(t) as t ~ ()() can be identified with the intersection
of closures np[t, oo)

t

and therefore is a nonvacuous compact connected set. (3) By a similar
argument, show that the topological boundary of any simply connected
region in cC is connected.



§6. Dynamics on Euclidean Surfaces

This section considers surfaces S such that the universal covering surface
S is conformally isomorphic to the complex numbers C. Thus S can be
either C itself or the punctured plane C" {O} rv CIZ or a torus T == CIA.
(Compare §2.) It turns out that the torus case is interesting but quite easy
to understand, while the remaining two cases are extremely difficult.

In the case of a torus 1I' == CIA, where A is a lattice in C, we will
prove the following.

Theorem 6.1. Every holomorphic map f: 1I' -+ 1I' is an affine
map, f(z) oz+ c (mod A), with degree d == lal2 . The
corresponding Julia set J(f) is either the empty set or the entire
torus according to whether d::; 1 or d > 1.

If a =I 1, note that f has a fixed point Zo == c] (1 - a) and hence is
conjugate to the linear map

z 1--+ f(z + zo) - Zo == az

with multiplier a. For the description of which multipliers can occur, see
Problem 6-a.

Proof of Theorem 6.1. To fix our ideas, suppose that T == CIA
where the lattice A c C is spanned by the two numbers 1 and T and
where T tt ffi.. Any holomorphic map f : 1r -+ 1r lifts to a holomorphic
map F: C -+ C on the universal covering surface. Note first that there
exists a lattice element a E A so that

F(z + 1) == F(z) + a for all z E C,

for we certainly have F(z+ 1) =F(z) (mod A) and the difference function
F(z + 1) - F(z) E A must be constant since C is connected and the target
space A is discrete. Similarly,thereexists (3 so that F(Z+T)==F(z)+(3
for all z. Now let g(z) == F(z) - oz , so that g(z + 1) == g(z). Then

g(z + T) == F(z + T) - a(z + T) == g(z) + ((3 - o-r ).

We claim that 9 must be constant, say g(z) == c for all z. In fact, 9
gives rise to a map from 1I' to the quotient space C/((3 - aT)Z, which is
either C itself or an infinite cylinder according to whether (3 - ccr is zero
or nonzero. In either case, this quotient is a noncompact Riemann surface,
while T is compact, so such a map must be constant by the Maximum
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Modulus Principle. Now F(z) == g(z) + az == az + c, as required. Since
this map multiplies areas by lal 2 , it follows easily that f has degree equal
to lal2

.

Further properties of f depend on the multiplier a. If lal ~ 1, then
the derivatives Idfon(z)/dzl == lanl are uniformly bounded, so the domain
of normality for {fon} is the entire torus 'If. In other words, the Fatou set
of f is equal to T. On the other hand, if lal > 1, then Idfon(z)/dzl ==
Ian I~ 00 as n ~ 00, and it follows that the Julia set of f is the entire
torus. D

For further information, see Problems 6-a and 6-b.

Figure 10. The function z 1---+ sin(z) can be considered as a holo
morphic map from the cylinder C/21T71 to itself. In this case the
Julia set, shown in black, has infinite area (McMullen [1987]). The
Fatou set (C/21T71) " J is dense, but has finite area (Schubert [to
appear]). The region shown is [-.5, 1T + .5] x [-1, 4].

The Noncompact Euclidean Surfaces. If S is noncompact and Eu
clidean, then it must be isomorphic to the plane C or the cylinder CI'll.
First suppose that S is the complex plane C itself. We can distinguish
two different classes of holomorphic maps C ~ C. A polynomial map of C
extends uniquely over the Riemann sphere C. Hence the theory of polyno
mial mappings can be subsumed as a special case of the theory of rational
maps of C. (Compare §§9 and 18.) On the other hand, transcendental
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mappings from CC to itself form an essentially distinct and more difficult
subject of study. Such mappings have been studied for almost eighty years
by many authors, starting with Fatou [1926]. The contributions of Baker
[1968, 1976] are especially noteworthy. * Even iteration of the exponential
map exp : CC -+ CC provides a number of quite challenging problems. For
example, according to Lyubich [1987] and Rees [1986b), for Lebesgue almost
every starting point z E CC, the set of accumulation points for the orbit of z
is equal to the orbit {O, 1, e, e", ... } of zero. (This assertion is an amusing
subject for computer experimentation: Random empirical orbits seem to
land exactly at 0 after relatively few iterations, unless they first encounter
an overflow error.) However, according to Misiurewicz [1981] the Julia set
of the exponential map is the entire complex plane, hence a generic orbit
is everywhere dense in the plane. (Compare Corollary 4.16. A proof that
J(exp) = CC is included in Devaney [1989, Theorem 9.5]. For a polyno
mial map of the interval with the analogous property that a generic orbit
is dense but almost every orbit is not, see Bruin, Keller, Nowicki, and van
Strien [1996].)

Further information about iterated transcendental functions may be
found, for example, in Devaney [1986], Goldberg and Keen [1986], and Ere
menko and Lyubich [1990, 1992]. The study of iterated maps from the
cylinder C/71 rv C" {O} to itself is closely related and is also a difficult and
interesting subject. See, for example, Keen [1988]. Note that any periodic
function from C to itself can also be considered as a function from the
cylinder to itself. (Compare Figure 10.)

Remark. The study of iterated meromorphic functions C -+ t, al
though surely of great interest, does not fit into the framework we have
described, since compositions are not everywhere defined. Compare Berg
weiler [1993].

Concluding Problems

Problem 6-a. The derivative of a torus map. Consider the torus
T = CIA, where we may assume that A = 7lEBr71 with r f/ IR. (1) Given
a E CC, show that there exists a holomorphic map f(z) - az + c from
']f to itself with derivative a if and only if aA c A, or in other words if

*See Remarks 14.7 and 16.6, and also Lemma F.2. Noel Baker was born in Adelaide
and did his first mathematical work there. He then obtained his doctorate under Helmut

Kneser in Tiibingen. After two years in Edmonton, Canada, he moved to England where
he was a Lecturer and later Professor at Imperial College London from 1959 to 1997.
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and only if both a and ccr belong to A. Show that an arbitrary integer
a E Z will satisfy this condition. (2) On the other hand, for a tt Z, show
that there exists such a map with derivative a if and only if a satisfies a
quadratic equation of the form

a 2 + p a + d == 0,

where d == lal 2 is the degree and where p is an integer with p2 < 4d.
Thus for each choice of degree there are only finitely many possible choices
for

-p± VP2 - 4d
a == 2 .

(Such a torus is said to admit complex multiplications.) (3) For a map of
degree d == lal 2 == 1 show that a must be an m th root of unity with
m == 1,2,3,4, or 6. If m =J 1, conclude that jom must be the identity
map. Show that the cases m == 3,4,6 occur for suitably chosen lattices and
that the cases m == 1, 2 occur for an arbitrary lattice. (4) In the special
case a == 1, show that the closure of every orbit under j is either a finite
set, a finite union of parallel circles, or the full torus T.

Problem 6-b. Periodic points of torus maps. (1) If a =J 0, show
that any equation of the form j(z) == Zo has exactly d == lal2 solutions
z E T. If a =J 1, show that j has exactly Ia - 11 2 fixed points. (In
particular, both lal 2 and la - 11 2 are necessarily integers.) (2) More
generally, if lal > 1 show that the equation jon(z) == z has exactly
Ian - 11 2 solutions in 'I', all repelling with multiplier an. Show that the
periodic points of j are everywhere dense in T whenever a =J 0,1.

Problem 6-c. Grand orbit finite points. (1) Show that a nonlinear
holomorphic map j : C ~ C has at most one grand orbit finite point.
(2) Show by examples such as j(z) == Azez and j(z) == z2ez that this
fixed point need not be attracting, and in fact can have arbitrary multiplier.

Problem 6-d. Nonhyperbolic rotation domains. Prove the follow
ing analog of Lemma 5.6. If j: S ~ S is a self-map of the nonhyperbolic
surface S such that some sequence of iterates of j converges locally uni
formly to the identity map but no iterate is actually equal to the identity,
show that, up to conformal isomorphism, j is either a rotation of c, or
C, or C" {O}, or a translation of a torus.



§7. Smooth Julia Sets

Most Julia sets tend to be complicated fractal subsets of C, but there are
three exceptions: D. H. Hamilton has shown that every Julia set which
is a I-dimensional topological manifold must be either a circle or closed
line segment up to Mobius automorphism, or must have Hausdorff dimen
sion strictly greater than 1. (See Hamilton [1995].) If we count the entire
Riemann sphere as another smooth example, it follows that, up to auto
morphism, there are only three possible smooth subsets of C which can be
Julia sets of rational functions of degree 2: 2. (Compare Corollary 4.11.)
However, each of these can appear as a Julia set for many different rational
functions, a property which is itself exceptional. This section will discuss
these examples.

Example 1: The Circle. The unit circle appears as a Julia set for the
mapping Z ~ z±n for any n 2: 2. (Compare the discussion of the squaring
map in Definition 4.2.) Other rational maps with this same Julia set are
described in Problem 7-b. Similarly, the real axis lR U 00, as the image of
the unit circle under a conformal automorphism, can appear as a Julia set
(Problem 7-a).

Example 2: The Interval. Consider the map j(z) == z2 - 2, which
carries the closed interval I == [-2, 2] onto itself. (An equivalent example
was perhaps first studied as a dynamical system by Ulam and Von Neumann
[1947].) This map, and its generalizations to higher degree, are known as
Chebyshev polynomials. (See Problem 7-c and compare 7-d.)

Lemma 7.1. The Julia set 1 for j(z) == z2 - 2 is equal to
the interval I == [-2, 2], and every point outside of I belongs
to the attractive basin A( (0) of the point at infinity.

First Proof. For ZQ E I, it is easy to check that both solutions of the
equation j (z) == ZQ belong to this interval I. Since I contains a repelling
fixed point Z == 2, it follows from Corollary 4.13 that I contains the entire
Julia set 1(j). On the other hand, the basin A( (0) is a neighborhood of
infinity whose boundary 8A(oo) is equal to 1(j) c I by Corollary 4.12.
It follows that everything outside of I belongs to A( 00). Since every point
of I has bounded orbit, this proves that A( (0) == C <, I, and it follows
that 1 (j) == I. 0

Alternative Proof. We make use of the substitution g(w) == w+w-1 ,

which carries the unit circle in a two-to-one manner onto I == [-2, 2]. For
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Zo cf- I, the equation g(w) == Zo has two solutions, one of which lies inside
the unit circle and one of which lies outside. Hence 9 maps the exterior of
the closed unit disk isomorphically onto the complement C" I. Since the
squaring map in the w-plane is related to f by the identity

g(w2) == g(w)2 - 2 == f(g(w)),

it follows easily that the orbit of z under f either remains bounded or
diverges to infinity according as z does or does not belong to this interval.
Again using Corollary 4.12, it follows that J(f) == I. D

Example 3: All of e. The rest of this section will describe a family
of examples discovered by Ernst Schroder [1871, p. 307], and rediscovered
in greater generality by Samuel Lattes [1918]. Given any lattice Ace
we can form the quotient torus T == CIA, as in §2 or §6. Thus T is a
compact Riemann surface, and is also an additive Lie group. Note that
the automorphism z t---+ - z of this surface has just four fixed points. For
example, if A == Z + 7Z is the lattice with basis 1 and 7, where 7 cf- IR,
then the four fixed points are 0, 1/2,7/2, and (1 + 7)/2 modulo A.

Now form a new Riemann surface 8 as a quotient of T by identify
ing each z E 1f with - z . Evidently 8 inherits the structure of a Rie
mann surface (although it loses the group structure). In fact we can use
(z - Zj)2 as a local uniformizing parameter for 8 near each of the four
fixed points Zj. Thus the natural map T ---7 8 is two-to-one, except at the
four ramification points. To compute the genus of 8, we use the following.

Theorem 7.2 (Riemann-Hurwitz Formula). Let T ---7 8
be a branched covering map from one compact Riemann surface
onto another. Then the number of branch points, counted with
multiplicity, is equal to X(8)d - X(T), where X is the Euler
characteristic and d is the degree.

Sketch of Proof. Choose some triangulation of 8 which includes all
critical values (that is all ramification points) as vertices; and let an (8)
be the number of n-simplexes, so that X(8) == a2(8) - al (8) + ao(8). In
general, each simplex of 8 lifts to d distinct simplices in T. However, if
v is a critical value, then there are too few preimages of v. The number
of missing preimages is precisely the number of ramification points over v,
each counted with an appropriate multiplicity. The conclusion follows. 0

Remark. This proof works also for Riemann surfaces with smooth
boundary. The Formula remains true for proper maps between noncompact
Riemann surfaces, as can be verified by a direct limit argument.

In our example, since T is a torus 'll', with Euler characteristic X(1f) =
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0, and since there are exactly four simple branch points, we conclude that
2X(S) - X(1f) = 4 or X(S) = 2. Using the standard formula X = 2 - 2g,
we conclude that S is a surface of genus zero, isomorphic to the Riemann
sphere. (Note: The projection map from T to the sphere C, suitably
normalized, is known as the Weierstrass 8'J-function.)

Now consider the doubling map z J---+ 2z on T. This commutes with
multiplication by -1, and hence induces a map f : S ~ S. Since the
doubling map has degree 4, it follows that f is a rational map of degree 4.
(More generally, in place of the doubling map, we could use any linear map
which carries the lattice A into itself, as in Problem 6-a.)

Theorem 7.3 (Lat.tes). The Julia set for this rational map f
is the entire sphere S.

Proof. Evidently the doubling map on T has the property that peri
odic points are everywhere dense. For example, if rand s are any rational
numbers with odd denominator, then r + S7 is periodic. These periodic
orbits are all repelling, since the multiplier is a power of 2. Evidently f
inherits the same property, and the conclusion follows by Lemma 4.6. (Al
ternatively, given a small open set U C S, it is not difficult to show that
fon(u) is equal to the entire sphere S for n sufficiently large. Hence no
sequence of iterates of f can converge to a limit on any open set.) D

In order to pin down just which rational map f has these properties,
we must first label the points of S. The four branch points on T map
to four "ramification points" on S, which will play a special role. Let us
choose a conformal isomorphism from S onto C which maps the first three
of these points to 00, 0, 1, respectively. The fourth ramification point must
then map to some a E C <, {O, I}. In this way we construct a projection
map 8'J: T ~ C of degree 2, which satisfies 8'J(-z) = 8'J(z) and which has
critical values

8'J(0) = 00, 8'J(1/2) = 0, ~(7/2) = 1, ~((1 + 7)/2) = a.

(Note: This ~ is a linear function of the usual Weierstrass ~-function.)
Here a can be any number distinct from 0, 1, 00. In fact, given a E
C" {O, I}, it is not difficult to show that there is one and only one branched
covering 1f' ~ C of degree 2 with precisely {(X), 0, 1, a} as ramification
points. (Compare Appendix E.) The Riemann-Hurwitz formula shows that
this branched covering space 1f' is a torus, necessarily isomorphic to <C/ (Z+
7Z) for some 7 tf. IR. The unique deck transformation which interchanges
the two preimages of any point must preserve the linear structure, and hence
must be multiplication by -1.
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Now the doubling map on T corresponds under gJ to a specific rational
map fa: C~ C, where

fa(gJ(z)) == gJ(2z),

with J(fa) == C by Theorem 7.3. (For more about fa, see Problem 7-g.)

Definition 7.4. It is convenient to call the rational map f a Lettes map
whenever there is an affine map L: T ~ T of a torus and a holomorphic
map 8: T ~ t so that f == 8 0 L 0 8-1 . In fact one can always choose
8 to be the projection map from some torus T to a quotient surface
isomorphic to 1f/ Gk, where Gk is a cyclic group of rotations of the torus
about a point, with order" k equal to 2, 3, 4, or 6. (Compare Milnor
[2004b].) For a quite different characterization of this same class of maps,
see Theorem 19.9 (Case 0) in §19.

Remark. Mary Rees has proved the existence of many more rational
maps with J(f) == C. (See Rees [1984, 1986a], and also Herman [1984].)
For any degree d 2: 2, let Ratd be the complex manifold consisting of all
rational maps of degree d. Rees shows that there is a subset of Ratd of
positive measure consisting of maps f which are "ergodic." By definition,
this means that any measurable subset of C which is fully invariant under
f must have either full measure or measure zero. Using Theorem 16.1, it is
not hard to see that any ergodic map must necessarily have J(f) == C.

Concluding Problems

Problem 7-a. A Newton's method example. (See Schroder [1871],
Cayley [1879].) Let f(z) == z2 + 1. Trying to solve the equation f(z) == 0
by Newton's method (Problem 4-g), we are led to the rational map

N (z) == z - f (z)/ f' (z) == ! (z - 1/z )

from C == c U 00 to itself. (1) Show that every orbit of N in the upper
half-plane converges to +i and that every orbit in the lower half-plane
converges to -i. Conclude that the Julia set J(N) is equal to lR U 00.

(Alternatively, note that N is conjugate to z r-+ z2 under a holomorphic
change of coordinates.) (2) More generally, for any quadratic polynomial
equation with distinct roots, show that J(N) is a straight line together
with the point 00. (3) What happens for a quadratic equation with double
root?

* Caution: A more restrictive definition was used in previous editions, allowing only

the case k == 2.
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Problem 7-b. Blaschke products. For any a E ll)) the map

cPa(z) == (z - a)/(I - az)

carries the unit disk ll)) isomorphically onto itself. (Compare Theorem 1.7.)
A finite product of the form

if)f(z) == e cPal(z)cPa2(z)···cPan(z)

with aj E D is called a Blaschke product of degree n. (1) Show that
every such f is a rational map which carries ll)) onto ll)) and c , ll)) onto
C "ll)). Conclude that the Julia set J(f) is contained in the unit circle.
(2) If g(z) == 1/ f(z), interchanging the interior and exterior of the unit
circle, show that J(g) is also contained in the unit circle. (3) If n 2: 2 and
if one of the factors is cPo (z) == z, show that f has attracting fixed points
at zero and infinity and show that J(f) is the entire unit circle.

Problem 7-c. Chebyshev polynomials. Define monic polynomials

Pl(Z) == z, P2(Z) == z2 - 2, P3(Z) == z3 - 3z, ...

inductively by the formula Pn+1(z) + Pn-l (z) == zPn(z). (1) Show that
Pn(w+w-1) == wn+w-n, or equivalently that Pn(2cos()) == 2 cos(nB) ,
and show that Pm 0 Pn == Pmn. (2) For n 2: 2 show that the Julia
set of ±Pn is the interval [-2, 2]. (3) For n 2: 3 show that Pn has
n - 1 distinct critical points in the finite plane, but only two critical values,
namely ±2.

Problem 7-d. More maps with interval Julia set. Now suppose
that f is a Blaschke product with real coefficients and with an attracting
fixed point at the origin. (Compare Problem 7-b.) Show that there is one
and only one rational map F of the same degree so that the following
diagram is commutative:

e L e
lz+I/z lz+I/z
e ~ C,

and show that J(F) == [-2,2]. (In the special case f(z) == z'", F will be
a Chebyshev polynomial.) In this way, construct a I-real-parameter family
of conformally distinct quadratic rational maps with Julia set [-2,2].

Problem 7-e. Periodic orbits. Show that the Julia sets for Cheby
shev maps and Lattes maps, and also for the power map z ~ z±d, have the
following extraordinary property. For all but finitely many periodic orbits
Zo ~ Zl ~ · · · ~ Zn == Zo, show that the multiplier ,\ == f' (Zl) · · · · · f' (zn)
satisfies IAI == dn when J is J-dimensional, or IAI == dn / 2 when J == C,
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where d is the degree. (Compare Problem 19-d.)

Problem 7-f. A quadratic Lattes map. Let T be the torus C/Z[i],
where Z[i] == Z EB iZ is the lattice of Gaussian integers, and let L: T ----+ T
be the linear map L(z) == (l+i)z of degree 11+i12 == 2. (Compare Theorem
6.1 and Problem 6-a.) Let ~: T ----+ t be the associated Weierstrass map,
with ~(-z) == ~(z), and let F == ~ 0 L 0 ~-1 be the associated quadratic
rational map. (1) Show that F has critical orbits

~((1 + i)/4) r-+ ~(i/2) r-+ ~((1 ± i)/2) r-+ ~(O)

and
~((1 - i)/4) r-+ ~(1/2) r-+ ~((1 ± i)/2) r-+ ~(O).

Show that the multiplier at the fixed point ~(O) is equal to (1 + i)2 == 2i.
(2) After conjugating F by a Mobius automorphism, we may assume that
the critical points are ±1 and the postcritical fixed point is at 00. Show
that the most general quadratic map with critical points ±1 and a fixed
point at 00 has the form f (z) == a(z + z-l ) + b and show that the required
critical orbit relations are satisfied if and only if a2 == -1/2 and b == o.
More precisely, by computing the multiplier of the fixed point at infinity,
show that a == 1/2i. (Compare Milnor [2004a].)

Problem 7-g. The family of degree 4 Latt.es maps. For the
torus T == C/(Z + TZ) of Example 3 and Theorem 7.3, show that the
involution z r-+ Z + 1/2 of T corresponds under ~ to an involution of the
form w r-+ a/w of t, with fixed points w == ±yIa. (1) Show that the
rational map f == fa has poles at 00, 0, 1, a and double zeros at ±yIa.
(2) Show that f has a fixed point of multiplier A == 4 at infinity, and
conclude that

f(w) = (w
2

- a)2
4w(w - l)(w - a)·

As an example, if a == -1 then

(w2 + 1)2
f(w) = 4w(w2 - 1)·

(3) Show that the correspondence T r-+ a == a(T) E C <, {O, 1} satisfies the
equations

a(T + 1) == l/a(T), a(-l/T) == 1 - a(T),

and also a(-7") == a(T). Conclude, for example, that a(i) == 1/2, and that
a((1 + i) /2) == -1. (This correspondence T r-+ a(T) is an example of an
"elliptic modular function" and provides an explicit representation of the
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upper half-plane IHI as a universal covering of the thrice-punctured sphere
C" {a, I}. Compare Ahlfors [1966, pp. 269-274].)

Problem 7-h. Postcritical finiteness. For each of the six critical
points w of this map i , show that f (f (w )) is the repelling fixed point
at infinity. (According to Corollary 16.5, the fact that each critical orbit
terminates on a repelling cycle is already enough to imply that J(f) = C.
Rational maps satisfying this condition are much more common than Lattes
maps.)
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§8. Geometrically Attracting or Repelling Fixed Points

The next four sections will study the dynamics of a holomorphic map in
some small neighborhood of a fixed point. This local theory is a fundamen
tal tool in understanding more global dynamics. It has been studied for well
over a hundred years by mathematicians such as Ernst Schroder, Gabriel
Kcenigs, Leopold Leau, Lucjan Bottcher, Pierre Fatou, Gaston Julia, Hu
bert Cremer, Carl Ludwig Siegel, Thomas Cherry, Alexander Bryuno, Jean
Bcalle, Serguei Voronin, Michel Herman, Jean-Christophe Yoccoz, and Ri
cardo Perez-Marco. In most cases it is now well understood, but a few cases
still present extremely difficult problems.

We start by expressing our map in terms of a local uniformizing param
eter z, which can be chosen so that the fixed point corresponds to z == O.
We can then describe the map by a power series of the form

f(z) == ,\z + a2z2 + a3z3+ ... ,
which converges for Izi sufficiently small. Recall that the initial coefficient
,\ == f'(O) is called the multiplier of the fixed point: It is given a special
name since it plays a dominant role in the discussion.

Attracting Points. By definition, a fixed point p of a map f is
topologically attracting if it has a neighborhood U so that the successive it
erates fan are all defined throughout U and so that this sequence {fonl u}
converges uniformly to the constant map U -7 p.

Lemma 8.1 (Topological Characterization of Attracting
Points). A fixed point for a holomorphic map of a Riemann sur
face is topologically attracting if and only if its multiplier satisfies
1,\1 < 1.

Proof. In one direction, this follows from elementary calculus. We can
assume as above that the fixed point is 0 == f(O) E C, with Taylor expansion
f (z) == ,\z + 0 (z2) as z -7 O. In other words there are constants ro > 0
and C so that

If(z) - '\zl ~ C Iz21 for Izi < roo (8 : 1)

Choose c so that 1,\1 < c< 1 and choose 0 < r ~ ro so that 1,\1 +Cr < c.
For all Iz I < r, it follows that

If(z)1 ~ I'\zl + C Iz21 :::; clzl,
76
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and hence

As n --+ 00, this tends uniformly to zero, as required.
Conversely, if f is topologically attracting, then for any sufficiently

small disk lI))€ about the origin there exists an iterate fon which maps lI))€

onto a proper subset of itself. By the Schwarz Lemma 1.2, this implies that
the multiplier of fon satisfies IAnl < 1, and hence IAI < 1 as required. D

Definition. An attracting fixed point will be called either supersttrect
ing or geometrically attracting, according to whether its multiplier is zero,
or satisfies 0 < IAI < 1.

In either case, we will show that f can be reduced to a simple normal
form by a suitable change of coordinates. This section considers only the
geometrically attracting case A i=- o. In other words, we assume that the
origin is not a critical point. The following was proved in Koenigs [1884]. *

Theorem 8.2 (Koenigs Linearization). If the multiplier A
satisfies IAI i=- 0,1, then there exists a local holomorphic change
of coordinate W == ¢(z), with ¢(O) == 0, so that ¢ 0 f 0 ¢-l
is the linear map W t---+ AW for all W in some neighborhood of
the origin. Furthermore, ¢ is unique up to multiplication by a
nonzero constant.

c,

U
¢t
c

In other words, the following diagram is commutative,

.L, j(U)
¢t

where ¢ is univalent on the neighborhood UUf(U) of zero. The usefulness
of this functional equation

¢ ofo ¢-l(w) == AW (8 : 2)

had been pointed out some years earlier by E. Schroder. (Compare §4.1.)
However, Schroder had been able to find solutions only in very special cases.

Proof of Uniqueness. If there were two such maps ¢ and rljJ, then the
composition rljJ 0 ¢-l would commute with the map W t---+ Xiu . Expanding

"Much later, in 1920, Koenigs became the first Secretary General of the International

Mathematical Union, where his insistence on strictly excluding German mathematicians

caused a great deal of dissension. The 1924 International Congress of Mathematicians

was initially supposed to take place in New York, but the American Mathematical Society

withdrew its invitation because of this discriminatory policy. (See Lehto [1998].)
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as a power series,

'ljJ 0 ¢-I(w) == bvu: + b2W2+ b3W3+ ... ,
and then composing on the left or right with multiplication by A, we see by
comparing coefficients that Abn == bnAn for all n. Since A is neither
zero nor a root of unity, this implies that b2 == b3 == ... == O. Thus
'ljJ 0 ¢-I(w) == bvui, or in other words 'ljJ(z) == bl¢(Z).

Proof of Existence when IAI < 1. Choose a constant c < 1 so that
c2 < IAI < c. As in the proof of Lemma 8.1, we can choose a neighborhood
IIJ)r of the origin so that If(z)1 :s clzl for z E IIJ)r' Thus for any starting
point ZQ E IIJ)r, the orbit Zo ~ ZI ~ · .. under f converges geometrically
towards the origin, with IZnl :s rc", By Taylor's Theorem (8 : 1) we have
If(z) - Azi :s Clz2

1 for z E IIJ)r, and hence

IZn+l - Aznl :s Clznl2 :s Cr2c2n.

Setting k == Cr2/IAI, it follows that the numbers Wn == zn/An satisfy

IWn+l - wnl :s k(c2/ IAl)n.

These differences converge uniformly and geometrically to zero. Thus the
holomorphic functions Zo ~ wn(zo) converge, uniformly throughout IIJ)r,

to a holomorphic limit ¢(zo) == limn~oo zn/An. (Compare Theorem 1.4.)
The required identity ¢(f(z)) == A¢(z) follows immediately. Furthermore,
since each correspondence ZQ ~ Wn == zn/ An has derivative 1 at the origin,
it follows that the limit function ¢ has derivative ¢' (0) == 1 and hence is
a local conformal isomorphism.

Proof when IAI > 1. The statement in this case follows immediately
by applying the argument above to the map r:', which can be defined as
a single-valued holomorphic function in some neighborhood of zero, with
multiplier satisfying 0 < lA-II < 1. This completes the proof of Theorem
8.2. 0

Remark 8.3. More generally, suppose that we consider a family of
maps f 0: of the form

fo:(z) == A(a)z + b2(a)z2+ .. ·
which depend holomorphically on one (or more) complex parameters a and
have multiplier satisfying IA(a)1 # 0,1. Then a similar argument shows
that the Kceniqs function ¢(z) == ¢o:(z) depends holomorphically on a.
(This fact will be important in the proof of Lemma 11.15.) To prove this
statement, first fix some 0 < c < 1 and suppose that IA(a)1 varies through
some compact subset of the interval (c2 , c). Then the convergence in the
proof of Theorem 8.2 is uniform in a. Since we are free to choose c, the
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general case follows. D

In the attracting case 0 < IAI < 1, we can restate Theorem 8.2 in a
more global form as follows. Suppose that f : S -+ S is a holomorphic
map from a Riemann surface into itself with an attracting fixed point p ==
f (p) of multiplier A i- O. Recall from §4 that the total basin of attraction
A == A(p) c S consists of all pES for which limn -4CX) fon(p) exists
and is equal to p. The immediate basin An is defined to be the connected
component of A which contains p. (Equivalently, Ao is the connected
component of the Fatou set S" J which contains p. Compare Lemma 4.6
and Corollary 4.12.)

Corollary 8.4 (Global Linearization). With p == f(p) as
above, there is a holomorphic map ¢ from A to C, with
¢(p) == 0, so that the diagram

A
l¢
C

A
l¢
C

(8 : 3)

is commutative, and so that ¢ takes a neighborhood of p
biholomorphically onto a neighborhood of zero. Furthermore, ¢
is unique up to multiplication by a constant.

In fact, to compute ¢(po) at an arbitrary point of A we must simply
follow the orbit of Po until we reach some point Pk which is very close
to p, then evaluate the Koenigs coordinate ¢(Pk) and multiply by A- k .
Alternatively, in terms of a local uniformizing coordinate z with z(p) == 0
we can simply set ¢(p) == limn -4CX) z(fon(p))/An. D

Now let us specialize to the case of the Riemann sphere. Suppose that
f : C -+ C is a rational function of degree d 2: 2. Let Z E C be a
geometrically attracting fixed point with basin of attraction Ace. In
some small neighborhood IIJ)E of 0 E C, note that there is a well-defined
holomorphic map 1/;E : IIJ)E -+ Ao which is inverse to the map ¢: A -+ C of
Corollary 8.4 in the sense that ¢ 0 1/;E is equal to the identity map of IIJ)E'
and which satisfies 1/;E(O) == Z.

Lemma 8.5 (Finding a Critical Point). This local inverse
1/;E : IIJ)E -+ An extends, by analytic continuation, to some maxi
mal open disk IIJ)r about the origin in C. This yields a uniquely
defined holomorphic map 1/; : IIJ)r -+ An with 1/;(0) == z and
¢(1/;(w)) - w. Furthermore, 1/; extends homeomorphically over
the boundary circle oIIJ)r, and the image 1/;(oIIJ)r) c Ao neces
sarily contains a critical point of f.
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Figure 11. Julia set for z ~ z2+ .7iz, with curves I¢I = constant.

As an example, Figure 11 illustrates the map f(z) = z2 + O.7iz. Here
the Julia set J is the outer Jordan curve, bounding the basin A of the
attracting fixed point z == O. The critical point C = -O.35i is the center of
symmetry, and the fixed point z = 0 is at the center of the nested circles
directly above it, while the preimage -.7i of the fixed point is directly
below it. The curves 1¢(z)1 = constant == I¢(C)/Anl have been drawn
in. Thus the region 'l/J(]JJ)r) of Lemma 8.5 is bounded by the top half of
the figure eight curve through the critical point. Note that ¢ has zeros
at all iterated preimages of Z, and has critical points (crossing points in
the figure) at all iterated preimages of the critical point c. The function
z ~ ¢(z) is unbounded and oscillates wildly as z tends to J == fJA.

Proof of Lemma 8.5. Let us try to extend 'l/JE by analytic continu
ation along radial lines through the origin. It cannot be possible to extend
indefinitely far in every direction, for that would yield a holomorphic map
'l/J from the entire complex plane onto an open set 'l/J(C) c Ao c C, with
¢('l/J(w)) == w. This would only be possible if the complement C" 'l/J(C)
consisted of a single point. But the map fl'l/J(C) is one-to-one, so this would
imply that f is one-to-one, contradicting our hypothesis that f has degree
d 2. 2.

Thus there must exist some largest radius r so that 'l/JE extends ana
lytically throughout the open disk ]JJ)r. Let U be the image 'l/J(]JJ)r) c Ao.
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Thus we obtain a commutative diagram of conformal isomorphisms

.L, f(U)
~ it ¢

xo..

81

Note that the closure U c e must be contained in the attracting basin A.
In fact, since the image of lI}r under multiplication by ;\ is contained in a
compact subset ;\lI}r C lI}r, it follows that the image J(U) is contained in
a corresponding compact subset K cU. It then follows by continuity that
f (U) eKe U c A, which implies that U C A. In particular, it follows

that ¢ is defined and holomorphic throughout a neighborhood of U.
We will next show that the topological boundary au contains a critical

point of J, for otherwise we could analytically continue the map ~ : lI}r ----*

A over a strictly larger disk, as follows. For any boundary point Wo E alI}r
choose some accumulation point Zo in au for the curve t ~ ~(two) as
t ----* 1. If Zo is not a critical point of J then we can choose a holomorphic
branch 9 of r:' in some neighborhood of J (Zo) , so that g(J (zo)) = Zo,
and then extend ~ holomorphically throughout a neighborhood of Wo by
the formula

w ~ g(~(;\w)).

If there were no critical points at all in au, then evidently these local exten
sions would piece together to yield a holomorphic extension of ~ through
a disk which is strictly larger than lI}r.

Finally we will show that ¢ maps the compact set U homeomorphi
cally onto the closed disk lI}r. It suffices to show that two distinct points
Z i- z' in the boundary au must have distinct images ¢(z) i- ¢(z') in
alI}r. Suppose to the contrary that ¢(z) = ¢(z') = w E alI}r. Choose a se
quence of points Zj E U converging to Z and a sequence of points zj E U
converging to z': Then the sequences {¢( Zj )} and {¢( zj)} converge to
the same limit in alI}r. Let Lj be the straight line segment from ¢(Zj)
to ¢(zj ) in lI}r, and let X c au be the set of all accumulation points for
the curves ~(Lj) as j ~ 00. Then it is not difficult to show that X is a
compact connected set containing both z and z', but that J(X) consists
of a single point in U. Evidently this is impossible. 0

More generally, if 0 = {ZI' ... , zm} is an attracting periodic orbit
of period m, so that each Zj is an attracting fixed point for the m-fold
composition Jam, then the immediate basin Ao = Ao(O, J) is defined to be
the union of the immediate attractive basins Ao(zj) of the m fixed points
Zj = Jom(Zj) under the map Jam. The following fundamental result is due
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to Fatou and Julia.
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Theorem 8.6 (Finding Periodic Attractors). If f is a
rational map of degree d 2:: 2, then the immediate basin of ev
ery attracting periodic orbit contains at least one critical point.
Hence the number of attracting periodic orbits is finite, less than
or equal to the number of critical points.

Proof. In the case of a geometrically attracting fixed point, the first
statement follows immediately from Lemma 8.5, while a superattracting
fixed point is itself the required critical point in its basin. Now consider a
period m attracting orbit {Zj} with f (Zj) == Zj+1, taking the subscripts
j to be integers modulo m. Evidently f(Ao(zj)) C Ao(Zj+l). If none of
the Ao(zj) contained a critical point, then, by the chain rule, the m-fold
composition mapping each Ao(zj) into itself would not have any critical
point, which is impossible.

The conclusion now follows since the attractive basins of the various
periodic attractors are clearly pairwise disjoint and since a nonconstant
rational map can have only finitely many critical points. D

(For another proof, see Problem 8-g.)
As an example, for a polynomial map of degree d 2:: 2, there are at most

d - 1 finite critical points, and hence at most d - 1 periodic attractors (not
counting the fixed point at infinity). In the case of a rational map, there
are 2d - 2 critical points, counted with multiplicity. This follows from the
Riemann-Hurwitz Formula 7.2, or by simply inspecting the required polyno
mial equation p'q - q'p == 0 where f (z) == p(z)/ q(z) , taking particular care
with the possibility of a critical point at infinity. Hence if d 2:: 2 there are
at most 2d - 2 periodic attractors. (Compare Corollary 10.16 and Lemma
13.2.)

Remark 8.7. The situation with two complex variables is quite dif
ferent. A holomorphic map from the complex projective plane to itself can
have infinitely many periodic attractors. Similarly, a polynomial automor
phism of C2 can have infinitely many periodic attractors. In this last case,
there are evidently no critical points to work with. See Appendix D for
further discussion.

Remark 8.8. Theorem 8.6 gives rise to a simple algorithm for trying to
locate the attracting periodic points, if they exist, for any nonlinear rational
map. Starting at each one of the critical points, simply iterate the map many
times and then test for (approximate) periodicity. Of course if the period
is very large, then this becomes impractical. As an explicit example, it is
easy to check that the quadratic map f(z) == z2 - 1.5 of Figure 15 (page
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97) has no attracting orbits of reasonable period. However, I know no way
of deciding whether it has an attracting orbit of some very high period.

Theorem 8.9 (Topology of Ao). Let Ao be the immediate
basin of an attracting fixed point (either geometrically attracting
or superattracting). Then the complement C, Ao is either con
nected or else has uncountably many connected components.

(Compare Corollary 4.15.) It follows that Ao itself is either simply
connected or infinitely connected. For infinitely connected examples, see
Figures 5c, 7, or 16 (pages 42, 50, 97). Note that the analogous statement
for an attracting periodic point of period p follows by applying Theorem
8.9 to the iterate fOP.

Proof of Theorem 8.9. Choose a small open disk No about the
attracting point z so that f(No) C No and so that the boundary I' == aNo
is a simple closed curve containing no iterated forward images of critical
points. Setting Nk equal to the connected component of f-k(No) which
contains z , we have

with union equal to the entire immediate basin Ao. In fact any point of Ao
can be joined to z by a path P C Ao. Since P is compact, some forward
image fOk(p) must be contained in No; and since P is a connected set
containing Z, this implies that P C Ni: Thus the union of the Ni; is all
of Ao.

Evidently each Nk is bounded by some finite number of simple closed
curves, while the complement C,Nk is a disjoint union of the same number
of closed topological disks. There are now two possibilities.

Case 1. If each Ni: is bounded by one simple closed curve, then C,Nk
is connected, and C, Ao, being the intersection of a nested sequence of
connected sets, is itself connected.

Case 2. Otherwise, there is a unique smallest integer m such that
Nm has more than one boundary component. Without loss of generality,
we may assume that m == 1. (Simply discard all N; with i < m - 1
and then renumber each Nm-I+j as N j.) Thus we can assume that
aNo is connected but that aNI is bounded by a collection of simple
closed curves r 1 , . .. , r n with n ~ 2. Each r i is the boundary of a
corresponding component D, of c , NI. Now for each finite sequence
(iI, ... ,ik) of numbers between 1 and n , we will show inductively that
the set Nk has at least one boundary component fil".ik which is contained
in Di, and which has image !(ril".ik) == fi2 ...ik' (If there is more than
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one such component, simply choose one of them.)
To prove this statement, note first that each N k is a branched covering

of Nk-l under the map f. (Compare Appendix E.) It follows that each
connected component of N k<r: (No) is a branched covering of N k-l "No.
It is not hard to see that each such component is contained in just one of
the disks Di, and that each D, must contain at least one such component.
Therefore it follows that each of the curves ri2 ...ik in 8Nk-l is covered by
at least one curve rili2.:.:.ik c Dil n 8Nk' as required. The corresponding
components Di;...ik of <C" Nk are disjoint, and it is easy to check that

ti; ~ Dili2 ~ D i1i2i3 ~ .•..

Thus c , An has one complementary component for each infinite sequence
of numbers between 1 and n, and hence has uncountably many such
components. D

Repelling Points. For most purposes we can simply define a "re
pelling" fixed point to be one with multiplier satisfying IAI > 1. However,
it is more satisfying to have a topologically invariant characterization.

Definition. A fixed point p == f(p) of a continuous map will be
called topologically repelling if there is a neighborhood U of p so that for
every P =I- P in U there exists some n 2: 1 so that the nth forward
image fon(p) lies outside of U. In other words, the only infinite orbit
Po I---t PI I---t P2 I---t • •• which is completely contained in U must be the orbit
of the fixed point itself. Such a U is called a forward isolating neighborhood
of p.

Now suppose that U is an open subset of a Riemann surface and that
f is holomorphic.

Lemma 8.10 (Topologically Repelling Points). A fixed
point of such a holomorphic map is topologically repelling if and
only if its multiplier satisfies IAI > 1.

Proof. If IAI > 1, then it follows from Theorem 8.2 (or from a much
more elementary exercise in calculus) that the point is topologically re
pelling. I am indebted to S. Zakeri for the following proof of the converse
statement. If p is a topologically repelling point for i, note first that
A =I- 0 (and in fact IAI 2: 1 ), since p clearly cannot be both attracting and
repelling. Thus we can choose a compact forward isolating neighborhood
N , which is small enough so that f maps N homeomorphically onto some
compact neighborhood f(N) of p. Let

Nk == N n f-l(N) n ... n f-k(N)
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be the compact neighborhood consisting of points for which the first k
forward images all belong to N. Thus N = No :) NI :) N2 :) ... , with
intersection the single point p since N is an isolating neighborhood. By
compactness, it follows that the diameter of Nk tends to zero as k ----t 00.

But it follows immediately from the construction that

f(Nk) = Nk-I n f(N),

where Nk-I C f(N) for k large since the diameters tend to zero. Thus
f(Nk) = Nk-I for k large; in fact f maps Nk homeomorphically onto
Nk- I. Now let Uk be the connected component of the interior of Nk which
contains p. Then it follows that f- I maps Uk-I biholomorphically onto
the strictly smaller set Ui: By the Schwarz Lemma, its multiplier must
satisfy lA-II < 1, which proves that IAI > 1 as required. D

Remark. Lemmas 8.1 and 8.10 work only over the complex numbers.
Over the real numbers, examples such as f(x) = x ± x3 show that a fixed
point with multiplier A = 1 may perfectly well be topologically attracting
or topologically repelling.

The Kcenigs Linearization Theorem 8.2, in the repelling case, helps us
to understand why the Julia set 1(f) is so often a complicated "fractal"
set.

Corollary 8.11. Suppose that the rational function f has a
repelling periodic point z for which the multiplier A is not a
real number. Then 1(f) cannot be a smooth manifold, unless it
is all of C.

To see this, choose any point Zo E 1(f) which is close to z and let
Wo = ¢(zo). Then 1 (f) must also contain an infinite sequence of points
Zo ~ ZI ~ Z2 ~ ... with Kcenigs coordinates ¢(zn) = WO/An which lie
along a logarithmic spiral and converge to zero. Evidently such a set can
not lie in any smooth I-dimensional real submanifold of C. D

In fact, if we recall that the iterated preimages of our periodic point
are everywhere dense in 1(f), then we see that such sequences lying on
logarithmic spirals are extremely pervasive. Compare Figure 12, which
shows two examples of such spiral structures, associated with repelling
points of periods 1 and 2, respectively. (For more on fractals, see, for exam
ple, Falconer [1990].)

The global form of the Linearization Theorem in the repelling case,
due to Poincare, is rather different from the statement in the geometrically
attracting case (Corollary 8.4). In particular, there is no analogous concept
of a "repelling basin," and no analogous extension to a map from the entire
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basin A c 8 to C. However, we can extend ¢-I to a map C ~ 8.

Corollary 8.12 (Global Extension of ¢-I). If P is a re
pelling fixed point for the holomorphic map f : 8 ~ 8, then
there is a holomorphic map 1/J: C ~ 8, with 1/J(0) = p, so that
the diagram

8
i1/J
C

8
i1/J
C

is commutative and so that 1/J maps a neighborhood of zero bi
holomorphically onto a neighborhood of p. Here 1/J is unique
except that it may be replaced by W ~ 1/J(cw) for any constant
c# o.

Proof. For E sufficiently small, let 1/JE : [))E ~ 8 be that branch of
¢-I which maps zero to p. Now to compute 1/J(w) for any w E C, we
simply choose n large enough so that W/An E [))E' and then set 1/J(w) =
Jon (1/JE (W / An) ). Details will be left to the reader. D

Concluding Problems

Problem 8-a. The identification torus of a fixed point. Suppose
that f has a geometrically attracting or repelling fixed point p with mul
tiplier A. Let U be any neighborhood of p small enough so that f maps
U biholomorphically, with f(U) C U in the attracting case or f(U) ~ U
in the repelling case. Form an identification space T = (U <, {p}) / f by
identifying P with f(p) whenever both belong to U. (1) Show that T is
a Riemann surface, independent of the choice of U, with the topology of a
torus. (2) Show in fact that T is conformally isomorphic to the quotient
C/A, where A is the lattice 21fiZ E9 (log A)Z.

Problem 8-b. Global linearization. Let f: 8 ~ 8 be a holomor
phic map from a Riemann surface 8 to itself. (1) Show that Po E A is a
critical point of ¢ if and only if the orbit f: Po ~ PI ~ P2 ~ · .. contains
some critical point of f. (2) If f is onto, show that the linearizing map
¢ of Corollary 8.4 maps the attracting basin A onto C.

Problem 8-c. Asymptotic values. In order to extend Theorem 8.6
to a noncompact Riemann surface such as C or C" {O}, we need some
definitions. Let f : 8 ~ 8' be a holomorphic map between Riemann
surfaces. A point v E 8' is a critical value if it is the image under f of a
critical point, that is, a point at which the first derivative of f vanishes. It
is an asymptotic value if there exists a continuous path [0,1) ~ 8 which
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Figure 12a. Detail of Julia set for z ~ z2 + .424513 + .207530i.

Compare Corollary 8.11.

Figure 12b. Detail of Julia set for z ~ z2 - .744336 + .121198i.
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diverges from 8 in the sense that it eventually leaves any compact subset
of 8, but whose image under f converges to the point v. Recall from §2
that a connected open set U c 8' is evenly covered if every component of
f- 1(U) maps homeomorphically onto U and that f is a covering map if
every point of 8' has a neighborhood which is evenly covered.

(1) Show that a simply connected open subset of 8' is evenly covered by
1 if and only if it contains no critical value or asymptotic value. (Compare
Goldberg and Keen [1986].) In particular, 1 is a covering map if and only
if 8' contains no critical values and no asymptotic values.

(2) For a holomorphic self-map 1 : 8 ~ 8, show that the immediate
basin of any attracting periodic orbit must contain either a critical value
or an asymptotic value or both, except in the special case of a linear map
from C or C to itself. As an example, for any c =1= 0, show that the
transcendental map 1(z) = c eZ from <C to itself has no critical points and
just one asymptotic value, namely z = O. Conclude that it has at most one
periodic attractor. If Icl < lie show that 1 maps the unit disk into itself
and that 1 has an attracting fixed point in this disk.

(3) The map f is proper if the pre image f-l(K) of every compact
set K c 8' is a compact subset of 8. (If 8 is compact, then every map
on 8 is proper.) Show that a proper map has no asymptotic values.

Problem 8-d. Topological attraction and repulsion. Suppose that
X is a locally compact space and that 1 maps a compact neighborhood
N of x homeomorphically onto a compact neighborhood N', with l(x) =
x. Show that f is topologically repelling at x if and only if 1-1 is
topologically attracting at x. (Here the hypothesis that 1 is locally one
to-one is essential. For example, the map j(z) = z2 is attracting at the
origin, and the nonsmooth map g(z) = 2z2/1z1 is repelling at the origin,
although neither one has a local inverse.)

Problem 8-e. The image 7jJ(C) c 8. If P is a repelling point for the
holomorphic map 1 : 8 ~ 8, show that the image of the map 7jJ : C ~
8 of Corollary 8.12 is everywhere dense and in fact that the complement
8 " 7jJ(C) consists of grand orbit finite points. (Compare Theorem 4.10.
There are at most two such points when 8 = C, at most one when 8 = C,
and none for other nonhyperbolic surfaces.)

Problem 8-f. Counting basin components. Let A be the attract
ing basin of a periodic point which may be either superattracting or geomet
rically attracting. (1) If some connected component of A is not periodic,
show that A has infinitely many components. (2) Suppose then that A
has only finitely many components forming a periodic cycle. If these compo-
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nents are simply connected, use the Riemann-Hurwitz Formula 7.2 to show
that the period is at most 2. (Example: f (z) = 1/z2 .) (3) If they are
infinitely connected, show that the period must be 1.

Problem 8-g. Critical points in the basin. Give another proof
of Theorem 8.6 as follows. (1) Suppose there were an attracting periodic
orbit 0 with no critical point in its immediate basin. If U is a small
neighborhood of a point p EO, show that for each k 2: 1 there would be
a unique branch gk : U -t e of f-kl u which maps pinto O. (2) Show
then that the family {9k} would have to be normal, which is impossible
since the first derivative of gk at p must be unbounded.



§9. Bottcher's Theorem and Polynomial Dynamics

This section studies the case of a superattracting fixed point, with multiplier
.\ equal to zero. As usual, we can choose a local uniformizing parameter
z with fixed point z = o. Thus our map takes the form

j(z) = anzn + an+Iz
n+1 + ... , (9 : 1)

with n ~ 2 and an =1= 0, where the integer n is called the local degree.

Theorem 9.1 (Bottcher [1904]). * With j as above, there
exists a local holomorphic change of coordinate w = ¢(z), with
¢(0) = 0, which conjugates f to the n th power map w ~

ui" throughout some neighborhood of zero. Furthermore, ¢ is
unique up to multiplication by an (n - 1)st root of unity.

Thus near any critical fixed point, j is conjugate to a map of the form

¢ojo¢-I : w ~ ui";

with n ~ 2. This theorem has important applications to polynomial dy
namics, since any polynomial map C --1- C of degree d ~ 2 extends to a
rational map of C which has a superattracting fixed point at infinity with
local degree n = d. (Compare Theorem 9.5.)

Proof of Existence. The proof will be quite similar to the proof of
Theorem 8.2. With j as in (9: 1), let us first choose a solution c to
the equation cn-I = an. Then the linearly conjugate map cj(z/c) will
have leading coefficient equal to +1. Thus we may assume, without loss of
generality, that our map has the form j(z) = zn(l+bIZ+b2Z2+b3Z3+... ) ,
or briefly

j(z) = z" (1 + T/(z)) with T/(z) = bIZ+ b2Z2 + ... . (9 : 2)

Choose a radius 0 < r < 1/2 which is small enough so that 1T/(z)1 < 1/2
on the disk lIJ)r of radius r. Then clearly j maps this disk into itself, with
Ij(z)1 :S ~Izln :s ilzl and with j(z) =1= 0 for z E lIJ)r <, {O}. The k-fold
iterate jok also maps lIJ)r into itself, and we see inductively that it has the

form rk(z) = zn
k

(1 + nk-1bl z + (higher terms)). The idea of the proof is

*L. E. Bottcher was born in Warsaw in 1878. He took his doctorate in Leipzig in 1898,

working in Iteration Theory, and then moved to Lvov, where he retired in 1935. He

published in Polish and Russian. (The Russian form of his name is Be'rxep.)
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to set

cPk(Z) = n';Jrk(z) = z(1+nk-1blz+ ... )1/n
k

= Z(l+~Z+"')'

where the expression on the right provides an explicit choice of nkth root.
Clearly ¢k(j(Z)) == ¢k+l(Z)n. We will show that the functions ¢k converge
uniformly to a limit function ¢: IIJ)r ~ IIJ). In order to prove convergence,
let us make the substitution z == eZ , where Z ranges over the left half
plane lHIr defined by the inequality Re(Z) < log r. Then the map j from
the disk IIJ)r into itself corresponds to a map F(Z) == log j(ez ) from
lHIr into itself. Setting rJ == rJ(eZ) == blez + b2e2Z + ... as in (9 : 2), with
IrJ I < 1/2, we see that this can be written more precisely as

F(Z) = log (enZ(l + 'TJ)) = nZ + log(l + 'TJ)

== nZ + (rJ - rJ2/2 + rJ3/3 - + ... ),

where now the final expression provides an explicit choice as to which branch
of the logarithm function we are using.

Evidently F: lHIr ~ lHIr is a well-defined holomorphic function. Since
IrJl < 1/2, we have

IF(Z) - nZI == [Iogfl + rJ)1 < log 2 < 1 (9 : 3)

for all Z in this half-plane. Similarly, the map cPk(Z) = rk(z)l/n
k

for
Izi < r corresponds to a map

<Pk(Z) == log ¢k(ez ) == Fok(Z)/nk,

which is defined and holomorphic throughout lHIr . By (9 : 3), we have

l<Pk+l(Z) - <Pk(Z)1 == IFok+1(Z) - nFok(Z)I/nk+1 < 1/nk+1.

Since the exponential map from the left half-plane onto IIJ) reduces dis
tances, it follows that

I¢k+l (z) - ¢k(Z) I < 1/nk+1

for Izi < r. Therefore, as k ~ 00 the sequence of holomorphic functions
z ~ ¢k(Z) on the disk Izi < r converges uniformly to a holomorphic limit
¢(z). It is easy to check that ¢ satisfies the required identity ¢(j(z)) ==
¢(z)n.

Proof of Uniqueness. It suffices to study the special case j(z) == z'",
If a map of the form ¢(z) == Cl z+Ck zk+(higher terms) conjugates z ~ z"
to itself, then the series

~( n) n nk
tp z == Cl Z + Ck z + ···
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must be equal to
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¢(z)n == clz" + nc~-lCk Zn+k-l + ·.. ,
with nk > n + k - 1. Comparing coefficients, we find that c~-l == 1 and
that all higher coefficients are zero. D

Remark. Given a global holomorphic map f: S -+ S with a superat
tracting point p, we can choose a local uniformizing parameter z == z (p)
with z(p) == 0 and construct the Bottcher coordinate w == ¢(z(p)) as
above. To simplify the notation, we will henceforth forget the intermediate
parameter z and simply write w == ¢(p) .

In analogy with Corollary 8.4, one might hope that the local mapping
p r--+ ¢(p) could be extended throughout the entire basin of attraction of p
as a holomorphic mapping A -+ ID>. However, this is not always possible.
Such an extension would involve computing expressions of the form

P f-7 f/¢(Jon(p)),

and this may not work, since the nth root cannot always be defined as a
single-valued function. For example, there is trouble whenever some other
point in the basin maps exactly onto the superattractive point or whenever
the basin is not simply connected. However, if we consider only the absolute
value of ¢, then there is no problem.

Corollary 9.2 (Extension of I¢I). If f : S -+ S has a
superattracting fixed point p with basin A, then the function
p r--+ 1¢(p)1 of Theorem 9.1 extends uniquely to a continuous map
I¢I : A -+ [0,1) which satisfies the identity 1¢(f(p))1 == 1¢(p)ln.
Furthermore, I¢I is real analytic, except at the iterated preim
ages of p where it takes the value zero.

Proof. Set 1¢(p)1 equal to 1¢(J°k(p))11/n
k

for large k. D

Now let f: C-+ e be a rational function with a superattracting fixed
point p. Then the associated Bottcher map ¢, which carries a neigh
borhood of p biholomorphically onto a neighborhood of zero, has a local
inverse ~f. mapping the e-disk around zero to a neighborhood of p. Us
ing an argument similar to the proof of Lemma 8.5, we have the following
statement.

Theorem 9.3 (Critical Points in the Basin). There exists
a unique open disk ID>r of maximal radius 0 < r ::; 1 such that
~f. extends holomorphically to a map ~ from the disk IIJ)r into
the immediate basin An of p. If r == 1, then ~ maps the unit
disk IIJ)1 biholomorphically onto Ao and p is the only critical
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point in this basin. On the other hand, if r < 1 then there is
at least one other critical point in Ao, lying on the boundary of
?/J (II})r) .

93

Compare Figure 13, which illustrates the case r = 1 and Figure 14,
which illustrates the case r < 1.

Proof of Theorem 9.3. As in the proof of Lemma 8.5, we can extend
?/JE by analytic continuation either to the unit disk II}) of radius r = 1 or
to some maximal disk II})r of radius r < 1. In either case, we will show
that the extended map ?/J carries II})r biholomorphically onto its image
U = ?/J(II})r) c Ao. First note that ?/Jr has no critical points, for if there
were a point w E II})r with ?/J' (w) = 0 then certainly W =I- O. Hence the
equation

(9 : 4)

would imply that ui" is also a critical point. This would yield a sequence of
2

critical points w,ui"; wn , ... tending to zero, which is impossible. Thus ?/J
is locally one-to-one, and the set of all pairs WI =I- W2 with ?/J(WI) = ?/J(W2)
forms a closed subset of II})r x II})r'

We must show that ?/J is actually one-to-one on II})r' The proof will
be based on the observation that the map 14>1 of Corollary 9.2 satisfies the
identity 14>(?/J(w))I = Iwl for w close to zero, and hence for all w E II})r

by analytic continuation. Suppose that ?/J(WI) = ?/J(W2) with WI =I- W2·
Applying the map 14>1 to both sides, it follows that IWII = IW21. Choose
such a pair with IWI I= Iw21 minimal. Since ?/J is an open mapping, if we
choose any w~ sufficiently close to WI then we can find w~ close to W2
with ?/J (w~) = ?/J (w~). Taking Iw~ I < IWI I, this yields a contradiction.

In the case r = 1, the image U = ?/J(II})) must be the entire immediate
basin Ao. For otherwise U would have some boundary point Zo E Ao.
Approximating Zo by points ?/J(Wj) , we must see that the sequence of
numbers I¢(?/J(Wj))I = IWj I must converge to 1. But this implies that
?/J(zo) = 1, which is impossible.

Now suppose that r < 1. Then the proof that au c Ao, and that there
exists a critical point in au is completely analogous to the corresponding
argument in Lemma 8.5. Details will be left to the reader. D

Caution: Examining Figures 13 and 14 and in analogy with Lemma
8.5, one might expect that ¢ always extends to a homeomorphism between
the closure U and the closed disk II})r; however, this is false. Compare
Figure 15 for the case r = 1 and Figure 16 for the case r < 1. (In both
cases p is the point at infinity.)
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Figure 13. Julia set for f (z) = z2-1. The fourth degree map f 0 f
has two superattracting fixed points at z = 0 and z = -I, with
no other critical points in the immediate basins. The grand orbit of
a representative curve 1<p1 = constant has been drawn in for both
attracting basins. Note that each such curve in an immediate basin
Ao maps to the next smaller curve in Ao by a twofold covering.

Figure 14. Julia set for the map f (z) = z3+ z2, which has a critical
point Zo = -2/3 in the immediate basin of the superattracting
point z = O. The grand orbit of the curve I¢>I = constant through
Zo has been drawn in.
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Application to Polynomial Dynamics. Let

f(z) == adzd + ad_l zd- 1+ ···+ alZ + ao

be a polynomial of degree d 2: 2. We always assume that the leading
coefficient ad is nonzero. In fact, it is often convenient to assume that f
is monic, with ad == 1. This does not involve any loss of generality: Since
ad =I- 0 and d ~ 2, we can always choose c with cd- 1 == ad and note that
the linearly conjugate polynomial c f (z/ c) is monic.

We will see that such a map f has a superattracting fixed point at infin
ity, so that we can apply Bottcher's Theorem. But first a more elementary
construction.

By definition, the filled Julia set K == K(f) is the set of all z E C for
which the orbit of z under f is bounded.

Lemma 9.4 (The Filled Julia Set). For any polynomial f
of degree at least 2, this filled Julia set K c ce is compact, with
connected complement, with topological boundary oK equal to
the Julia set J == J(f) and with interior equal to the union of
all bounded components U of the Fatou set c . J. Thus K is
equal to the union of all such U, together with J itself. Any
such bounded component U is necessarily simply connected.

(More generally, a compact subset of ce is called full if its complement is
connected. Any compact subset of ce can be filled by adjoining all bounded
components of its complement.)

Proof of Lemma 9.4. Evidently the ratio f(z)/ zd converges to the
limit ad as Iz I ---+ 00. Assuming for convenience that ad == 1, we can
choose a constant ro ~ 2 so that If(z)/ zd - 11 < 1/2 for Izi > ro, and it
follows that

If(z) I > Izdl/2 > 21z1 for Izi > roo

It follows that any z with Izl > "o belongs to the attracting basin A ==
A( 00) of the point at infinity. Evidently K can be identified with the
complement c , A. Hence K is compact, and it follows from Corollary
4.12 that oK == oA is equal to the Julia set of f.

We must show that A is connected. Let U be any bounded component
of the Fatou set c , J. Then IfOd (z )I :S ro for every z E U and every
n ~ 0, for otherwise, by the Maximum Modulus Principle, there would be
some z E au c J with IfOd (z) I > ro. But this would imply that z E A,
which is impossible. Thus every bounded component of C" J is contained
in the filled Julia set K, and the unique unbounded component can be
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identified with C" K == C n A( 00) .

Similarly, if r is a simple closed curve lying in a bounded component
U, and if V is the bounded component of C" r, then it follows from
the Maximum Modulus Principle that V c K. In particular, V cannot
contain any points of J == 8K, so it follows that V cU. This proves that
U is simply connected. D

To better understand this filled Julia set K, we consider the dichotomy
of Theorem 9.3 for the complementary domain A( 00) == <C" K. This yields
the following.

Theorem 9.5 (Connected K ¢:} Bounded Critical Or
bits). Let f be a polynomial of degree d ~ 2. If the filled Julia
set K == K(f) contains all of the finite critical points of t ,
then both K and J == 8K are connected and the complement
of K is conformally isomorphic to the exterior of the closed unit
disk llJ) under an isomorphism

¢ : C" K ~ C" llJ),

which conjugates f on C" K to the d th power map w ~ wd .

On the other hand, if at least one critical point of f belongs to
C <, K, then both K and J have uncountably many connected
components.

Compare Figure 15, which illustrates the first possibility, and Figure
16, which illustrates the second. The proof of Theorem 9.5 will be based on
the following. To study the behavior of f near infinity, we make the usual
substitution (== 1/z and consider the rational function

1
F(() = f(l/()'

Again we may assume that f is monic. From the asymptotic equality
f(z) r-v zd as z ~ 00, it follows that F(() r-v (d as (~o. Thus F has
a superattracting fixed point at (== o. (More explicitly, it is not difficult
to derive a power series expansion of the form

F(() == (d - ad_l(d+l + (a~-l - ad_2)(d+2 +
for I(I small.) There is an associated Bottcher map

¢(() = lim F Ok (() l /d
k

E lDJ,
k-sco

which is defined and biholomorphic for 1(1 sufficiently small, with ¢'(O) == 1
since f is assumed to be monic. In practice, it is more convenient to work
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Figure 15. Julia set for j(z) == z2 - 3/2, showing an equipotential

G == log I¢I == constant

and its iterated forward and backward images. (Definition 9.6.)
Each such curve maps to the next larger curve by a twofold covering.
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Figure 16. The Julia set for j(z) = z2 + (1 + i/2) is totally
disconnected (a Cantor set). The neighborhood of infinity U =

;j;(C <, [))r) is the complement of the region bounded by the figure
eight equipotential curve E through the critical point z == o. Note
that the two components of t:' (E) are also figure eight curves,
as are the four components of j-2(E), and so on. However, the
iterated forward images of E are all smooth topological circles.
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with the reciprocal

¢(z) = 4>(11/z) = }~~rk(z)l /d
k

E <C" IlJ),

Thus ¢ maps some neighborhood of infinity biholomorphically onto a neigh
borhood of infinity, with ¢(z) rv Z as Izi ---t 00, and ¢ conjugates the
degree d polynomial map f to the dth power map, so that

¢(f(z)) == ¢(z)d. (9 : 5)

Proof of Theorem 9.5. (Compare Problem 9-e.) Suppose first that
there are no critical points other than 00 in the attracting basin A ==

A( (0). Then by Theorem 9.3 the Bottcher map extends to a conformal
~ -

isomorphism A~JI}. It follows that the function ¢ extends to a conformal

isomorphism <C" K ~<C "JI}. Now each annulus

Al+E == {z E <C ; 1 < Iz I < 1 + E}

maps under ;} == ¢-1 to a connected set ;}(A1+E) C <C <, K. The closure

;}(A1+E) is a compact connected set which evidently contains the Julia set
J == aA. It follows that the intersection

J == n;}(A1+E)
E>O

is also connected, and it then follows easily from Lemma 9.4 that K is
connected.

Now suppose that there is at least one critical point in C" K. Then
the conclusion of Theorem 9.3 translates as follows: There is a smallest
number r > 1 so that the inverse of ¢ near infinity extends to a conformal
isomorphism

;} : <C" JI}r ~ U c C" K.

Furthermore the boundary au of this open set U == ;}(C "JI}r) is a compact
subset of <C "K which contains at least one critical point of f.

We will show that the closure U separates the plane into two or more
bounded open sets, each of which contains uncountably many points of the
Julia set. Let c be a critical point in au. Then the corresponding critical
value v == f(c) clearly belongs to U, with 1¢(v)1 == rd > r. Consider the
infinite ray R c C "JI}r consisting of all products t¢( v) with t 2:: 1. The
image R' == ;}(R) c U is called an external ray to the point v, associated
with the compact set K c <C.

Now consider the full inverse image f -1 (R') c U. Clearly the intersec-
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'" '" "''''..",

"'''' ",'"
: ",'" J,

"'",

u

v

Figure 17. Sketch illustrating the proof of Theorem 9.5 in degree
d == 3 I with the Z -plane on the left and the w == ¢(z) -plane on the
right. The open set U == ;j;(C <, lI))r) is the exterior of the region
bounded by the figure eight through the critical point.

tion U n 1-1 (R') consists of d distinct external rays, corresponding to the
d distinct components of the set (fR C C <, lI))r' Each of these d external
rays Rj will end at some solution z to the equation I (z) == v. But this
equation has at least a double solution at the critical point c, so at least
two of these external rays, say Ri and R2, will land at c. Evidently the
union Ri U R2c U will cut the plane into two connected open sets, which
we will call Vo and VI.

Next note that each of the images I (Vo) and I (VI) contains all points
of the complex plane, except possibly for the points of R'. In fact each
I(Vk) is an open set. If z E C is a boundary point of I(Vk) , then we can
choose a sequence of points Zj E Vk so that the images I(zj) converge
to Z. The Zj must certainly be bounded, so we can choose a subsequence
which converges to some point z' E C. Now z' t/. Vk since I(z') == z is a
boundary point and ! is an open map, so it follows that z' E aVk == RiUR2
and hence z E R'. Since C" R' is connected, this implies that

!(Vk) =:) C" R' :=) K.

Now let Jo == J n Vo and Jl == J n VI. Then it follows that

!(Jo) == !(Jl) == J.

Note that Jo and Jl are disjoint compact sets with JOUJI == J. Similarly,
we can split each Jk into two disjoint compact subsets JkO == Jk n !-1 (Jo)
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and Jkl == Jk n j-l(Jl), with j(JkR,) == JR,. Continuing inductively, we
split J into 2P+1 disjoint compact sets

Jko ...kp = Jko n j-l(Jkl) n··· n j-P(Jkp),

with !(Jko ...kp) == Jkl...kp' Similarly, for any infinite sequence kokl k2 ...
of zeros and ones, let Jkoklk2'" be the intersection of the nested sequence

Jko ~ Jkokl ~ Jkoklk2 ~ ....

Each such intersection is compact and nonvacuous. In this way, we obtain
uncountably many disjoint nonvacuous subsets with union J. Every con
nected component of J must be contained in exactly one of these, so J
has uncountably many components. The proof for the filled Julia set is
completely analogous. 0

The Green's Function of a Polynomial Map. As in Corollary 9.2,
the function z ~ 1¢(z)1 extends continuously throughout the attracting
basin C"K, taking values 1¢(z)1 > 1. (This function is finite valued, since
a polynomial has no poles in the finite plane.) In practice it is customary
to work with the logarithm of I¢I.

Definition 9.6. By the Green IS function or the canonical potential func
tion associated with the filled Julia set K of the monic degree d polynomial
j we mean the function G: C ~ [0,00) which is identically zero on K
and takes the values

G(z) == log 1¢(z)1 == lim d1k log l!ok(z)1 > 0
k~oo

outside of K. It is not difficult to check that G is continuous everywhere
and harmonic, that is

Gx x + Gyy == 0,

outside of the Julia set. (See Problems 9-b and 9-c. Here the subscripts
denote partial derivatives, with z == x+iy.) The curves G == constant> 0
in C" K are known as equipotentials. Note the equation

G(j(z)) == G(z) d,

which shows that j maps each equipotential to an equipotential.

Concluding Problems

Problem 9-a. Grand orbit closures. Let j be a rational func
tion, and let A be the attracting basin of some attracting fixed point p.
(1) Show that the grand orbit GO (p) is a discrete subset of A. If p
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is not a grand orbit finite point, show that its set of accumulation points
within e is equal to the Julia set J. (2) In the geometrically attracting
case, if Zo E A but Zo tt GO(p) , show that GO(zo) is a discrete subset
of A and that its set of accumulation points is equal to J U GO (p). (3) If
p is superattracting of local degree n and if Zo E A -, GO(p) , show that
the closure of GO(zo) consists of all points z such that 1¢(z)1 is equal

k
to some power 1¢(zo)ln, together with J U GO(p). (Compare Figures 13
through 16, pages 94 and 97.)

Problem 9-b. Harmonic functions. (1) If U is a simply connected
open set of complex numbers z = x + iy, show that a smooth function
G : U ----* lR is harmonic, Gx x + Gyy = 0, if and only if there is another
smooth function H: U ----* lR, uniquely defined up to an additive constant,
satisfying

H x = -Gy, Hy = Gx ·

It then follows that H is harmonic and that G + iH is holomorphic. Any
such H is called a harmonic conjugate of G. (2) On the other hand,
for the non-simply connected set U = C <, {O}, show that the function
z r--t log Izl is harmonic but has no globally defined harmonic conjugate.
(3) For an arbitrary Riemann surface S, show that there is a correspond
ing concept of harmonic function from S to lR which is independent of any
choice of local uniformizing parameters. (4) Show that a harmonic function
cannot have any local maximum or minimum, unless it is constant. (Use
the Maximum Modulus Principle for holomorphic functions.) In particular,
show that every harmonic function on a compact surface is constant. Simi
larly, if the harmonic function G on an open surface has the property that
{p; IG(p) I ~ E} is compact for every E > 0, show that G is identically
zero.

Problem 9-c. Green's function. Consider a monic polynomial f
of degree d ~ 2. (1) Show that the Green's function G(z) = log 1¢(z)1 is
harmonic on C" K, that it tends to zero as z approaches K, and that it
satisfies

G(z) = log Izi + 0(1) as [z] ----* 00.

(In other words, G(z) - log Izi tends to zero as Izi ----* 00.) (2) Show
that the function G is uniquely characterized by these properties. Hence
G is completely determined by the compact set K = K(f), although our
construction of G depends explicitly on the polynomial f.

Problem 9-d. The punctured disk. Let G : IJ]) <, {O} ----* lR be a
harmonic function on the punctured disk. (1) Show that there exists a
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harmonic conjugate H: IIJ) -, {O} ----jo IR if and only if the integral

b = ~ f(GxdY - Gydx)
21r

around the origin is zero. (Compare Problem 9-b.) (2) Let G(z) be the
average of G (e i() z) for 0::; () ::; 21r. Show that this is a harmonic function
of the form

G(z) == a + b log Izi
where a and b are constants, with b as above. (3) If G is bounded,
conclude that b == 0, so that G is the real part of a holomorphic function
j(z) == G(z) + iH(z) from IIJ)" {O} to C and so that ef(z) is a bounded
holomorphic function on IIJ)" {O}. Using Problem 2-£, conclude that G
extends to a harmonic function which is defined and smooth throughout the
disk IIJ).

Problem 9-e. Cellular sets and Riemann-Hurwitz. Here is an
other approach to Theorem 9.5. Again let j be a polynomial of degree
d 2: 2. For each number 9 > 0 let 119 be the bounded open set consisting
of all complex numbers z with G(z) < g. Using the maximum modulus
principle, show that each connected component of Vg is simply connected.
Hence the Euler characteristic X(Vg) can be identified with the number of
connected components of Vg . Show similarly that each component of Vg

intersects the filled Julia set.
The Riemann-Hurwitz formula (Theorem 7.2) applied to the map

j : Vg ----jo Vgd asserts that d X(Vgd) - X(Vg) is equal to the number of
critical points of j in Vg , counted with multiplicity. Since Vg is clearly
connected for 9 sufficiently large, conclude that 119 is connected if and
only if it contains all of the n - 1 critical points of j.

A compact subset of Euclidean n-space is said to be cellular * if it is a
nested intersection of closed topological n-cells, each containing the next in
its interior. Show that the filled Julia set K == nVg is cellular (and hence
connected) if and only if it contains all of the n - 1 finite critical points
of j. (In fact, if one of these critical points lies outside of K, and hence
outside of some Vg , show that Vg and hence K are not connected.)

Problem 9-f. Quadratic polynomials. Now let j(z) == z2 + c
and suppose that the critical orbit escapes to infinity. Let V == VC(c) be

"Compare Brown [1960], where it is shown that a subset K of the sphere S" is
cellular if and only if its complement S">: K is an open n-cell. This concept is of more
interest in higher dimensions. In fact it is not hard to see that a compact subset of C is
cellular if and only if it is connected with connected complement.
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the open set consisting of all z E C with 1¢(z)1 < 1¢(c)l. Show that
V is conformally isomorphic to II)) and that r' (V) has two connected
components. Conclude that j-1lv has two holomorphic branches 90 and
91 mapping V into disjoint open subsets, each having compact closure
in V. Show that each 9j strictly contracts the Poincare metric of V.
Proceeding as in Problem 4-e, show that J is a Cantor set, canonically
homeomorphic to the space of all infinite sequences of zeros and ones. Show
that the map j from J to itself corresponds to the shift map

(jo , jl , n . · ..) ~ (jl' j2 , i», ... )
from this space of sequences to itself.



(10 : 1)

§10. Parabolic Fixed Points: The Leau-Fatou Flower

Again we consider functions f(z) == ,\z + a2z2 + a3z3 + ... which are
defined and holomorphic in some neighborhood of the origin, but in this
section we suppose that the multiplier ,\ at the fixed point is a root of
unity, ,\q == 1. Such a fixed point is said to be parabolic, provided that fo q

is not the identity map. (Compare Lemma 4.7.) First consider the special
case ,\ == 1. Then we can write our map as

f(z) == z + a zn+l + (higher terms)
z (1 + a z" + (higher terms)),

with n 2: 1 and a =1= O. The integer n + 1 is called the multiplicity
of the fixed point. (Compare Lemma 12.1.) We are concerned here with
fixed points of multiplicity n + 1 2:: 2. (Thus, for the moment, we exclude
simple fixed points, that is, those with multiplicity equal to 1, or equivalently
those with multiplier ,\ =1= 1, so that the graph of f intersects the diagonal
transversally. )

Definition. A complex number v will be called a repulsion vector for
f at the origin if the product nav" is equal to +1, and an attraction
vector if nov" == -1. Here we use a boldface letter, and use the term
"vector," to indicate that v should be thought of intuitively as a tangent
vector to C at the origin (for example, as the tangent vector to the curve
t J----t tv at t == 0). Thus there are n equally spaced attraction vectors at
the origin, separated by n equally spaced repulsion vectors. I will number
these distinguished vectors as vo, VI , ... , V2n-l, where Vo is repelling
and where

Vj = e1rij
/
nvo so that navp = (-Ii

Thus Vj is attracting or repelling according to whether j is odd or even.
Note that the inverse map r:' is also well-defined and holomorphic in some
neighborhood of the origin, and that the repulsion vectors for f are just
the attraction vectors for f-l.

Here is a preliminary description of the local dynamics. Consider some
orbit Zo J----t ZI J----t • •• for the map f of equation (10 : 1). We will say that
this orbit converges to zero nontrivially if Zk ~ 0 as k ~ 00, but no Zk

is actually equal to zero.

Lemma 10.1. If an orbit f : Zo J----t ZI J----t • •• converges to zero
nontrivially, then Zk is asymptotic to v j / \Ik as k ~ +00

104
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for one of the n attraction vectors v i - In other words, the

limit limk~oo iff Zk exists and is equal to one of the Vj with
j odd. Similarly, if an orbit f- 1 : Zo 1---+ zi 1---+ • •• under r:'
converges to zero nontrivially, then z~ is asymptotic to v j / iff ,
where Vj is now one of the n repulsion vectors, with j even.
Any attraction or repulsion vector can occur.

Figure 18. Schematic picture of a parabolic point of multiplicity
n + 1 == 4. (Here a == -1.) Each arrow indicates roughly how
points are moved by f. The three attraction vectors are indicated
by arrows pointing towards the origin, and the three repulsion vectors
by arrows pointing away from the origin.
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Definition. If an orbit ZQ 1---+ ZI 1---+ ••• under f converges to zero,
with Zk rv v j / iff (where j is necessarily odd), then we will say that this
orbit {Zk} tends to zero from the direction v j .

Remark 10.2. The array of attraction-repulsion vectors at a fixed point
transforms naturally under a holomorphic change of coordinate. (This array
can be thought of as a geometric representation for the leading terms of the
power series for f at the fixed point.) More generally, consider a Riemann
surface S and a map p 1---+ f(p) E S which is defined and holomorphic in
the neighborhood of a fixed point p of multiplicity n + 1 2: 2. Then there
is a corresponding uniquely defined array of attraction-repulsion vectors in
the tangent space at p with completely analogous properties. Details will
be left to the reader.

Proof of Lemma 10.1. The proof will be based on the substitution

w == <p(z) == c] zn
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Figure 19. Julia set for f(z) == z5+(.8+.8i)z4+ z. Thismaphasa
parabolic fixed point ofrotation number zero and petal number three
at z == 0 (and also an attracting fixed point at z == -.8-.8i). The
immediate basins for the three attraction vectors resemble balloons,
pulled together at the parabolic point and separated by the three
repulsion vectors.

where c == -l/(na), and particularly on the real part of w

Re(w) == Re<p(z) == Re(c/zn
) .

Nate that in the special case of an attraction or repulsion vector we have
"+1<p(Vj) == Re<p(vj) == (-l)J .

However, we are primarily interested in behavior when Izi is very small, or
in other words when Iwl is very large.

Let lR+ == [0,(0) be the positive real axis and let lR_ == (-00, 0] be
the negative real axis. The half-line lR+Vj will be called either a repelling
ray or an attracting ray according to whether j is even or odd. In order to

label the various branches of the many-valued function <p-l(w) = f/c/w
let us cover the punctured plane somewhat redundantly by 2n open sec
tors with angle 21r / n, bounded either by two consecutive repelling rays or
by two consecutive attracting rays. More explicitly, for each attraction or
repulsion vector Vj let ~j be the corresponding open sector consisting of
all rei(}vj with r > 0 and 181 < 1f/n. (Figure 20.) Then <p maps ~j

biholomorphically onto a slit plane, with

(~ .) == {C" lR+ for j even (so that v j is repelling),
<p J C -, ~_ for j odd (so that Vj is attracting).
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Figure 20. Sector Llj with j odd, n == 3,
and an enclosed attracting petal Pj.

Hence there is a uniquely defined branch 1/Jj of <p-I with
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rv

VJj : <C" IRC-I)j ~ ~j.

Note that each flj n flj +I is a sector of angle 1rIn bounded by the rays
IR+Vj and IR+Vj+I. The image <p(Llj n flj + I ) is the upper half-plane if j
is even or the lower half-plane if j is odd.

We can write

j(z) == z (1 + a.z" + o(zn)) as z --t 0,

where the notation o(z") stands for a remainder term, depending on z,
which tends to zero faster than z" so that o(zn)I z" ~ 0 as z ~ o. To
understand the behavior of this map for z close to zero in the sector fl j ,

we look at at the corresponding transformation

W ~ Fj(w) == <pojoVJj(w)

which is defined outside a large disk in the slit w-plane and which takes
values in the full w-plane. Note that

f 0 V;j(w) = ylc/w (1 + a: + o(~)) as Iwi -t 00.

Composing with the function <p(z) == clzn, we obtain

Fj (W ) = W ( 1+a: + 0 (~) ) -n = W (1 + -:ac + 0 (~) ) .

Since nac == -1, this can be written briefly as

Fj(w) == w+l+o(l) as Iwl --t 00. (10 : 2)

(With just a little more work, we obtain the more precise statement that

Fj(w) = W + 1+0(1/~) as \wl-t 00. (10 : 3)

In other words, the remainder term not only tends to zero, but has absolute

value bounded by some constant times 1/~ for large Iwl.)
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It will be convenient to choose a number R > 0 so that

IF(w) - W - 11 < 1/2 whenever Iwi > R. (10 : 4)

In particular, it follows easily from (10 : 4) that

Re(Fj(w)) > Re(w)+1/2

whenever Iwl > R, and hence that the related function Re cp(z) == Re(c/z")
satisfies

Recp(f(z)) > Recp(z) + 1/2 (10 : 5)

whenever Izi is sufficiently small.

Remark 10.3. As an immediate consequence of (10 : 5), we see the
following. There are no small cycles near a parabolic fixed point. The fixed
point itself is the only periodic orbit contained in a small neighborhood.

Another consequence of (10 : 4) is that the slope of the line segment
from w to Fj (w ) is bounded. In particular,

IIm(Fj(w)-w)1 < Re(Fj(w)-w) when Iwl>R (10:6)

(or more precisely the slope is bounded by V3/3). The proof is easily
supplied.

Choosing R sufficiently large, as in (10 : 4), let lHIR be the right half
plane consisting of all w with Re(w) > R, and let Pj(R) be its image
'l{Jj(lHIR) , consisting of all points z E D"j with Re cp(z) > R. Then clearly
Fj maps lHIR into itself, and it is not hard to check that f maps the image
Pj(R) into itself. Furthermore, the successive iterates of f restricted to
Pj(R) converge uniformly to the constant map Pj(R) --+ O. We will refer
to this set Pj(R) as an attracting petal. (Compare Definition 10.6.)

Now consider any orbit ZQ 1-+ ZI 1-+ ••• under f which converges to
zero nontrivially. Then the inequality Re cp(Zk+l) > Re CP(Zk) + 1/2 will be
satisfied whenever k is sufficiently large. In particular, it follows that there
exists an m such that Re cp(zm) > R. This Zm must belong to one of the
n attracting petals Pj(R) c D"j. Since f(Pj(R)) C Pj(R) , this implies
that Zk belongs to this same petal Pj(R) for all k ~ m.

Next consider the sequence WQ 1-+ WI 1-+ • •• where Wk == CP(Zk) E C.
Then Wk E IHI}R and Wk+1 == Fj(Wk) for k ~ m. Since Re(wk) --+ 00

hence IWkl --+ 00, it follows from (10 : 2) that the difference wk+1 - Wk
converges to +1 as k --+ 00. Therefore the average

1 k-IWk - WQ ~

k kL..J(Wh+1-Wh)
Q
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Figure 21. Julia set for Z ~ z2 + e21ri t z with t == 3/7.
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also converges to +1. This implies that the ratio Wk/ k converges to +1,
or in other words Wk r-:» k as k ---1- 00. Since I/Wk == -nazkn, it follows
that nazkn is asymptotic to -1/k, and since nav"J == -1 we can write
this as zkn f'-I vjn/k. Now extracting the n-th root, since Zk is known

to be in the petal Pj, it follows that Zk f'-I Vk/ \!k, thus proving Lemma
10.1. D

Now suppose that the multiplier A at a fixed point is a qth root of
unity, say A == exp(27rip/q) , where p/q is a fraction in lowest terms.

Lemma 10.4. If the multiplier A at a fixed point f(z) == Z is
a primitive q th root of unity, then the number n of attraction
vectors at Z must be a multiple of q. In other words, the mul
tiplicity n + 1 of z as a fixed point of foq must be congruent
to 1 modulo q.

As an example, Figure 21 shows part of the Julia set for a quadratic
map f having a fixed point of multiplier A == e21ri(3/7) at the origin, near
the center of the picture. In this case, the sevenfold iterate f07 is a map of
degree 128 with a fixed point of multiplicity 7 + 1 == 8 at the origin. The
seven immediate attracting basins are clearly visible in the figure.
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Proof of Lemma 10.4. If v is any attraction vector for fo q at z,
then we can choose an orbit Zo ~ Zq ~ Z2q · .. under fo q which converges
to z from the direction v. Evidently the image ZI ~ Zq+1 ~ Z2q+1 ~ · · ·

under f will be an orbit which converges to z from the direction AV.
Thus multiplication by A = e21rip/q permutes the n attraction vectors,
and the conclusion follows easily. D

Remark. If we replace f = fo by a nearby map [i, so as to change
A slightly, then the (n + I)-fold fixed point z of fo q will split up into
n + 1 simple fixed points of fto q

. Since z is a simple fixed point of fo k

for k < q, it follows that only one of these n + 1 points will be fixed by ft
or by any fto k with 0 < k < q. The remaining n will partition into ti]q
orbits, each of period exactly q.

Definition. Now consider a holomorphic map f from a Riemann sur
face S to itself with a fixed point p of multiplier +1. (Compare Remark
10.2.) Given an attraction vector Vj in the tangent space of S at p, the
associated parabolic basin of attraction Aj = A(p, Vj) is defined to be the
set consisting of all Po E S for which the orbit Po ~ PI ~ · .. converges to
p from the direction Vj. Evidently these basins AI, ... ,An are disjoint
fully invariant open sets, with the property that an orbit Po ~ PI ~ ...
under f converges to p nontrivially if and only if it belongs to one of
the Aj. The immediate basin A~ is defined to be the unique connected
component of Aj which maps into itself under f. Equivalently, Aj can
be described as that connected component of the Fatou set S" J which
contains Pk for large k whenever {Pk} converges to p from the direction
Vj.

More generally, if p is a periodic point of period k with multiplier
A = e21rip/q for the map f: S ~ S, then p is a fixed point of multiplier
+1 for the iterate fo kq . By definition, the parabolic basins for fo k q at p
are also called parabolic basins for f.

Lemma 10.5. For a holomorphic map f : S ~ S, each
parabolic basin Aj is contained in the Fatou set S" J(f), but
each basin boundary oAj is contained in the Julia set l(f).

Proof. It suffices to consider the special case of a fixed point of multi
plier +1. It is clear that Aj is contained in the Fatou set, and we already
know by Lemma 4.7 that the fixed point p itself belongs to the Julia set. If
an orbit Po ~ PI ~ · .. eventually lands at p or in other words converges
trivially to p, then it follows that Po also belongs to the Julia set. Thus it
suffices to consider a point Po E 8Aj whose orbit does not contain p. Since
Po is not in any of the attractive basins Aj, the orbit Po ~ PI ~ · .. does
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not converge to p either trivially or nontrivially. Hence we can extract a
subsequence Pk(i) which is bounded away from p. Since the sequence of
iterates fOk converges to p throughout the open set Aj, it follows that
{fok} cannot be normal in any neighborhood of the boundary point Po. 0

It is often convenient to have a purely local analog for the global concept
of "basin of attraction."

Definition 10.6. Let pES be a fixed point of multiplicity n + 1 ~ 2
for a map f which is defined and univalent on some neighborhood N C S,
and let v j be an attraction vector at p. An open set PeN will be called
an attracting petal for f for the vector Vj at p if

(1) f maps P into itself, and

(2) an orbit Po ~ PI ~ ... under f is eventually absorbed by
P if and only if it converges to p from the direction v j .

Similarly, if f : N ~ N', then an open subset PeN' will be called a
repelling petal for the repulsion vector Vk if P is an attracting petal for
the map t:' :N' --+ N and for this vector v i:

Caution: There doesn't seem to be any standard definition for the con
cept of petal. Different authors impose different restrictions. The present
definition is very flexible. For example it has the property that any intersec
tion of petals for Vj is itself a petal. Furthermore, any neighborhood N on
which f is univalent contains a unique maximal petal for Vj, namely the
union of all forward orbits in N which converge to p from this direction.
It does allow rather wild sets as petals, but we can always impose further
restrictions. The petals Pj(R) described in the proof of Lemma 10.1 are
particularly well behaved, being simply connected, with smooth boundary
except at the point p itself, and with

nrk(pj(R)) = {p}

where we take the intersection over k > 0 or k < 0 according as the petal
is attracting or repelling. (Compare Figure 18, page 105.) However, we will
need petals which are a bit fatter.

The following result was proved in a preliminary form by Leopold Leau*
[1897], and in increasingly satisfactory forms by Julia [1918] and Fatou
[1919-1920].

"In the non-mathematical world, Leau is best known for his efforts to establish an

international auxiliary language. He helped to organize an International Delegation in

1907 which advocated an improved variant of Esperanto. Unfortunately, this angered

advocates of the existing form of Esperanto and led to a great deal of controversy.
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v2 -r.-E:----------:::_~----~......----

Figure 22. Flower with three attracting petals
(emphasized) and three repelling petals.

Theorem 10.7 (Parabolic Flower Theorem). If z is a fixed
point of multiplicity n + 1 2: 2, then within any neighborhood
of z there exist simply connected petals Pj, where the subscript
j ranges over the integers modulo 2n and where Pj is either
repelling or attracting according to whether j is even or odd.
Furthermore, these petals can be chosen so that the union

{z} u Po u ··· U P2n-I

is an open neighborhood of z. When n > 1, each Pj intersects
each of its two immediate neighbors in a simply connected region
Pj n Pj±I but is disjoint from the remaining P».

Compare Figure 22. The situation when n = 1 is only slightly different.
The left neighbor of a petal is then the same as its right neighbor, so that
the intersection Po n PI actually has two simply connected components.

Proof of Theorem 10.7. (Compare Buff and Epstein [2002].) As
in the proof of Lemma 10.1, we may assume that z = o. Choose a large
number R as in (10 : 4) and (10 : 6), and let WR => lHI2R be the set of all
w = u+iv E C with u+ Ivl > 2R. Then for each odd j it is easy to check
that Fj maps WR into itself, and that the image Pj = 'l/lj(WR) C ~j

is an attracting petal. Similarly, let - WR be the set of all -w with
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w E WR. Then, for each even j, making corresponding estimates for Fj-
l ,

we see that FT1 maps -WR into itself and that Pj = 'l/Jj( -WR) is a
repelling petal. (These petals are heart shaped, as shown in Figure 22.)

The intersection WR n (- WR) is a disjoint union vtUVi where vt
is the V-shaped region consisting of all u + iv in the upper half-plane with
v > lui + 2R and where Vi is its reflection in the lower half-plane. The
image 1/Jj (Pj n Pj+l) is either wt or Vi according as j is even or odd.
Further details will be left to the reader. D

If f : S ~ S is a globally defined holomorphic function and Z IS a
fixed point of multiplicity n + 1 2: 2, then each attracting petal Pj about
z determines a corresponding parabolic basin of attraction Aj, consisting
of all Zo for which the orbit Zo 1-+ Zl 1-+ ••• eventually lands in Pj, and
hence converges to the fixed point from the associated direction v j .

We can further describe the geometry around a parabolic fixed point as
follows. As in (10 : 1), consider a local analytic map with a fixed point of
multiplier A == 1. Let P be either an attracting petal or a repelling petal.
Form an identification space P / f from P by identifying Z with f(z)
whenever both z and f(z) belong to P. (This means that z is identified
with f(z) for every z E P in the case of an attracting petal and for every
z E P n f-l(p) in the case of a repelling petal.)

Evidently this quotient manifold P / f depends only on the choice of
attracting or repulsion vector and not on the particular choice of P, for if
-p! is another petal for the same vector, then P n -p! is also a petal, and
the inclusions P n pI c P and P n -p! c P induce the required conformal
isomorphisms.

Theorem 10.8 (Cylinder Theorem). For each attracting or
repelling petal P, the quotient manifold P / f is conformally
isomorphic to the infinite cylinder C/71.

By definition, the quotient P / f is called an Ecalle cylinder for P. This
term is due to Douady, suggested by the work of Ecalle on holomorphic maps
tangent to the identity. (Compare Ecalle [1975]. The behavior of Ecalle
cylinders under perturbation of the mapping f is a very important topic
in holomorphic dynamics. See for example Lavaurs [1989] and Shishikura
[1998].)

We will derive Theorem 10.8 as an immediate consequence of the follow
ing basic result, which was proved by Leau and Fatou. However, it would
be equally possible to first prove Theorem 10.8 and then derive Theorem
10.9 from it. (Compare Problem 10-c.)
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Theorem 10.9 (Parabolic Linearization Theorem). For
any attracting or repelling petal P, there is one and, up to com
position with a translation of C, only one conformal embedding
a : P -7 C which satisfies the Abel functional equation

a(f(z)) == 1 + a(z)

for all z E P n f-1(P).

Here we can think of C the universal covering space of the cylinder
C/Z. The linearizing coordinate a(z) is often referred to as a Fatou coor
dinate in P. The proofs of these two theorems, loosely following Steinmetz
[1993], will be based on the following lemma, The argument is completely
constructive, and can be used for actual computation of Fatou coordinates,
although convergence is rather slow.

Lemma 10.10. Let F: lHIR -7 lHIR satisfy the inequality

Re(F(w)) > Re(w) + 1/2

and also the inequality

IF(w + 1) - w - 11 ~ O/Iwl t

for some positive constants C and E. (Compare equation
(10: 3), taking E == l/n.) Let w be a base point in lHIR. Then
the sequence of functions

(3k(W) == Fok(w) - Fok(w)

converges locally uniformly to a biholomorphic map
rv

{3 : lHIR~ U c C

which satisfies the Abel equation (3(F(w)) == (3(w) + 1. Further
more, the ratio {3(w)/ w tends to +1 as w tends to infinity
within lHIR .

Proof. First note that the derivative P' of F tends to +1 as w
tends to infinity within the smaller half-plane lHI2R. In fact the inequality

IF'(w) - 11 < 0/81+t whenever Iwl 2: 2S 2: 2R

follows from the Cauchy Derivative Estimate, Lemma 1.2', since the func
tion w r--+ F(w) - w - 1 caries the disk of radius 8 centered at w into
the disk of radius C/ S" centered at zero. Given two points w' and W" in
the half-plane lHI2s , since the average of F' (w) - lover the line segment
from w' to w" is equal to (F(w") - F(w'))/(w" - w') - 1, we conclude
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I
F(w") - F(w') - 11 < ~.

ui" - w' - S 1+E
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(10 : 6)

Now choose some base point wE IHI2R and consider the sequence of func
tions f3k(W) = Fok(w) - Fok(w). Since Re(FOk(w)) > k/2, we can write

I
f3k(W) - 11 < ~ (10 : 5)

f3k-l(W) - k1+E

for suitable choice of 0' and for all k 2: 1. In particular, it follows that

0' I f3k(W) I 0'
1 - kl+E :::; f3k-l(W) :::; 1 + kl+E •

Since the value of the infinite product

P = IT (1 + 0' /kl+E
)

k~l

is finite, it follows from (10 : 6) that

lf3k(w) I ::; Iw-wiP

for every k. Substituting k - 1 in place of k and multiplying by (10 : 5),
we see that

(10 : 7)

Since the infinite series 2:= Ijk1+E converges, this proves that the series
00

f3o(w) + ~ (f3k(W) - f3k-l(W))
k=l

is absolutely convergent, and therefore that the limit

f3(w) = lim f3k(W)
k-woo

exists for all WE IHI2R. Furthermore, if we divide by f30 (w) = w - W, then
the convergence f3k(W)jf30(w) ---+ f3(w)jf3o(w) is uniform throughout the
half-plane IHI2R. This proves that the limit function f3 is holomorphic. Now
choose ko large enough so that I1k~ko (1 - 0' jk1+E

) > O. (For example,
take ko > 0'.) Using (10 : 6), since Foko is univalent, it follows that f3
is also univalent on IHI2R. The extension of f3 as a univalent function on
the larger half-plane IHIR then follows immediately, since some iterate of F
embeds IHIR into IHI2R.

To prove the asymptotic formula

as Iwl ---+ 00 within IHIR,



116 LOCAL FIXED POINT THEORY

that is, to prove that (3(w)Iw ---+ 1, we proceed as follows. For each fixed
k, it is easy to check that

(3k(W) rv Fok(w) rv w + k rv w rv (3o(w) as Iwl ---+ 00.

On the other hand, since the sequence of ratios (3k (w)I(30 (w) converges
uniformly to (3(w)I (30 (w) throughout the half-plane H2R, this proves that
(3 (w) rv (30 (w) r-:» W as Iwi ---+ 00 within JHI2R. The extension of this
statement to JHIR is then straightforward. D

We will also need the following.

Lemma 10.11. With (3 (JHIR) == u c ee as in the preceding
lemma, the image of U under the projection from ee to eel'll
is the entire cylinder. Equivalently, the union of all translates
U + n with n E 'll is all of C.

Proof. Choose 8 large enough so that 1(3(w) - wi < Iwl/3 for every
w E JHIR with Iwl > 8 . For any point of eel'll we can choose a representa
tive Wo == Uo + ivo which is far enough to the right so that Iwo I > 28, and
so that the closed disk D of radius Iwol/2 centered at Wo is contained in
JHIR. Then for every w E D, since 8 < Iwl ::; 31wo1/2, it follows that the
difference 1(3(w) - wi is less than the radius Iwo1/2. It then follows from
the Argument Principle (or from Rouche's Theorem) that the image of this
disk under (3 must contain the given wo. D

Proof of Theorem 10.9: Existence. In the special case of the petal
P == Pj(R) rv JHIR, we can define 0:: Pj(R) ---+ C to be the composition
o:(z) == (3(c.p(z)) , using the function (3 as described in Lemma 10.10. For
the case of an arbitrary petal P with attraction vector Vj, note that any
point z E P must have some forward image fOk(z) E Pj(R). Thus we
can simply define o:(z) to be o:(fOk(z)) - k. The necessary properties are
easily verified.

Uniqueness. Consider P and the associated Pj(R) , as above. Then
any Fatou coordinate on P can be restricted to P n Pj(R) and then
uniquely extended to Pj (R). Thus it again suffices to consider the special

case P = Pj (R). Let a: P ~ U be the Fatou coordinate as constructed

above and let 0:' : P ~ U' be some arbitrary Fatou coordinate on P. Then
9 == 0:' 00:-1 maps U bijectivelyonto U' with g(w+ 1) == g(w)+1 . Since
the union of all integer translates of U is the entire plane by Lemma 10.11,

we can extend 9 to a bijective map 9 : C ~ U' + 'll c C by setting
g(w + n) == g(w) + n for all w E U and n E 'll. It follows that 9 is a
linear map from ce onto C. Since g(u + 1) == g(u) + 1, it can only be a
translation. This completes the proof of Theorem 10.9. D



10. PARABOLIC POINTS 117

Proof of Theorem 10.8. This follows as an immediate corollary.
Simply map each equivalence class {fok (z)} E P / f to the residue class of
a(z) modulo Z. D

Figure 23. The Ecalle-Voronin classification: A sketch of the open
sets aj(Pj) for j = 1, 2, 3 and the associated pasting maps
hj : aj (Pj nPj+l) ---+ aj+l (Pj nPj+l). The arrow in each aj (Pj)
points from a to a + 1.

Remark 10.12. The Ecalle-Voronin Classification. Note that this
preferred Fatou coordinate system is defined only within one of the 2n at
tracting or repelling petals. In order to describe a full neighborhood of the
parabolic fixed point, we would have to describe how these 2n Fatou coor
dinate systems are to be pasted together in pairs, by means of biholomorphic
maps

hj : aj(Pj n Pj+!) ~ aj+!(Pj n Pj+!) ,

which must satisfy the functional equation hj (a + 1) = hj (a) + 1 whenever
both a and a + 1 lie in aj(Pj n Pj+l). (Compare Figure 23.) In fact, it
can be shown that each hj must have the form *

hj(a) = a + H, (e±21ria) so that aj+l = aj + Hj (e±21riaj ) ,

taking the plus sign if j is even or the minus sign if j is odd. Here each H,
is a function which is defined and holomorphic throughout some punctured

* An alternative procedure which treats Qj and aj+l more symmetrically would be
to introduce the variable tj(z) == tj(f(z)) E JI)) ,,{O} by the formula tj == e±21rioj ,

taking the plus sign if Im(aj) » 0 or the minus sign if Im(aj) «0. Then we can
express tj+l as a holomorphic function

tj+l T/j(tj) == tj exp(±27riHj(tj))

for tj in some disk JI))E. The 1]j are known as horn maps and hj can be described as

a lifted horn map.
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neighborhood IIJ)E" {O} of zero. In fact tt, extends holomorphically over
IIJ)E. Furthermore, as z tends to the fixed point z within Pj n Pj+l, the
number e±21riaj(z) tends, to zero, so that we get the limiting formula

as z~z.

These germs Hj of holomorphic functions are not quite uniquely de
fined, since we are free to add an arbitrary constant to each Fatou coordi
nate. However, since each Hj depends on infinitely many parameters while
there are only 2n Fatou coordinates, one gets the following statement.

There can be no normal form depending on only finitely many
parameters for a general holomorphic map f in the neighbor
hood of a parabolic fixed point,

(Compare Voronin [1981], Malgrange [1981/82], Martinet and Ramis
[1983], Buff and Epstein [2002].) On the other hand, if we allow a change
of coordinate given by a formal power series, then there is a normal form
z I---t z + zn+l +,8z2n+l depending on just one complex parameter (Problem
10-d), while if we allow a topological change of coordinate, then Camacho
[1978] showed that the normal form z I---t z + zn+l will suffice.

It is not hard to see that the sum

1(f, z) == Ho(O) + HI (0)+ ···+ H2n-l (0) (10 : 8)

does not depend on these additive constants, and hence is a well defined
invariant. If we replace f by some iterate r: note that each Fatou
coordinate must be divided by k, so that

I(fOk,z) == I(f,z)/k. (10: 9)

For further information about this invariant, see Remark 12.12.
After adding appropriate constants to the O'.j, we can always normalize

so that

Ho(O) == Hl(O) == ••• == H2n-l(0) == 1(f, z)/2n.

The various Hi are then uniquely defined up to a simultaneous linear
change of argument, replacing each IHIj(t) by either IHIj('xt) or Hj(t/'x)
according to whether j is even or odd.

Although the coordinate a is well-defined only up to an additive con
stant, its differential do is uniquely defined. Thus another way of de
scribing Theorem 10.9 is to say that within each attracting or repelling
petal there is a unique holomorphic Lforrn do: == (dO'./dz) dz which is
f -invariant and satisfies J!(z) da == +1. Equivalently, within each petal
there is a uniquely defined holomorphic vector field (dO'. / dz)-1a/az with
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the following property: The time 1 map for the flow t ~ ft (z ) generated
by the associated differential equation

dz(t) = (da/dz)-l
dt

on Pj is precisely the given map, fl == f. In particular, we can write f
as an iterate f == gog within each petal, where 9 = fl/2.

In general, these flows a ~ a + t for the different petals do not match
up at all. In fact they match up if and only if the functions H, are all con
stants, Hj(t) Hj(O). This is precisely the case when f can be described
as the time one map for the local flow t ~ ft (z ) generated by a differential
equation

dz/dt = v(z)

where v(z) is holomorphic throughout some neighborhood of Z, with a
multiple zero at z. Thus we see that such a holomorphic differential equa
tion is completely classified up to local conformal conjugacy by the order of
this zero together with the single invariant

1(fl, z) = t 1(ft, z) .

(We will discuss such flows further in Lemma 12.11.) In the simplest case,

dz / dt == zn+1 with solution ft (z) = z / \/1 - ritz" ,

it is not hard to check that this invariant is identically zero. For example,
this follows since each ft with t#-O is linearly conjugate to fl.

Global Theory. Now suppose that f : S -t S is a globally defined
holomorphic map with a fixed points of multiplicity n + 1 2: 2. Here S
can be either C or C or C/Z. Although attracting petals behave much
like repelling petals in the local theory, they behave quite differently in the
large.

Corollary 10.13. If PeS is an attracting petal for I . then
the Fatou map

a:P-tC

extends uniquely to a map A -t C which is defined and holo
morphic throughout the attractive basin of P, still satisfying the
Abel equation a(f(z)) == 1 + a(z).

In the case of a repelling petal, the analogous statement is the following.

Corollary 10.14. If -p! is a repelling petal for f : S -t S,
then the inverse map
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extends uniquely to a globally defined holomorphic map
1 : C ~ S which satisfies the corresponding equation

f(,(w)) == ,(1 + w).

The proofs of Corollaries 10.13 and 10.14 are completely analogous to
the proofs of Corollaries 8.4 and 8.12. 0

In the case of a rational map f : C~ C which is nonlinear (that is,
of degree 2 or more), the extended map of Corollary 10.13 is surjective.
However, it is not univalent, but rather has critical points whenever some
iterate f 0 • • • 0 f has a critical point. Note the following basic result.

Theorem 10.15. If z is a parabolic fixed point with multiplier
A == 1 for a rational map, then each immediate basin for z
contains at least one critical point of f. Furthermore, each basin
contains one and only one attracting petal Pmax which maps
univalently onto some right half-plane under a and which is
maximal with respect to this property. This preferred petal Pmax
always has one or more critical points on its boundary.

More generally, for a periodic orbit which has multiplier equal to a root
of unity, we can apply this result to an appropriate iterate of f and conclude
that every cycle of parabolic basins contains a critical point.

The proof of Theorem 10.15 is completely analogous to the proof of
Lemma 8.5. It is not difficult to show that a-I can be defined throughout
some right half-plane. If we try to extend leftwards by analytic continuation
then we must run into an obstruction, which can only be a critical point of
f. (For an alternative proof that every parabolic basin contains a critical
point, see Milnor and Thurston [1988, pp. 512-515].) D

As an example, Figure 24 illustrates the map f(z) == z2 + z, with a
parabolic fixed point of multiplier ,\ == 1 at z == 0, which is the cusp point
at the right center of the picture. Here the Julia set J is the outer Jordan
curve (the "cauliflower") bounding the basin of attraction A. The critical
point z = -1/2 lies exactly at the center of symmetry. All orbits in this
basin A converge towards z == 0 to the right. The curves Re(a(z)) =
constant E Z have been drawn in, using the normalization a( -1/2) == o.
Thus the preferred petal Pmax, with the critical point on 8Pmax , is bounded
by the right half of the central 00 shaped curve. Note that the function
z ~ Re(a(z)) has a saddle critical point at each iterated preimage of w.
This function Re(a(z)) oscillates wildly as z tends to J == 8A.

As an immediate consequence of Theorem 10.15 we have the following.



10. PARABOLIC POINTS 121

Figure 24. Julia set for z ~ z2 + z, with
the curves Re(a(z)) E Z drawn in.

Corollary 10.16. A rational map can have at most finitely
many parabolic periodic points. In fact, for a map of degree
d 2:: 2, the number of parabolic cycles plus the number of attract
ing cycles is at most 2d - 2 .

More precisely, the number of cycles of Fatou components which are
either immediate parabolic basins or immediate attracting basins is at most
equal to the number of distinct critical points. In fact, just as in the proof
of Theorem 8.6, these attracting and parabolic basins must be disjoint and
each cycle of basins must contain at least one critical point. 0

For sharper results, see Shishikura [1987], or Buff and Epstein [2002].

Concluding Problems

Problem 10-a. Repelling petals and the Julia set. If f is a
nonlinear rational function, show that every repelling petal must intersect
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the Julia set of I.

LOCAL FIXED POINT THEORY

Problem IO-b. No small cycles. We noted in Remark 10.3 that a
small neighborhood of a parabolic fixed point contains no periodic orbits
other than the fixed point itself. (1) Give an alternative proof based on the
Flower Theorem 10.7. In fact, assuming that both I and 1-1 are defined
and univalent throughout the punctured neighborhood

Po U PI U P2 · · · U P2n-I ,

show that this union contains no periodic orbits. (2) On the other hand,
show that any nonlinear rational function has orbits which return to every
repelling petal infinitely often. (Using §14, one can show that there are
periodic points arbitrarily close to z in each repelling petal.)

Problem IO-c. The Cylinder Theorem. (1) Give an alternate proof
of Theorem 10.8 as follows. With notation as in the proof of Lemma 10.1,
show that F maps the half-plane H R diffeomorphically onto an open set
F(JHIR) , and show that the region U = HR "F(HR) forms a fundamental
domain for the action of F on HR. In particular, the quotient HR/ F
can be identified with the space obtained from U by identifying each point
R+iv of its left hand boundary with the image F(R+iv) on its right hand
boundary. Thus the Riemann surface IHIR/F has free cyclic fundamental
group, and hence must be conformally invariant to the cylinder C/Z or
the punctured disk II)) <, {O} or to an an annulus. (2) First suppose that
HR/ F is conformally equivalent to an annulus of modulus p., and hence to
the finite cylinder CJ1 C C/Z consisting of all z = x + iy (mod Z) with
o< y < p.. Show that U would have a conformal metric f!(w)ldwl of area

Jfu "((w)2dudv = /1 < 00 (10 : 10)

with the property that any path w = w(t) from C + iv to F(C + iv) in
U would have length JJ!(w(t)ldw(t)1 2: 1. Using the Schwarz inequality
(J(l· ¢ dt)2 ~ (J 1 dt)(J ¢2dt) , show that the integral along the straight line
segment w(t) = (1- t)wo + tF(wo) from Wo = R + ivo to F(wo) satisfies

fa! "((w) Idw/dtl dt ~ 1 hence fa! "(2(w) Idw/dtl2dt ~ 1.

(3) If R is sufficiently large, show that the nonconformal change of coor
dinates (t,TJ) ~ (u,v) with

w==u+iv = (l-t)(R+iTJ)+tF(R+iTJ)

will have matrix of first derivatives arbitrarily close to the identity matrix.
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Since the integral

L: (fo1

1'2(W)18W/ 8t I2dt) d17 ~ f: d17

is infinite, conclude that the integral (10 : 10) is also infinite, yielding a
contradiction. (4) Similarly, since the integral over each of the regions
1] 2:: 0 and 1] < 0 is infinite, show that lHIR/F cannot be conformally
isomorphic to a punctured disk.

Problem IO-d. A formal normal form. Suppose that f is given
by a power series of the form

f(z) = z + zm + (higher terms) (10 : 9)

with m 2:: 2 , and let g be a local diffeomorphism of the form
g(z) = z + czk with k 2:: 2. (1) Show that

f(g(z)) - g(f(z)) = (m - k) czm+k- 1 + (higher terms),

or equivalently that

g-l 0 f 0 g(z) = f(z) + (m - k) czm+k- 1 + (higher terms).

(2) Conclude inductively that by such conjugations we can eliminate terms
of any degree other than 1, m, and 2m - 1 from the power series for f.
Thus f is locally holomorphically conjugate to a map of the form

g(z) = z + azm + bz2m-1 + (terms of degree> N),

where N can be arbitrarily large. (3) Conclude that conjugation by a
possibly nonconvergent formal power series 'ljJ(z) = z + C2 z2 + C3 z3 + ···
can transform any f of the form (10 : 9) into the normal form

z ~ z + zm + bz2m-l .

Remark. This coefficient b is a formal conjugacy class invariant, so
that no further simplification is possible. (Compare Problem 12-a.) The
power series 'ljJ is definitely not convergent in general. In fact, according
to Ecalle or Voronin, it would take infinitely many complex parameters to
specify the map f up to local holomorphic conjugacy. (See Remark 10.12.)

Problem IO-e. Examples with a parabolic point at infinity.
(Compare Milnor [1993, §8]. ) (1) For f(z) = z - l/z show that the
only fixed point is the point at infinity, with multiplicity n + 1 = 3. Show
that the two parabolic basins are the upper and lower half-planes, and that
J = IR U {oo}. (For a similar nonparabolic example, see Problem 7-a.)
(2) For f(z) = z -1/z+ 1 show that the point at infinity has multiplicity 2,
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Figure 25. Julia set for z ~ z + 1/(1 + z2).
(See Problem lO-e (4).)

and that J is a Cantor set contained in lRU{oo}. (3) For I(z) = z+l/z-2
show that 00 again has multiplicity 2, and that J is the interval [0, +00].
(4) For I(z) = z + 1/(1 + z2) as illustrated in Figure 25, show that the
multiplicity of 00 is 4. Show that one of the three immediate parabolic
basins contains all of lR and hence nearly disconnects the Riemann sphere.

Problem lO-f. Immediate parabolic basins. By an argument sim
ilar to that of Theorem 8.9, show that the complement of an immediate
parabolic basin is either connected or else has uncountably many connected
components. (However, compare Problem 10-e(4).)



f(h(w)) = h(AW)

§11. Cremer Points and Siegel Disks

Once more we consider maps of the form

f(z) = AZ + a2z2 + a3 z3+ ···,
which are defined and holomorphic throughout some neighborhood of the
origin, with a fixed point of multiplier A at the origin. In §§8 and 9 we
supposed that IAI i- 1, while in §10 we took A to be a root of unity. This
section considers the remaining cases where IAI = 1 but A is not a root of
unity. Thus we assume that the multiplier A can be written as

A = e27Ci~ with ~ real and irrational.

Briefly, we will say that the origin is an irrationally indifferent fixed point.
The number ~ E JR/Z is called the rotation number" for the tangent space
at the fixed point. The fundamental question here is whether or not f
is locally linearizable. That is, does there exist a local holomorphic change
of coordinate Z = h(w) which conjugates f to the irrational rotation
w ~ AW, so that

near the origin? (Compare Theorem 8.2.) If f is a globally defined rational
function, then Theorem 5.2 implies the following statement.

Lemma 11.1. Let f be a rational function of degree 2 or more
with a fixed point ZQ which is indifferent, If' (zQ) I = 1. Then the
following three conditions are equivalent to each other:

• f is locally linearizable around ZQ,

• ZQ belongs to the Fatou set C-, J (f) ,

• the connected component U of the Fatou set containing ZQ is
conformally isomorphic to the unit disk under an isomorphism
which conjugates f on U to multiplication by A on the disk.

Proof. If f is locally linearizable around ZQ, then the iterates of f
in a suitable neighborhood of ZQ correspond to iterated rotations of a small
disk, and hence form a normal family. Thus ZQ belongs to the Fatou set.
Conversely, whenever ZQ belongs to the Fatou set, we see from Corollary 5.3
that the entire Fatou component U of ZQ must be conformally isomorphic
to the unit disk, with flu conjugate to multiplication by A on IIJ). D

*A theorem of Nalshul' [1983] asserts that this rotation number is a local topological

invariant.

125
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Definition. We will say that an irrationally indifferent fixed point is
either a Siegel point or a Cremer point, according to whether a local lin
earization is possible or not. A Fatou component on which f is conformally
conjugate to a rotation of the unit disk is called a Siegel disk, with the fixed
point Zo as center. (In the classical literature, Siegel points were called
"centers" and the question as to their existence was called the "center prob-
lem.")

This section will first survey what is known about the local linearization
problem and then prove some of the easier results. Finally, it will describe
the relation between Cremer points or Siegel disks and the critical points of
a rational map.

Edward Kasner [1912] conjectured that such a linearization is always
possible. However, George Pfeiffer [1917] disproved this conjecture by giving
a rather complicated description of certain holomorphic functions for which
no local linearization is possible. Gaston Julia [1919] claimed to settle the
question completely for rational functions of degree 2 or more by showing
that such a linearization is never possible; however, his proof was wrong. In
fact the correct answer depends on a careful study of the extent to which the
rotation number ~ can be very closely approximated by rational numbers.

Hubert Cremer finally put the situation in clearer perspective with a
result which we can state as follows.

Nonlinearizability Theorem 11.2 (Cremer [1927]). Given
,\ on the unit circle and given d ~ 2, if the sequence of numbers

d\ll/l).q - 11 is unbounded as q ----t 00, then no fixed point of
multiplier ,\ for a rational function of degree d can be locally
linearizable.

This will be proved below. It is convenient to say that a property of
an angle ~ E JR/Z is true for generic ~ if the set of ~ for which it is true
contains a countable intersection of dense open subsets of JR/Z. According
to Baire, such a countable intersection of dense open sets is necessarily dense
and uncountably infinite. (See Problem 4-j.)

Corollary 11.3. For a generic choice of rotation number
~ E JR/Z, if Zo is a fixed point of multiplier e27fi~ for a com
pletely arbitrary rational function f of degree 2 or more, then
there is no local linearizing coordinate about zo.

(Compare Problem II-b.) The question as to whether this statement
is actually true for all ~ remained open for many years until Carl Ludwig
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Figure 26a. Julia set for z2 + e27ri ez with ~ = f/l/4
= .62996 · · .. The large region on the lower left is a Siegel disk.

Figure 26b. Corresponding Julia set with a

randomly chosen angle ~ = .7870595 · · · .

Siegel proved the following. Again let A = e21ri~ with ~ E IR <, Q.

Linearization Theorem 11.4 (Siegel [1942]). If 1/IAq - 11
is less than some polynomial function of q, then every germ of
a holomorphic map with fixed point of multiplier A is locally
linearizable.

127

This will not be proved here. However, proofs may be found in Siegel
[1942], Siegel and Moser [1971], Zehnder [1977], or Carleson and Gamelin
[1993].
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Corollary 11.5. For every ~ outside of a set of Lebesgue mea
sure zero, we can conclude that every holomorphic germ with a
fixed point of multiplier e21ri e is locally linearizable.

In other words, if the angle ~ E IR/Z is "randomly chosen" with respect
to Lebesgue measure, then with probability 1 every rational function with
a fixed point of multiplier e21ri e will have a corresponding Siegel disk. See
Figure 26b for an example. Again, this will not be proved here (except
in the special case of a quadratic polynomial fixed point, as described in
Theorem 11.14). However, we will see in Lemma 11.7 that Corollary 11.5
does follow from Theorem 11.4.

Remark. Comparing Corollaries 11.3 and 11.5, we see that there is
a total contrast between behavior for generic ~ and behavior for almost
every ~. This contrast is quite startling, but is not uncommon in dynamics.
(Compare the discussion of the iterated exponential map in §6.) In applied
dynamics, it is usually understood that behavior which occurs for a set of
parameter values of measure zero has no importance and can be ignored.
However, even in applied dynamics the study of generic behavior remains
an extremely valuable tool.

Bryuno Yoccoz
Diophantine

B D(2+)

(full measure)

Figure 27. Schematic diagram for classes of irrational numbers.

In order to understand these statements, as well as sharper results which
have been obtained more recently, it is convenient to introduce a number
of different classes of irrational numbers, which are related to each other as
indicated schematically in Figure 27.

Let r: be a positive real number. By definition, an irrational number ~



11. CREMER POINTS AND SIEGEL DISKS 129

is said to be Diophantine of order ::; r: if there exists E > 0 so that

I€- EI > ~ for every rational number p/q. (11 : 1)
q q""

The class of all such numbers will be denoted by V(~). Evidently

V(~) C V(TJ) whenever ~ < TJ.

Setting A == e21ri~ as above, and choosing p to be the closest integer to q~

so that Iq~ - pi ::; 1/2, note the order of magnitude estimate

IAq-ll
== 12sin(1T(q~-p))1 ~ 21Tlq~-pl·

In fact, more precisely, it is not hard to see that

41q~ - pi ::; IAq
- 11 ::; 21Tlq~ - pl·

It follows that (11 : 1) is equivalent to the requirement that

IAq
- 11 > E'lq",,-l {==;> l/lAq

- 11 < cq",,-l
for some E' > 0, with the same value of ~ and with c == liE'. Thus Siegel's
Theorem 11.4 can be restated as follows.

If the angle ~ E ]R/Z is Diophantine of any order, then any
holomorphic germ with multiplier A == e21ri~ is locally lineariz
able.

It turns out that the set V(~) is vacuous for ~ < 2. (See Problem
II-a.) Diophantine numbers of order 2 are said to be of bounded type.
(Compare Corollary 11.9.) Examples are provided by quadratic irrationals.
More generally, we have the following classical statement.

Theorem 11.6 (Liouville). If the irrational number ~ sat
isfies a polynomial equation f(~) == 0 of degree d with integer
coefficients, then ~ E V(d).

Proof. We may assume that f (piq) =I- o. Clearing denominators, it
follows that II(plq)1 ~ llqd . On the other hand, if M is an upper bound
for II' (x)I in the interval of length 1 centered at ~, then

II(plq)1 < M I~ - plql·
Choosing E < IIM, we obtain I~ - pi ql > EIqd, as required. D

Thus every algebraic number is Diophantine. It follows that any ir
rationally indifferent fixed point with algebraic rotation number is locally
linearizable. (Compare Figure 26a, page 127.)

Remark. Irrational numbers which are not Diophantine are often called
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Liouville numbers. We will see in Appendix C that the set of Liouville num
bers is very small, in the sense that its Hausdorff dimension is zero.

A much sharper and more difficult version of Theorem 11.6 has been
proved by Klaus Roth.

Theorem of Roth [1955]. Every algebraic number in lR" Q
belongs to the class

V(2+) == n V(~),
K>2

consisting of numbers which are Diophantine of order ::; r: for
every ~ > 2.

We will not use Roth's result, but will make use of the following much more
elementary property.

Lemma 11.7. This set V(2+) has full measure in the circle
lRIIl.

(On the other hand, we will see in Appendix C that the subset V(2) has
measure zero.)

Proof of Lemma 11.7. Let U(K, e) be the open set consisting of all
~ E [0,1] such that I~ - plql < €lqK for some vt«. This set has measure at
most

since for each q there are q possible choices of piq modulo 1. If ~ > 2,
then this sum converges, and hence tends to zero as € ~ O. Therefore the
intersection nE>o U(K, E) has measure zero, and its complement V(K) has
full measure. Taking the intersection of these complements 7)(~) as ~ ~ 2,
we see that the set 7)(2+) also has full measure. 0

Evidently Theorem 11.4 and Lemma 11.7 together imply Corollary 11.5.

For a more precise analysis of the approximation of an irrational number
~ E (0, 1) by rationals, we consider the continued fraction expansion

1
~ ==

1
al + 1

a2+--
a3 + ...

where the ai are uniquely defined strictly positive integers. The rational
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number
1

1
al+------

a2 + .
1

+--
an - l

is called the nth convergent to ~. The denominators qn will playa partic
ularly important role. Here is a summary of some basic results. (Com
pare Hardy and Wright [1938] or Khintchine [1963].) Note that ~ is
very close to some fraction with denominator q if and only if ,\q is very
close to +1 (where ,\ == e21ri e as usual). In fact, if 8/q == I~ - p/ql
is the distance to the closest such fraction, with 0 < 8 < 1/2, then
I,\q -11 == le21ri8 -11 == 2sin(1r8).

Theorem 11.8 (Best Approximations). Each convergent
Pn/qn is the best possible approximation to ~ by fractions with
denominator at most qn. Furthermore

1,\h - 11 > 1,\qn - 11 for 0 < h < qn+1 with h =I qn·

The error I,\qn - 11 has the order of magnitude of l/qn+l, or
more precisely

2/qn+1 ::; 1,\qn - 11 ::; 21r / qn+1·

These denominators can be computed inductively by the formula

qn+l == anqn + qn-l 2: 2qn-l,

with qo == 0, ql == 1, q2 == al·

The proof will be given in Appendix C.

Corollary 11.9. An irrational number ~ is Diophantine if and
only if the associated continued fraction denominators satisfy the
condition that qn+l is less than some polynomial function f(qn).
More precisely, ~ E V(K) if and only if qn+l is less than some
constant times q~-I. In particular, ~ belongs to V(2) if and
only if the ratios qn+l/qn are bounded, or equivalently if and
only if the continued fraction coefficients an == (qn+l - qn-l)/qn
are bounded.

For this reason, elements of V(2) are also called numbers of bounded
type (or sometimes numbers of constant type). The proof of Corollary 11.9
is straightforward and will be left to the reader. 0

Next we state three results which give a much sharper picture of the
local linearization problem. Alexander Bryuno proved the following.
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Theorem 11.10 (Bryuno [1965], Riissmann [1967]). With
A and {qn} as above, if

I: log(Qn+l) < 00, (11 : 2)
n qn

then any holomorphic germ with a fixed point of multiplier A is
locally linearizable.

Jean-Christophe Yoccoz showed that this is a best possible result.

Theorem 11.11 (Yoccoz [1988]). Conversely, if the sum (11 :
2) diverges, then the quadratic map f(z) = z2 + AZ has a fixed
point at the origin which is not locally linearizable. Furthermore,
this fixed point has the small cycles property: Every neighborhood
of the origin contains infinitely many periodic orbits.

(Compare Perez-Marco [1992].) Evidently such small cycles provide an
obstruction to linearizability.

Figure 28. A rough plot of the filled Julia set for z2 + e21ri ez, with
a Siegel disk of rotation number

~ = 1/(3 + 1/(10 + 1/(200000 + 1/ ... ))) .

The boundary of the Siegel disk has been emphasized. Note the
fjords with period q2 = 3 and q3 = 31 which squeeze this disk.



11. CREMER POINTS AND SIEGEL DISKS 133

(11 : 3)

Without attempting to prove these theorems, we can give some intuitive
idea as to what they mean in the polynomial case as follows. Whenever the
summand (log qn+1) / qn is large the rotation number will be extremely close
to Pn/qn, so that f will be extremely close to a parabolic map with a
period qn cycle of repelling directions. It follows that the basin of infinity
for f will have a period qn cycle of deep fjords which penetrate towards
zero, squeezing the size of a possible Siegel disk. As an example, in Figure
28, the summands log(31)/3 = 1.144··· and log(6200003)/31 = 0.504· · ·
correspond to fjords of period 3 and 31 which are visible in the figure. When
the sum (11 : 2) is infinite, such a Siegel disk can no longer exist.

Historical Remark. One early contributer to considerations of this
kind was T. M. Cherry, but only part of his work had been published at
the time of his death in 1966. (See Cherry [1964].) According to Love [1969]:
"Fuller details of this may possibly be written in his notebooks; it is likely
that he studied this subject deeply over many years." These notebooks have
been in France for many years. It is to be hoped that they will someday be
made public or returned to Australia.

Yoccoz's theorem raises the question as to whether every Cremer point
has small cycles. The answer was provided by Ricardo Perez-Marco. Sup
pose that Elog(qn+l)/qn = 00 so that a Cremer point can exist.

Theorem 11.12 (Perez-Marco [1990]). If

'""""' log log(qn+1)
L..-J < 00,

qn

then every germ of a holomorphic function which has a Cremer
point at the origin has the small cycles property. But if the sum
(11 : 3) diverges (which is the generic case), there exists a germ
with multiplier A such that every forward orbit contained in some
neighborhood of zero has zero as accumulation point. Such a
germ has no small cycles but is not linearizable.

However, it is not known whether this last possibility can occur for the germ
of a rational map.

I will not try to say any more about these three big theorems. The
remainder of this section will rather provide proofs for some easier results.
We first show that Cremer points really exist, then prove Cremer's 1927
theorem, and finally show that Siegel disks really exist.

First a folk theorem.

Theorem 11.13 (Small Cycles). Let {fA} be a holomorphic
family of nonlinear rational maps parametrized by A E C, where
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fA(O) == 0 and f~(O) == A, so that fA(z) == AZ + (higher terms).
For a generic choice of A on the unit circle, there are infinitely
many periodic orbits in every neighborhood of Z == 0, and hence
zero is a Cremer point.

Proof (compare Problem II-d). Let IIJ)E be the disk of radius E about
the origin. For A in some dense open subset UE of the unit circle, we
will show that IIJ)E contains a nonzero periodic orbit. For A in the countable
intersection nUljn, it will follow that fA has infinitely many periodic orbits
converging to zero, as required.

Start with some root of unity AD == e21ripjq =f 1, and choose some
positive E' ~ E so that fAD has no periodic points Z =f 0 of period ~ q in
the closed disk ~€'. Then the algebraic number of fixed points of f>'~ in
IIJ)E' is equal to 1 for 1 ~ k < q (compare Problem 10-b), but is strictly
greater than 1 for k == q. As we vary A throughout a neighborhood
of AD, this multiple fixed point for f~~ at the origin will split up into
a collection of fixed points for f~q. Let U(p/q) be a neighborhood of
AD which is small enough so that no periodic point of period ~ q can cross
through the boundary of DE" Then for any A E U(p/ q) with A =f AD, it
follows that fA has an entire periodic orbit of period q contained within
the neighborhood IIJ)E' C IIJ)E. The union UE of these open sets U(p/ q), for
o < p/ q < 1, is evidently a dense and open subset of the circle, with the
required property. D

Proof of Theorem 11.2 following Cremer. First consider a monic
polynomial f (z) == zd + · · · + AZ of degree d ~ 2 with a fixed point of
multiplier A at the origin. Then foq(z) == zd

q + ... + AqZ , so the fixed
points of foq are the roots of the equation

zd
q + ···+ (Aq - 1)z == O.

Therefore, the product of the dq
- 1 nonzero fixed points of fo q is equal

to ± (Aq - 1). Choosing q so that IAq - 11 < 1, it follows that at least one
of these fixed points z satisfies

o < Izl
dq

< Izl
dq

-
l < IAq - 11.

Therefore, if the quantity liminf IAq - Ill j dq is zero, it follows that there
exist periodic points z =f 0 in every neighborhood of zero.

In order to extend this argument to the case of a rational function f of
degree d ~ 2, Cremer first noted that f must map at least one point Zl =f 0
to the fixed point z == o. After conjugating by a Mobius transformation
which carries Zl to infinity, we may assume that f(oo) == j(O) == o. If
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we set f(z) == P(z)/Q(z) , this means that P is a polynomial of degree
strictly less than d. After a scale change, we may assume that P(z) and
Q(z) have the form

P(z) == *zd-l + ... + *z2 + AZ, Q(z) == zd + ... + 1,

where each * stands for a possibly nonzero coefficient. A brief computation
then shows that foq(z) == Pq(z)/Qq(z) where Pq(z) and Qq(z) have the
form

Pq(z ) = * zd
L 1 + '" + * z2 + )...qz, Qq(z ) = zd

q + ... + 1.

Thus the equation for fixed points of foq has the form

o = zQq(z) - Pq(z) = z(zd
q

+ · · · + (1 - )...q)).

Now, if lim inf /Aq - lil/d
q

== 0, then just as in the polynomial case we see
that f has infinitely many periodic points in every neighborhood of zero,
and hence that 0 E 1(f). This proves Theorem 11.2. 0

For the proof that Corollary 11.3 follows, see Problem II-b.

Remark. As far as I know, Cremer never studied the small cycles
property. His argument finds periodic points in every neighborhood of zero,
but does not show that the entire periodic orbit is contained in a small
neighborhood of zero. (However, compare Problem II-d.)

Finally, let us show that Siegel disks really exist. We will describe a
proof, due to Yoccoz, of the following weaker version of Siegel's Theorem.
(Compare Herman [1986] or Douady [1987].) Again let fA(Z) == z2 + AZ
with A == e21ri e .

Theorem 11.14. For Lebesgue almost every angle ~ E lR/Z,
the quadratic map fA(z) possesses a Siegel disk about the origin.

The proof will depend on approximating multipliers A on the unit circle
by multipliers with IAI < 1.

Definition. For each A in the closed unit disk IIJ), let a(A) be the
conformal radius of the largest linearizing neighborhood for I», that is, the
largest number a such that there exists a univalent map 'l/JA : IIJ)(1 --+ C,
which conjugates the linear map W r-+ AW on the open disk IIJ)(1 of radius
a to the map fA on C, with

and 'l/J~(O) == 1,

taking a == 0 if such a map cannot exist for any positive radius. Thus

'l/JA(AW) == I»('l/JA(w)) for 0 :s; Iwl < a(A). (11 : 4)
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Evidently, a(A) > 0 whenever f).. has a Siegel disk about the origin, and
this number does indeed measure the size of the disk in some invariant sense.
Similarly a(A) > 0 for 0 < IAI < 1. However, a(A) == 0 whenever f).. has a
parabolic or Cremer point at the origin, and also when A == O. If f).. has a
Siegel disk, note that this conformal radius function cannot be continuous
at A, since parabolic or Cremer values for A are everywhere dense on the
unit circle.

Recall that a real-valued function a on a topological space is said to be
upper semicontinuous if

lim sup a(x) :::; a(xo)
x-+xo, x=f:xo

for every Xo in the space, or equivalently if the set of x with a(x) 2: ao is
closed for every ao E IR.

Lemma 11.15. This conformal radius function a : IIJ) -+ IR is
bounded and upper semicontinuous. Furthermore, for IAI < 1
we can write a(A) == 1"7(A)I, where the function A ~ TJ(A) is
holomorphic throughout the open unit disk.

Proof. First note that a(A) :::; 2 for all A E IIJ). In fact, if Izi > 2
and IAI:::; 1, then If)..(z) 1== Iz(z+A)1 > Izl, and it follows easily that z
lies in the basin of infinity for f)... Therefore any map IIJ)a -+ C satisfying
(11 : 4) must take values in IIJ)2 and hence must satisfy a ::; 2 by the Schwarz
Lemma.

To see that a is upper semicontinuous, note that a(z) 2: ao if and only
if there is a univalent map IIJ)ao -+ IIJ)2 satisfying (11 : 4). But the collection
of all holomorphic maps from IIJ)ao to IIJ)2 forms a normal family. Hence any
sequence of such maps contains a subsequence which is locally uniformly
convergent throughout IIJ)ao' In particular, given a sequence of univalent
maps ?/J)..k satisfying (11 : 4), we can find a convergent subsequence, and it
is not hard to check that the limit function will also be univalent and satisfy
(11 : 4). Therefore, the set of A E IIJ) with a(A) 2: ao is closed, as required.

Now let us specialize to the case 0 < IAI < 1. We can compute the
conformal radius a(A) for such values of A as follows. Let A).. be the
attracting basin of the fixed point zero under f)... Evidently the critical
point -A/2 of f).. must lie in this attracting basin. As in Theorem 8.2 and
Corollary 8.4, the Kcenigs map cP).. : A).. -+ ce can be defined by the formula

cP)..(z) == lim f~n(z)/An. (11 : 5)
n-+oo

Since this limit converges locally uniformly, cP)..(z) depends holomorphically
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on both variables. (Compare Remark 8.3.) In particular, its value

rJ(A) == cPA (-A/2)

at the critical point of fA is a holomorphic function of A. It follows easily
from Lemma 8.5 that the absolute value IrJ(A)1 is precisely equal to the
conformal radius a(A), as defined above, for all A E ]IJ) <, {O}. Furthermore,
since a(O) == 0, it follows from upper semicontinuity that rJ(A) ~ 0 as
A~ 0, so that rJ has a removable singularity at the origin. This completes
the proof of Lemma 11.15. D

Remark. We can actually compute this function within the open disk
by noting that rJ(A) can be described as the limit as i ~ 00 of the numbers

rJi == f~i(-A/2)/Ai.

These can be determined recursively by the formula

rJo == -A/2, rJi+l == rJi + Ai-1rJ[·

This procedure can also be used to compute the coefficients of the power
series expansion of 1J about the origin, which takes the form

A A2 A3 A4 gA5 A6 7A7 3A8

7](>') = -4 + 16 + 16 + 32 + 256 + 256 + 256 - 512 + ....
Details will be left to the reader.

Corollary 11.16. For IAol == 1, the map fAD has either a
Cremer point or a parabolic point at the origin if and only if the
limit

lim rJ(A)
A~AO, IAI<l

is defined and equal to zero.

The proof is immediate. Now, to complete the proof of Theorem 11.14,
we need only quote the following. Let Co be any complex constant.

Theorem of F. and M. Riesz [1916]. Let rJ : ]IJ) ~ C be
a nonconstant bounded holomorphic junction, and let S(co) be
the set o] angles ~ E JR/Z such that the radial limit

lim rJ(rexp(21fi~))
r/l

is defined and equal to co. Then S(co) has Lebesgue measure
zero.

(Compare Theorem 17.4.) For the proof of this result, see Theorem A.3
in Appendix A. Clearly Theorem 11.14 follows immediately. D
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Remark. This argument also shows that

0"(e21ri e
) 2: lim sup 1"l(re21ri e

) I
r/l

for every ~ E IR/Z. In fact, according to Yoccoz [1995], equality always
holds here.

Unsolved Problems. Although the theorems of Bryuno, Yoccoz, and
Perez-Marco are very sharp, they do not answer all questions about local
behavior near an irrationally indifferent fixed point. For example, there is a
very complicated local structure about any Cremer point (compare Perez
Marco [1997]), yet there is not a single example which is well understood. It
is not known whether any rational function can have a Cremer point without
small cycles, and it is not known whether Cremer Julia sets sometimes,
always, or never have positive Lebesgue measure. Similarly, it is not known
whether it is possible for a nonlinear rational function to have a Siegel disk
for which the Bryuno condition is not satisfied.

In Theorem 8.6 and Theorem 10.15, we found a rather direct relationship
between critical points and attracting or parabolic orbits. For Siegel or
Cremer orbits, the relationship is less direct.

Definition. By the postcritical set P == P(f) of a rational map f
we will mean the union of all forward images t'"(c) with k > 0, where
c ranges over the critical points. We will be particularly interested in the
topological closure P(f) of this set.

Theorem 11.17. Every Cremer fixed point or periodic point
for a rational map is contained in the postcritical closure P(f).
Similarly, the boundary of any Siegel disk or cycle of Siegel disks
is contained in P(f).

Proof. (Compare §19.) We will work with the open sets U == e<, P
and V == r:' (U). Since f- 1(P) ~ P, it follows that V cU. Since there
are no critical values in U, it follows that f maps V onto U by ad-fold
covering map, or more precisely that f maps each connected component
of V onto some connected component of U by a covering map.

We may assume that P contains at least three distinct points, for
otherwise U would be a twice punctured sphere, hence its covering space
V would also be a twice punctured sphere, equal to U. It would then follow
easily that f must be conjugate to a map of the form z ~ z±d, with no
Cremer points and no Siegel disks.

Thus we may assume that every connected component of V or U is
conformally hyperbolic. Consider a fixed point Zo == f(zo) which belongs to
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(11 : 6)

U and hence to V. Let Vo C Ui, be the connected components containing
zo· If Vo == U«, then Vo maps into itself under f and hence is contained
in the Fatou set. Thus in this case Zo cannot be a Cremer point.

Now suppose that Vo is strictly smaller than Uo. Then the inclusion
Vo ---+ Uo strictly decreases Poincare distances by (2 : 6), that is,

distv(x, y) > distu(x, y)

for every x =1= y in Vo. On the other hand, by Theorem 2.11, V maps to
U by a local isometry, so that

distu(f(x), f(y)) == distv(x, y)

whenever x, y E V are sufficiently close to each other. Therefore

distu(f(x) , f(y)) > distu(x, y)

whenever x =1= y in Vo are sufficiently close to each other. It follows that
the fixed point Zo must be strictly repelling: Again, it cannot be a Cremer
point.

To deal with the boundary of a Siegel disk ~ == f(~), we must work
just a little harder. First note that ~,with its center point Zo removed, is
naturally foliated into f -invariant circles. The intersection P n ~ <, {zo}
consists of at most finitely many of these circles. Thus if a component Uo of
c ,P intersects the boundary a~, then it must contain an entire neighbor
hood of a~ within ~. In particular, it must contain every invariant circle
C which is sufficiently close to the boundary. Similarly, one component Vo
of f-1(UO) must contain every such circle. If Vo == Uo then, arguing as
above, Uo is contained in the Fatou set and cannot intersect the boundary
of ~. On the other hand, if Vo is strictly smaller than Uo then, as in
(11: 6), f restricted to Vo must strictly increase the distance distu(x, y)
between nearby points and similarly must map any smooth path to a path
of strictly larger arclength. In particular, it must map each invariant cir
cle C C Vo onto a longer circle. But this is impossible since f maps C
diffeomorphically onto itself. This proves that every fixed Cremer point or
Siegel disk boundary must be contained in P. The corresponding statement
for a cycle of Cremer points or Siegel disks follows by applying the above
argument to a suitable iterate r: and noting that p(fok) == P(f) . 0

A different proof of Theorem 11.17 will be given in Corollary 14.4.

For further studies of the topology and geometry of Siegel disks, see for
example Rogers [1998], Zakeri [1999], Yampolsky and Zakeri [2001]' Buff
and Cheritat [2003], as well as Petersen and Zakeri [2004].
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Concluding Problems

Problem II-a. Dirichlet. Use the "pigeon-hole principle" to show
that for any irrational number x there are infinitely many fractions p/ q
with

I
x - p.1 < ~.

q q2

In fact, for any integer Q > 1 cut the circle IR/Z into Q half-open intervals
of length l/Q, and consider the Q +1 numbers 0, x, 2x, ... , Qx reduced
modulo Z. Since at least two of these must belong to the same interval,
conclude that there exist integers p and 1 :::; q :::; Q with Iqx - pi < l/Q,
hence

I
x - p.1 < J.- < ~.

q qQ - q2

Conclude the the class of Diophantine numbers V(~) is vacuous for 0 <
~ < 2.

Problem II-b. Generic angles. Given a completely arbitrary se
quence of positive real numbers EI , E2, ... ~ 0, let S (qo) be the set of all
real numbers ~ such that

for some fraction p/ q in lowest terms with q > qo. (1) Show that S (qo) is a
dense open subset of IR and conclude that the intersection S = nqOS(qo) ,
consisting of all ~ for which this condition is satisfied for infinitely many
p/q, is a countable intersection of dense open sets. (2) As an example,
taking Eq = 2-q

! conclude that a generic real number belongs to the set S,
and hence satisfies Cremer's condition that liminf IAq -lII/d

q
= 0 for every

degree d. (Compare Theorem 11.2.)

Problem II-c. Cremer [1938]. (1) If j(z) = Az+a2z2+a3z3+ ... ,
where A is not zero and not a root of unity, show (following Poincare) that
there is one and only one formal power series of the form h(z) == z + h2Z2 +
h3Z3 + ·.. which formally satisfies the condition that h(AZ) = j (h(z)). In
fact

h _ an+Xn
n - An - A

for n 2: 2, where X n == X(a2, ... , an-I; h2, ... , hn-I) is a certain poly
nomial expression whose value can be computed inductively. (2) Now sup
pose that we choose the an inductively, always equal to zero or one, so that
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lim infq_HX) IAq
- 11 1

/
q == 0,

show that the uniquely defined power series h(z) has radius of convergence
zero. Conclude that f(z) is a holomorphic germ which is not locally lin
earizable. (3) Choosing the an more carefully, show that we can even
choose f (z) to be an entire function.

Problem II-d. Small cycles. Suppose that

1
· 10glog(I/IAq - 11) 1 d
im sup > og > O.
q-+oo q

Modify the proof of Theorem 11.2 to show that: Any fixed point of multiplier
A for a rational function f of degree d has the small cycle property. First
choose E > 0 so that

10glog(I/IAq
- 11) > (E + logd)q,

or equivalently
IAq

- 11 1
/
dq < exp(-eEq

) ,

for infinitely many q. The proof of Theorem 11.2 then constructs points Zq

of period q with IZql < exp(-eEq ) . Now use Taylor's Theorem to find 8 > 0
so that If(z)1 < eElzl for Izl < 8, and hence Ifoq(z)1 < 8 for [z] < e-qE8.
Finally, note that exp(-eEq ) < e-qE8 for large q, to conclude that f has
small cycles.
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§12. The Holomorphic Fixed Point Formula

The number of fixed points of a rational map f: e --+ e of degree d ~ 0,
can be counted as follows.

Lemma 12.1. If f is not the identity map, then f has exactly
d + 1 fixed points, counted with multiplicity.

Here the multiplicity of a finite fixed point z == f(z) is defined to be
the unique integer m ~ 1 for which the power series expansion of f(z) - z
about z has the form

f(z) - z == am(z - z)m + am+l(z - z)m+l + ...
with am =1= O. Thus m ~ 2 if and only if the multiplier A at z is exactly
1. (Note that z is then a parabolic point with m-l attracting petals, each
of which maps into itself. Compare §10.) In the special case of a fixed point
at infinity, we introduce the local uniformizing parameter (== ¢(z) == 1/z
and define the multiplicity of f at infinity to be the multiplicity of the map
¢ 0 f 0 ¢-l at the point ¢(00) == O. As an example, any polynomial map of
degree d ~ 2 has a fixed point at infinity with multiplier A == 0 and hence
with multiplicity m == 1, and therefore has d finite fixed points counted
with multiplicity. On the other hand, the map f(z) == z + 1 has a fixed
point of multiplicity m == 2 at infinity.

Proof of Lemma 12.1. Conjugating f by a fractional linear auto
morphism if necessary, we may assume that the point at infinity is not fixed
by f. If we write f as a quotient f (z) == p(z) / q(z) of two polynomials
which have no common factor, this means that the degrees of p(z) and
q(z) satisfy

degree(p(z)) ~ degree(q(z)) == d.

In this case, the equation f(z) == z is equivalent to the polynomial equation
p(z) == z q(z) of degree d + 1, and hence has d + 1 solutions, counted with
multiplicity, as required. D

Remark. This algebraic multiplicity m is known to topologists as
the Lefschetz fixed point index. For any map f : M --+ M of a compact
n-dimensional manifold into itself with only finitely many fixed points, the
Lefschetz index of each fixed point Pj is a uniquely defined integer A(pj) ,

142
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and the sum over all of the fixed points can be computed from the homology
of I by the Lefschetz formula

n

l:A(pj) = l: (-l)i t race(f*:Hi(M;JR) ~ Hi(M;JR)).
j i=O

(See, for example, Franks [1982].) In our case, with M the Riemann sphere
and I rational of degree d, there is a contribution of +1 from the 0
dimensional homology and +d from the 2-dimensional homology, so the
sum of the Lefschetz indices is d + 1.

Both Fatou and Julia made use of a "well-known" relation between the
multipliers at the fixed points of a rational map. First consider an isolated
fixed point z == I (z) where I : U -t ce is a holomorphic function on a
connected open set U C ce. The residue fixed point index of I at z is
defined to be the complex number

ii], z) = 2~i f z _d;(z) (12 1)

where we integrate in a small loop in the positive direction around z.
Lemma 12.2. II the multiplier A == I' (z) is not equal to +1,
then this residue fixed point index is given by

ii], z) = ~ -I- O. (12 : 2)
I-A

Proof. Without loss of generality, we may assume that z == O. Ex
panding I as a power series, we can write

I(z) == AZ + a2z2 + a3z3 + ....

Since A =11, it follows that z - I(z) (1- A)z(1 + O(z)) and hence

1 1+0(z) 1 O( )
z - f(z) (1 - ,x)z (1 - ,x)z + 1.

Integrating this expression around a small loop Izi == E and dividing by
2rri, we evidently obtain a residue of L == 1/(1 - A), as asserted. D

Note: This computation breaks down completely in the special case
A == 1. The residue index L(/, z) is still well defined and finite when A == 1,
but the formula (12 : 2) no longer makes sense. For information about this
case see Problem 12-a as well as Lemma 12.9.

More generally, given any isolated fixed point of a holomorphic map
F : S ~ S from a Riemann surface to itself, we can choose some local
coordinate z and then compute the index L(I, z) for the associated local
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map z 1-+ f(z).

Lemma 12.3. This residue, computed in terms of a local co
ordinate near the fixed point, does not depend on any particular
choice of local coordinate.

In the generic case of a fixed point of multiplicity m == 1, this follows
immediately from Lemma 12.2, since the multiplier A =I- 1 clearly does not
depend on the particular choice of coordinate chart. Consider then a fixed
point z == f(z) with multiplicity m ~ 2. Assume for convenience that
z == o. We can choose a family of perturbed maps f ex (z) == f (z) +Q so that
the m-fold fixed point for Q == 0 splits up into m nearby fixed points for
Q =I- O. In fact, since the derivative f' (z) is not identically equal to +1 ,
we can choose E so that f' (z) =I- 1 for 0 < IzI < E, and it follows that f ex
has only simple fixed points in IIJ)€ and no fixed points on 8IIJ)€ for small
Q =I- o. Next note that the sum of residue indices over the m simple fixed
points Zj E IIJ)€ can be expressed as

L- ~(fa, Zj) = -f: i
j 1r2 8JI))f

Evidently this integral converges to

t(f,O) == -2
1.

J
1r2 J8JI))f

dz
z - fex(z) .

dz
z - f(z)

as Q ---t O. Since the indices t(fex, Zj) are invariant under a holomorphic
change of coordinates, it follows that t(f,O) is also invariant. D

Now suppose that our Riemann surface S is the Riemann sphere. (For
analogous formulas on other Riemann surfaces, see Remark 12.5.)

Theorem 12.4 (Rational Fixed Point Theorem). For any
rational f: C ---t C which is not the identity map, we have the
relation

L- ii], z) == 1, (12 : 3)
Z== f(z)

to be summed over all fixed points.

Proof. Conjugating f by a linear fractional automorphism if necessary,
we may assume that f ((0) =I- 0, 00. Then f (z) converges to f ((0) E
<C <, {O} as z ---t 00, hence

1 1 f(z) f(oo)
Z - f(z) z z(z - f(z)) rv ---;2

as z ---t 00. Let 8IIJ)r be the loop Izi == r. It follows easily that the integral
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Figure 29. Double Mandelbrot set: The bifurcation locus in the
A-parameter plane for the family of quadratic maps Z""-+ z2 + AZ .
The figure is centered at A == 1.

of this difference around oIIJ)r converges to zero as r / 00. Hence

1 1 dz 1 1 dz
21fi Jf)D r Z - f (z) = 21fi Jf)D r -; = +1

,

Evidently the integral on the left is equal to the sum of the residues ii], Zj)

at the various fixed points of i ,hence the required summation formula. D

Examples. If f is a polynomial map of degree d 2: 2 ,then f has a
fixed point of multiplier zero at infinity. Since ii], (0) == +1, it follows that
the sum of t(f, z) over all finite fixed points is equal to zero. For a generic
quadratic polynomial with two simple fixed points of multiplier A and p.,
the relation

1 1
--+--==0
I-A l-I-l

reduces easily to A+ I-l == 2. For example, for the family of maps

fA(z) == z2 + AZ

there is a fixed point of multiplier A at Z == 0 and a fixed point of multiplier
2 - A at Z == 1 - A. Note that these two fixed point coalesce into a single
fixed point of multiplicity 2 as A ---+ 1. Evidently fA has an attracting fixed
point if and only if A belongs either to the unit disk IIJ) or to the translated
unit disk 2+ IIJ). Both disks are clearly visible in Figure 29 which shows the
A parameter plane. (Compare Appendix G.) The two disks are tangent to
each other at the center of symmetry A == 1.

A rational map f(z) == c of degree zero has just one fixed point, with
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multiplier zero and hence with index ~(f, c) = 1. A rational map of degree
one usually has two distinct fixed points, and the relation

1 1
--+-- = 1
I-A I-J-l

simplifies to AM == 1. The family of maps fA(z) = AZ + 1 is typical. Such
a map has one fixed point of multiplier A at Z = 1/(1 - A) and one fixed
point of multiplier 1/A at infinity. Just as in the quadratic polynomial
example, as A ---+ 1 the two fixed points coalesce, so that there is a single
fixed point of multiplicity 2 for the limit map 11 (z) == Z + 1.

More generally, let f be any rational map which has a fixed point
with multiplier very close to 1, and hence with I~I large. Then it follows
immediately from the Fixed Point Formula that f must have at least one
other fixed point with I~I large, and hence with A either close to 1 or equal
to 1.

Remark 12.5. For a far-reaching generalization of this fixed point
theorem, see Atiyah and Bott [1966]. In particular, for a holomorphic map
f from a compact Riemann surface of genus 9 to itself, the Atiyah-Bott
formula implies that the sum of the residue fixed point indices is given by

(12 : 4)

where T is the trace of the induced map from the g-dimensional vector
space of holomorphic I-forms to itself, and where the overline stands for
complex conjugation. In the special case of the Riemann sphere, with 9 ==
0, there are no holomorphic l-forms, so this formula reduces to (12 : 3).
For other examples, see Problem 12-e; and for a different generalization of
Theorem 12.4, to higher dimensional projective spaces, see Veda [1995].

Lemma 12.6. A fixed point with multiplier A =I- 1 is attract
ing if and only if its residue fixed point index i has real part
Re(~) > ~.

Proof. Geometrically, this is proved by noting that a fixed point with
multiplier A is attracting if and only if 1 - A belongs to the disk 1 + IIJ),

having the origin as boundary point. It is easy to check that the map
Z ~ l/z carries this disk 1 +ll)) precisely onto the half-plane Re(z) > 1/2.
Computationally, this can be proved by noting that ~ < Re( l~A) if and
only if 1 < 1/(l-A)+I/(I-~). Multiplying both sides by (l-A)(I-X) > 0,
we easily obtain the equivalent inequality A~ < 1. D

One important consequence is the following.
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Corollary 12.7. Every rational map of degree d 2: 2 must
have either a repelling fixed point or a parabolic fixed point with
A == 1, or both.

Proof. If there is no fixed point of multiplier A == 1, then there must
be d + 1 distinct fixed points. If these were all attracting or indifferent,
then each index would have real part Re( t) 2: ~, and hence the sum would
have real part greater than or equal to d!l > 1, but this would contradict
Theorem 12.4. D

Since repelling points and parabolic points both belong to the Julia set,
this yields a constructive proof of the following. (Compare Lemma 4.8.)

Corollary 12.8. The Julia set for a nonlinear rational map is
always nonvacuous.

The Residu Jteratif. When studying a fixed point of multiplier A == 1,
it is often convenient to use a modified form of the residue index which is
due to Ecalle. If z is a fixed point of multiplicity m then by definition the
residu iteratif is the difference

resit(f, z) == m/2 - ii], z) .

(It will be convenient to use this notation even in the case m == 1.)

Lemma 12.9. If A == 1 or equivalently if m 2: 2, then for any
integer k #- 0 we have the formula

resit(fOk,z) == resit(f,z)/k. (12: 5)

Proof. First consider a fixed point of multiplier A == 1 - E where the
complex number E is small but non-zero. If k > 0 then we can write

E(k-E(1 +2+3+- --+(k-1) )+O(E2
) ) ,

and it follows easily that

1 1 k-l
1 - )..k kE +~ + 0(1)

where the remainder term 0(1) tends to zero as E ~ O. In fact it is not
hard to see that this last estimate holds also when k < O. Rearranging
terms and remembering that E == 1 - A, we see that this takes the form

resit(fOk, z) == resit(f, z)/k + 0(1) as A~ 1.

Now consider a map fo with a fixed point z == 0 of multiplicity m 2: 2 .
As in the proof of Lemma 12.3, see can perturb fo to obtain maps fa with
m nearby simple fixed points, all necessarily with multiplier close to +1.
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Summing the residu iteratif over these m points, we get

L:resit(f~k,Zj) == L:resit(fn,zj)/k + 0(1),
j j

where the remainder term tends to zero as a --+ O. Since

(12 : 6)

(12 : 7)lim L:resit(fn,zj) == resit(f,z) ,
n~O .

J

the required formula (12 : 5) is an immediate consequence of (12 : 6) . 0

Definition. Following Adam Epstein [1999], a fixed point z of multi
plicity m 2:: 2 will be called

parabolic repelling if Re(resit(f, z)) > 0, and
parabolic attracting if Re(resit(f, z)) < O.

(Buff [2003] uses the terms virtually repelling and virtually attracting for the
same concepts.) In the case of a simple fixed point with m == 1, it follows
immediately from Lemma 12.6 that the fixed point is actually

repelling if and only if Re(resit(f, z)) > 0, and
attracting if and only if Re(resit(f, z)) < O.

Now suppose that we perturb f throughout some neighborhood of the
m-fold fixed point z so that it splits up into m simple fixed points. (Com
pare the proofs of Lemmas 12.3 and 12.9.)

Theorem 12.10 (Buff and Epstein). It is possible to choose
perturbed maps arbitrarily close to f so that all of the m re
sulting simple fixed points are repelling if and only if

Re(resit(f, z)) 2:: O.

Similarly, it is possible to perturb so that all of these simple fixed
points are attracting if and only if Re(resit(f, z)) ::; O.

For the construction of such special perturbations, the reader is referred
to Buff [2003]. (For the special case of a quadratic rational map, compare
Problem 12-b.) On the other hand, the proof of Theorem 12.10 in the
other direction is straightforward: If we are given perturbations which yield
only repelling (or attracting) fixed points, then the required inequality for
Reresitl j', z) follows immediately from equation (12 : 7) together with
Lemma 12.6. 0

The Time One Map for a Flow. Now consider the local flow it
generated by a holomorphic differential equation dz/dt == v(z). Thus, for
each fixed Zo, the map t I-t z(t) == ft(zo) must satisfy dz/dt == v(z) with
initial condition z(O) == z00 Here ft(z) is defined for It I < E, where E > 0
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depends on z. In the special case where v(O) == 0, we can say also that
every ft is defined for all z in some neighborhood of O. The function
ft(z) is holomorphic as a function of two variables.

Lemma 12.11. If both v(z) and its derivative v'(z) vanish at
z == 0 , then each ft with t -=I=- 0 has a fixed point of multiplicity
m 2: 2 at 0, and

, . (f) 1 f dzresit t,O == -.- -()'
21r2 t v z

Proof. The identity resit(ft,O) == resit(fl, O)/t for t -=I=- 0 follows easily
from Lemma 12.9 when t is rational. For other values of t, it then follows
by analytic continuation. Thus it suffices to compute resit(fl, 0). From the
Taylor series

ft(z) == z + tv(z) + ... + ak(z)t k/k! + ...
where ak(z) == okft(z)/otk == v(z) dak(Z)/dz, we see that

ft(z) == z + tv(z) + t2v(z)v'(z)/2 + ... == z + tv(z)(l + O(t))

as t ~ O. Therefore the residue index t at the origin satisfies

f dz -1 f dz
27fi t(ft, 0) = z _ ft(z) = -t v(z) + 0(1).

Changing sign and adding m/2, it follows that

27fi n§sit(ft, 0) = ~ f dz + 0(1) as t --+ O.
t v

Multiplying by t and then letting t ~ 0 this proves that

27fi resit(fI, 0) = f ~z

as required. D

Remark 12.12. Recall from Remark 10.12 that the Ecalle-Voronin
theory of parabolic fixed points leads to an invariant I(f, z) for fixed points
of multiplicity m 2: 2. (See equation (10 : 8)). Buff and Epstein [2002]
have shown by a careful computation of Fatou coordinates that

I(f,z) + 21riresit(f,z) == o. (12 : 8)

In the special case of the time one map of a flow, there is a very easy proof of
this identity (12 : 8). Given a differential equation of the form dz/dt == v(z)
with v(O) == 0, we can introduce the differential da == dz/v(z) throughout
some punctured disk IIJ)E" {O}. On each attracting or repelling petal Pj
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where

we can choose an integral O'.j : Pj ~ C of the differential da, Along each
solution z == z(t) to our differential equation within Pj we then have

da, da, dz 1
_J == _J_ == -v == +1.
dt dz dt v

Therefore O'.j is a Fatou coordinate for the map fl. On each overlap
Pj n Pj+l the difference O'.j+l - O'.j takes a constant value Cj, and by
definition

1(fl, 0) == L Cj.

jEZ/2n

On the other hand, if we choose a base point Zj in each Pj-l n Pj, then

f rZj+l
do: = 2; }zJ' daj = 2; (aj(Zj+l) - aj(zj)) ,

J J

f da = 21Ti resit(fI, 0)

by Lemma 12.11. Combining the last three equations, we easily obtain the
required equation (12 : 8) for the map fl.

Concluding Problems

Problem 12-a. An index computation. Consider a fixed point of
multiplicity n + 1 ~ 2 which has been put into the normal form

f(z) == z + azn+l + bz2n+l + (higher terms).

(Compare Problem 10-d.) Show directly from the definition (12 : 1) that
the index t(f,O) is equal to the ratio b]a2. In particular, if a == 1 so that
f(z) == z + zn+l + bz2n+l + (higher terms), show that t(f, 0) == b.

Problem 12-b. Quadratic rational maps. Consider the family of
rational maps z + J-l

j(z) = zvz+l'

where J-lV =f 1 so that f has degree 2. Thus f has a fixed point of
multiplier J-l at the origin, as well as a fixed point of multiplier u at
infinity. (1) If J-l == 1, show that there is a double fixed point at the origin
(that is, a fixed point of multiplicity 2), with index

t(f, 0) == 1 - t(f, (0) == v/(v - 1).

(The picture in the v-parameter plane, for this family of maps with fixed
point multipliers 1 and v looks very much like the left half of the double
Mandelbrot set of Figure 29, p. 145. Compare Milnor [1993, Figure 5].)
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(2) For J.L close to 1 but J.L =I- 1, show that the single fixed point at zero splits
into two fixed points, one at zero and one at (1 - J.L) / (1 - 1/), with indices
which are very large in absolute value, but with sum equal to 1//(1/ - 1).
Show that any two large indices with sum 1//(1/ - 1) can occur for suitable
choice of J.L. (Compare the discussion following Theorem 12.10.)

Figure 30. Parameter space picture for the family of cubic maps
z ~ z3 + a z2 + z . In the outer region, the orbit of one critical
point escapes to infinity.

Problem 12-c. Cubic parabolic maps. Now consider the one
parameter family of cubic polynomial maps

fa (z ) = z3 + a z2 + z

with a double fixed point at the origin. (1) Using Theorem 12.4 or by
direct calculation, show that the remaining finite fixed point z = -a has
multiplier A = 1 + a 2 and hence is attracting if and only if a 2 lies within
a unit disk centered at -1, or if and only if a lies within a figure eight
shaped region bounded by a lemniscate. This lemniscate is clearly visible
as the boundary of the main upper and lower regions in Figure 30, which
shows the a-parameter plane. (2) Show that fa is parabolic attracting
if and only if a 2 lies in the open disk of radius 1/2 centered at 1/2, or
equivalently if and only if a lies within a corresponding region bounded by
a lemniscate shaped like the symbol 00. (This has been drawn in as a dotted
line in Figure 30.) (3) In the parabolic attracting case, show that there are
cubic polynomials arbitrarily close to fa with two distinct attracting fixed
points near the origin. (Hint: It is convenient to rescale fa so that it has
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a fixed point of multiplier A == 1 + a2 at z == 1, as well as the fixed point
of multiplier J-l == 1 at the origin. Show for any J-l -=I 2 - A that there
exists a unique cubic polynomial with multipliers u and A at 0 and 1
and proceed as in Problems I2-b and 12-d.)

Problem 12-d. Assigning fixed point indices. Show that a rational
map with only simple fixed points is uniquely determined by its distinct fixed
points Zk E C together with the associated residue indices Lk E C <, {O},
and that these can be chosen arbitrarily subject to the condition that
E Lk == +1. For example, putting one fixed point at infinity, use the normal
form

(Z - Zl) · · · (z - Zd)
j(z) = z + q(z)

where the polynomial q(z) of degree at most d - 1 can be chosen uniquely
to realize the required Lk.

Remark. More generally, it seems natural to conjecture the following.
Suppose that we are given p distinct points Zk E C, together with integers
mk 2: 1 and complex numbers Lk satisfying the requirements that

L mk == d + 1 and L Lk == 1

with Lk =I- 0 whenever mk == 1. Then the family consisting of all rational
maps of degree d+ 1 having the given Zk as fixed points of multiplicity mk

and index Lk forms a smooth manifold of dimension E(mk -1) == d+ I-p.
Here is an example: If there is just one fixed point, necessarily of multiplicity
d+1 and index 1, then putting the fixed point at infinity we get the family
consisting of all I(z) == Z+ Ilq(z) such that q(z) is a polynomial of degree
exactly d - 1.

Problem 12-e. The fixed point formula in higher genus. Verify
the generalized fixed point formula of Remark 12.5 in the following two
special cases: Let I : T -+ T be a linear torus map with derivative I'
identically equal to a. (Compare Problem 6-b.) Show that the trace T

of the induced action on the I-dimensional space of holomorphic I-forms is
equal to a. If I is not the identity map, show that there are 11 - al2

fixed points, each with index L == 1I (1 - a) , and conclude that E L == 1 - T,
as required. Now suppose that S is a compact surface of genus 9 and
that I: S -+ S is an involution with k fixed points. Use the Riemann
Hurwitz formula to conclude that the quotient SI I is a surface of genus
9 == (2 + 2g - k)/4. For the induced action on the g-dimensional vector
space of holomorphic I-forms, show that 9 of the eigenvalues are equal to
+1 and that the remaining 9 - 9 are equal to -1, so that the trace T

equals 29 - g. Conclude again that E L == k/2 is equal to 1 - T.



§13. Most Periodic Orbits Repel

This section will prove the following theorem of Fatou.

Theorem 13.1. Let f : e -+ t be a rational map of degree
d 2: 2. Then f has at most a finite number of cycles which are
attracting or indifferent.

By a cycle we will mean simply a periodic orbit of f. Recall that a
cycle is called attracting, indifferent, or repelling according to whether its
multiplier A satisfies IAI < 1, IAI == 1, or IAI > 1. We will see in §14
that there always exist infinitely many repelling cycles. Shishikura [1987]
has given the sharp upper bound of 2d - 2 for the number of attracting
or indifferent cycles using methods of quasiconformal surgery. (Compare
Epstein [1999], as well as Buff and Epstein [2002].) However, the classical
proof, which is given here, shows only that this number is less than or equal
to 6d - 6.

Recall from Corollary 10.16 that f can have at most 2d - 2 attracting
or parabolic cycles. (If A is any immediate attracting or parabolic basin,
then some iterate fOP maps A into itself. By Theorems 8.6 and 10.15,
A contains a critical point of fOP. Therefore, by the chain rule, some
immediate basin foi(A) in the same cycle contains a critical point of f.
Since the various immediate basins are all pairwise disjoint, and since f
has at most 2d - 2 critical points, it follows that f has at most 2d - 2
cycles which are attracting or parabolic.)

Lemma 13.2. For a rational map of degree d 2: 2, the number
of indifferent cycles which have multiplier A =f 1 is at most
4d -4.

(13 : 1)ft(z)

Proofs. Evidently Lemma 13.2 and Corollary 10.16 together imply
Theorem 13.1. Following Fatou, we prove Lemma 13.2 by perturbing the
given map f in such a way that more than half of its indifferent cycles
become attracting. Let f(z) == p(z)jq(z) where p(z) and q(z) are poly
nomials with no common divisor, and where at least one of the two has
degree d. Consider the one-parameter family of maps

p(z) - tzd

q(z) - t '

with fo (z) == f (z) and f 00 (z) == zd. Here we must exclude the trivial
special case where f(z) is identically equal to zd. For most values of the

153



154 PERIODIC POINTS

parameter t, this is a well-defined rational map of degree d which depends
smoothly on t. However, we must exclude a finite number of exceptional
parameter values t =I- 0, 00 such that a zero and a pole of ft crash together
as t -t t so that the degree of the limit map f t is strictly less than d. It is
not hard to check that the possible points z at which a zero and pole can
collide are just the finitely many solutions to the equation f (z) = zd in e.
If z is finite, then the numerator and denominator of (13 : 1) must vanish
simultaneously, and we can solve uniquely for t = q(z). On the other hand,
for all Z E e <, {O} we can solve uniquely for t = p(z)/ zd, interpreting
this quotient as the leading coefficient of the polynomial p(z) in the special
case z= 00.

If f = fa has k distinct indifferent cycles with multipliers Aj i- 1,
then we must prove that k ~ 4d - 4. Choose a representative point Zj
in each of these cycles. By the Implicit Function Theorem, we can follow
each of these cycles under a small deformation of fa. Thus, for small values
of ItI, the map ft must have corresponding periodic points Zj(t) with
multipliers Aj(t) which depend holomorphically on t.

Sublemma 13.3. None of these functions t ~ Aj(t) can be
constant throughout a neighborhood of t = o.

Proof. Suppose that for some j the function t ~ Aj(t) is constant
throughout a neighborhood of t = O. Choose some ray

r ~ t = re i fJ
, 0 ~ r ~ +00,

from 0 to 00 in e which avoids the finitely many exceptional values
of t. Then we will show that it is possible to continue the function t ~
Zj(t) analytically along a neighborhood of this ray, so that each Zj(t) is
a periodic point for it with multiplier Aj = constant. To prove this,
we will check that the set of rl E [0, 00] such that we can continue for
o ~ r ~ rl is both open and closed: It is closed since any limit point of
periodic points with fixed multiplier Aj i- 1 is itself a periodic point with
this same multiplier, and it is open since any such periodic point varies
smoothly with t throughout some open neighborhood in the t-plane by
the Implicit Function Theorem. Now continuing analytically along the ray
to t = 00, we see that the map z ~ zd must also have an indifferent cycle
with multiplier equal to Aj. But every periodic point of this limit map is
either 0 or 00 with multiplier A = 0, or else a root of unity with multiplier
A = dk > 1 where k is the period. This contradicts the hypothesis that
IAj I = 1, and hence completes the proof of Sublemma 13.3. D
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The proof of Lemma 13.2 continues as follows. We can express each of
our k multipliers as a locally convergent power series

Aj(t)/Aj(O) = 1 + ajtn j + (higher terms),

where aj =F 0 and nj ~ 1 for 1::; j < k. Hence

IAj(t)1 = 1 + Re(ajtn j
) + o(tn j

) .

We can divide the t-plane up into nj sectors for which the expression
Re(ajtn j ) is positive, and nj complementary sectors for which this expres
sion is negative. Let

so that

aj(B) +1 ===?- IAj(reiO
) ) \ > 1 for small r > 0,

OJ (0) -1 ===?- IAj (reiO
) )I < 1 for small r > O.

Evidently each aj : lR/21fZ -+ {±1 ,O} is a step function which takes the
value ±1 except at 2nj jump discontinuities, and each aj has average

1 ~27r- aj(O) dO = O.
21f 0

Let R be either k or k - 1 according as k is odd or even. Then the sum
al(O) + ... + ae(O) is also a well-defined step function which has average
zero and which takes odd integer values almost everywhere. Hence we can
choose some 0 such that aj(O) = -1 for more than half, that is, for at
least (R + 1)/2, of the indices j ::; R. If we choose r sufficiently small
and set t = re iO, this means that it has at least (R + 1)/2 distinct cycles
with multiplier satisfying IAj I < 1. Therefore, by Theorem 8.6 or Corollary
10.16, we have (R + 1)/2 ::; 2d - 2. This implies that k::; R+ 1 ::; 4d - 4,
which completes the proof of Lemma 13.2 and Theorem 13.1. 0



§14. Repelling Cycles Are Dense in J

We saw in Lemma 4.6 that every repelling cycle is contained in the Julia
set. A much sharper statement was proved in quite different ways by both
Fatou and Julia, and both proofs are given below. Using our terminology,
it reads as follows.

Theorem 14.1. The Julia set for any rational map of degree
2: 2 is equal to the closure of its set of repelling periodic points.

Proof following Julia. According to Corollary 12.7 to the Rational
Fixed Point Formula, every rational map f of degree 2 or more has either
a repelling fixed point or a parabolic fixed point with ,\ == 1. In either case,
by Lemmas 4.6 and 4.7 this fixed point belongs to the Julia set J(f).

N

Figure 31. A homoclinic orbit with Zj ~ Zj-1, limj~ooZj == Zo,

and with ... ~ zp~ · · · ~ Zq ~ · · · ~ Zr ~ • · · ~ zo.

Thus we can start with a fixed point Zo in the Julia set. Let U C C be
any open set, disjoint from Zo, which intersects the Julia set. The next step
is to construct a special orbit ... ~ Z2 ~ Zl ~ Zo which passes through
U and terminates at this fixed point zo. By definition, such an orbit is
called homoclinic if the backward limit, limj~oo Zj, exists and is equal to
the terminal point zo. To construct a homoclinic orbit, we will appeal to
Corollary 4.13 which says that there exists an integer r > 0 and a point
Zr E J(f)nU so that the rth forward image for(zr) is equal to Z00 Given

156
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any neighborhood N of Zo, we can repeat this argument and conclude that
there exists an integer q > r and a point Zq E N so that fO( q-r) (Zq) = Zr

(Figure 31).
First suppose that Zo is a repelling fixed point. Choose N to be a

linearizing neighborhood as in the Kcenigs Theorem 8.2, small enough to be
disjoint from Zr' Then inductively choose preimages

· · · ~ Zj ~ Zj-l ~ · · · ~ Zq,

all inside of the neighborhood N. These preimages Zj will automatically
converge to Zo as j --+ 00.

If none of the points ... ~ Zj ~ ... ~ Zo in this homo clinic orbit
are critical points of f, then a sufficiently small disk neighborhood ~ of
Zq E N will map diffeomorphically under foq onto a neighborhood va
of ZOo Furthermore, we can assume that Vr = fo(q-r)(vq) is contained
in U. Pulling this neighborhood Vq back under iterates of r:', we ob
tain neighborhoods Zj E Vj for all j, shrinking down towards the limit
point Zo as j --+ 00. In particular, if we choose p sufficiently large, then
V P C Vo· Now rr maps the simply connected open set Vo holomorphi
cally into this compact subset V P C Vo. Hence it contracts the Poincare
metric on Vo by a factor c < 1 and therefore must have an attracting
fixed point z' within Vp . Evidently this point z' E Vp is a repelling peri
odic point of period p under the map f. Since the orbit of z' under f
intersects the required open set U, the conclusion follows.

If our homo clinic orbit contains critical points, then this argument must
be modified very slightly as follows. The neighborhood Vq will no longer
map diffeomorphically onto va; however, we can choose ~ and Vo so
that fo

q : Vq --+ Vo is a branched covering map, branched only at Zq. It
then follows that fOP: ~ --+ Vo is also a branched covering map, branched
only at zp. Choose a slit S in va from the boundary to the base point
Zo so as to be disjoint from Vp s and choose some sector in ~ which maps
isomorphically onto Vo - S under fOP. The proof now proceeds just as
before.

The proof in the parabolic case is similar. Replacing f by some iterate
if necessary, we may assume that the multiplier at Zo is +1. Now take N
to be a repelling petal, and proceed as above. D

Proof of Theorem 14.1 following Fatou. In this case, the main
idea is an easy application of Montel's Theorem 3.7. However, we must use
Theorem 13.1 to finish the argument.

To begin the proof, recall from Corollary 4.14 that the Julia set 1(f)
has no isolated points. Hence we can exclude finitely many points of 1(f)
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without affecting the argument. Let Zo be any point of J(f) which is
not a fixed point and not a critical value. In other words, we assume that
there are d preimages Zl, ... , Zd, which are distinct from each other and
from zo, where d ~ 2 is the degree. By the Inverse Function Theorem, we
can find d holomorphic functions Z~ CPj(z) which are defined through
out some neighborhood N of Zo and which satisfy f(cpj(z)) == z, with
CPj(zo) == Zj. We claim that for some n > 0 and for some zEN the
function fon(z) must take one of the three values z, cpl (z), or cp2 (z), for
otherwise the family of holomorphic functions

gn(z) = (J0n(z) - 'Pl(Z)) (z - 'P2(Z))
(fon(z) - cp2(Z)) (z - cpl(Z))

on N would avoid the three values 0, 1, and 00, and hence be a
normal family. (This expression is just the cross-ratio of the four points
z, cpl (z), cp2 (z), fon (z), as discussed in Problem I-c.) It would then follow
easily that {fonIN} was also a normal family, contradicting the hypoth
esis that N intersects the Julia set. Thus we can find zEN so as to
satisfy either fon(z) == Z or fon(z) == CPj(z). Clearly it follows that z is a
periodic point of period n or n + 1, respectively.

This shows that every point in J(f) can be approximated arbitrarily
closely by periodic points. Since all but finitely many of these periodic
points must repel, this completes the proof. D

There are a number of interesting corollaries.

Corollary 14.2. If U is an open set which intersects the Julia
set J of i , thenfor n sufficiently large the image fon(UnJ)
is equal to the entire Julia set J.

Proof. We know that U contains a repelling periodic point Zo of
period, say, p. Thus Zo is fixed by the iterate 9 == fOP. Choose a small
neighborhood V C U of Zo with the property that V C g(V). Then
clearly V C g(V) C go2(V) c···. But it follows from Theorem 4.10 that
the union of the open sets gon(v) contains the entire Julia set J == J(f) ==
J(g). Since J is compact, this implies that J C gon(v) C gon(u) for n
sufficiently large, and the corresponding statement for f follows. D

More generally, if K c t is any compact set which does not contain
any grand orbit finite points, then fon(u) =:) K for large n. In particular,
if there are no grand orbit finite points, then fon(u) == C for large n.
(Compare Theorem 4.10 and Problem 4-b.)

As another corollary, we can make a sharper statement of the defining
property for the Julia set.
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Corollary 14.3. If U c t is any open set which intersects the
Julia set J(f), then no sequence of iterates fon(i) can converge
locally uniformly throughout U.

Proof. Suppose that the sequence of functions fon(i)(z) converged
locally uniformly to g(z) throughout the open set U. If Zo is a point
of U n J, then we could choose a smaller neighborhood U' of Zo so
that Ig(z) - g(zo)1 < E for all z E U'. For large i, it would follow that
Ifn(i) (z) - g(zo) I < 2E for all z E U', thus contradicting Corollary 14.2. D

As another consequence of Corollary 14.2, we have the following state
ment, which is very slightly sharper than Theorem 11.17 and provides an
alternative proof for it. By a critical orbitwe mean the forward orbit of some
critical point.

Corollary 14.4. If Zo is a Cremer point or a boundary point of
a Siegel disk, then every neighborhood of Zo contains infinitely
many distinct critical orbit points.

Proof. First consider the Cremer case. Without loss of generality we
may assume that ZQ == 0 , and replacing f by a suitable iterate we may
assume that f (0) == O. Since If' (0) I == 1 i= 0, the map f is locally one
to-one. Hence, for each n > 0, there exists a disk IIJ)E(n) such that there
is a single valued branch of f-n which is defined throughout IIJ)E(n) and
maps 0 to O. Choosing E(n) to be maximal, it follows as in the proof
of Lemma 8.5 that there is a critical point of fan on the boundary of
f-n(IIJ)E(n)), and hence a critical value of fan on the boundary of IIJ)E(n)'

We must prove that E(n) --t 0 as n --t 00. But otherwise, taking E> 0
to be the infimum of the E(n), since the images of the collection of maps
{f-nl[))E} avoid every periodic orbit other than {O}, these maps would form
a normal family. Thus some subsequence would converge to a holomorphic

map g : IDlE ~ U with g(O) = O. Now consider the subset U' = g(IDlE/2)·
Then infinitely many iterates fan would map U' into DE. According to
Corollary 14.2, this would imply that U' is contained in the Fatou set, and
hence contradict the hypothesis that the origin is a Cremer point.

Now suppose that Zo == 0 belongs to the boundary a~ of some f
invariant Siegel disk ~ == f(~). Suppose that a small disk neighborhood
IIJ)E of 0 contained no critical orbit points. Since each fan is one-to-one
on ~,it would follow easily that there is a unique branch of r: IID>E which
takes IIJ)E n ~ into ~ . As in the argument above these would form a
normal family, so some subsequence would converge to a holomorphic map

f'.wI

g : IIJ)E ~ U with g(IIJ)E n~) c ~. Just as above, it would follow that
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infinitely many iterates t" would map the set U' == g(ID\:/2) into JD)E' By
Corollary 14.2 it would follow that U' is contained in the Fatou set, which
is impossible since U' must contain Siegel boundary points. This proves
that critical orbit points are dense in the compact connected set aD,., and
the conclusion follows easily. D

By definition, the rational map f is postcritically finite if every critical
orbit is finite, or in other words is either periodic or eventually periodic.
According to Thurston, such a map can be uniquely specified by a finite
topological description. (Compare Douady and Hubbard [1993].)

Corollary 14.5. If f is postcritically finite, then every periodic
orbit of f is either repelling or superattracting. More generally,
suppose that f has the property that every critical orbit either
is finite or converges to an attracting periodic orbit. Then every
periodic orbit of f is either repelling or attracting; there are no
parabolic cycles, Cremer cycles, or Siegel cycles.

Proof. This follows easily from Theorem 10.15 and Corollary 14.4. D

As still another consequence, we get a simpler proof of Corollary 4.15.

Corollary 14.6. If a Julia set J is not connected, then it has
uncountably many distinct connected components.

Proof. Suppose that J is the union Jo U J1 of two disjoint nonvacuous
compact subsets. After replacing f by some iterate 9 == fon, we may
assume by Corollary 14.2 that g(Jo) == J and g(J1) == J. Now to each
point Z E J we can assign an infinite sequence of symbols

EO(Z), E1(Z), E2(Z), ... E {O, I}

by setting Ek(Z) equal to zero or one according to whether gok(z) belongs
to Jo or J1. It is not difficult to check that points with different symbol
sequences must belong to different connected components of J and that all
possible symbol sequences actually occur. D

Remark 14.7. Arbitrary Riemann Surfaces. The statement that
the Julia set is equal to the closure of the set of repelling periodic points
is actually true for an arbitrary holomorphic map of an arbitrary Riemann
surface, providing that we exclude just one trivial exceptional case. For
transcendental maps of the plane or cylinder this result was proved by Baker
[1968], and the proof for a map of a torus or hyperbolic surface is quite
easy. (Compare Lemma 5.1 and Theorem 6.1.) The unique exceptional
case occurs for a fractional linear transformation of e which has just one
parabolic fixed point, for example, the map f(z) == z-l-I with J(f) == {oo}.



STRUCTURE OF THE FATOU SET

§15. Herman Rings

This section will be a survey, without complete proofs, describing a close
relative of the Siegel disk.

Definition. A component U of the Fatou set C" J(j) is called a
Herman ring if U is conformally isomorphic to some annulus

Ar == {z; l<lz/<r},

and if i ,or some iterate of i , corresponds to an irrational rotation of this
annulus. (Siegel disks and Herman rings are often collectively called rotation
domains.)

There are two known methods for constructing Herman rings. The
original method, due to Herman [1979], is based on a careful analysis of
real analytic diffeomorphisms of the circle. An alternative method, due
to Shishikura [1987], uses quasiconformal surgery, starting with two copies
of the Riemann sphere with a Siegel disk in each, cutting out part of the
center of each disk and pasting the resulting boundaries together in order
to fabricate such a ring.

The original method can be outlined as follows in the special case of
a map which leaves the unit circle invariant. (Compare Sullivan [1983],
Douady [1987].) First a number of definitions: If f : IR/Z ~ IR/Z is an
orientation-preserving homeomorphism, then we can lift to a homeomor
phism F: IR ~ IR which satisfies the identity F(t + 1) == F(t) + 1 and is
uniquely defined up to addition of an integer constant.

Definition. The real number

Rot(F) = lim Fon(to)
n~oo n

is independent of the choice of to and will be called the translation number of
the lifted map F. Following Poincare, the rotation number rot (f) E IRIIl
of the circle map j is defined to be the residue class of Rot(F) modulo
Z.

It is well known that this construction is well defined and invariant under
orientation-preserving topological conjugacy and that it has the following
properties. (Compare Coddington and Levinson [1955] or de Melo and van
Strien [1993], and see Problem 15-d.)

161
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Lemma 15.1. The homeomorphism f has a periodic point
with period q if and only if its rotation number is rational with
denominator q.

Theorem 15.2 (Denjoy [1932]). If f is a diffeomorphism
of class C2 and if the rotation number p = rot(f) is irra
tional, then f is topologically conjugate to the rotation t ~
t+p (mod Z}.

Lemma 15.3. Consider a one-parameter family of lifted maps
of the form

Fa(t) = Fo(t) + Q.

Then the translation number Rot(Fa ) increases continuously
and monotonically with Q, increasing by +1 as Q increases by
+1 . However, this dependence is not strictly monotone. Rather,
there is an interval of constancy corresponding to each rational
value of Rot(Fa ) provided that Fo is nonlinear.

In the real analytic case, Denjoy's Theorem has an analog which can
be stated as follows. Recall from §11 that a real number ~ is said to be
Diophantine if there exist a (large) number n and a (small) number E so
that the distance of ~ from every rational number p j q satisfies

I~ - pjql > Ejqn.

The following was proved in a local version (that is, for maps close to the
identity) by Arnold [1965] and sharpened first by Herman [1979] and then
by Yoccoz [2002], who also included some non-Diophantine cases.

Theorem 15.4 (Herman-Yoccoz Theorem). If f is a real
analytic diffeomorphism of JRjZ and if the rotation number p is
Diophantine, then f is real analytically conjugate to the rotation
t ~ t + p (mod 1) .

I will not attempt to give a proof.
Remark: In the Coo case, Yoccoz [1984] proved a corresponding if

and only if statement, using results of Herman: Every Coo diffeomorphism
with rotation number p is COO-conjugate to a rotation if and only if p is
Diophantine.

Next we will need the concept of a Blaschke product. (Compare Problem
7-b, as well as Theorem 1.7.) Given any constant a E e with lal i- 1,
it is not difficult to show that there is one and only one fractional linear
transformation z ~ f3a(z) which maps the unit circle alI)) onto itself fixing
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(15 : 1)

the basepoint z = 1, and which maps a to f3a (a) o. For example,
f3o(z) = z, f3oo(z) = 1/z, and in general

(3() - I-a z-a
a Z - .---

1- a 1 - az
whenever a =I 00. If lal < 1, then f3a preserves orientation on the circle
and maps the unit disk into itself. On the other hand, if lal > 1, then f3a
reverses orientation on alI]) and maps lI]) to its complement.

Lemma 15.5. A rational map of degree d carries the unit circle
into itself * if and only if it can be written as a Blaschke product

f (z) = e27rit f3al (z) · · · f3ad (z)

for some constants e27rit E alI]) and aI, ... , ad E e<, alI]).

Here the ai must satisfy the conditions that ajak =I 1 for all j and
k, for if ab = 1, then a brief computation shows that f3a(Z)f3b(Z) = 1.
Evidently the expression in Lemma 15.5 is essentially unique, since the
constants e27rit = f (1) and {aI, ... , ad} = r' (0) are uniquely
determined by f. The proof of Lemma 15.5 is not difficult: Given l,
one simply chooses any solution to the equation f(a) = 0, then divides
f(z) by f3a(z) to obtain a rational map of lower degree, and continues
inductively. D

Such a Blaschke product carries the unit disk into itself if and only if
all of the aj satisfy lajl < 1. (Compare Problems 7-b, 15-c.) However,
we will instead be interested in the mixed case, where some of the aj are
inside the unit disk and some are outside.

Theorem 15.6. For any odd degree d ~ 3 we can choose a
Blaschke product f of degree d which carries the unit circle
alI]) into itself by an orientation-preserving diffeomorphism with
any desired rotation number p. If this rotation number p is
Diophantine, then f possesses a Herman ring.

Proof Outline. Let d = 2n + 1, and choose the aj so that n + 1 of
them are close to zero while the remaining n are close to 00. Then it is easy
to check that the Blaschke product z ~ f3al(z) · . · f3ad (z) is C1-close to the

* Similarly, a rational map carries lR U { oo} into itself if and only if it can be expressed

as a quotient of polynomials with real coefficients. Thus, if we conjugate by a Mobius

transformation which carries the unit circle to the real line, then such Blaschke products

correspond precisely to rational maps with real coefficients.
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Figure 32. Julia set for a cubic rational map possessing a Herman ring.

identity map on the unit circle olI}. In particular, it induces an orientation
preserving diffeomorphism of olI}. Now multiplying by e21rit and using
Lemma 15.3, we can adjust the rotation number to be any desired constant.
If this rotation number p is Diophantine, then there is a real analytic
diffeomorphism h of olI} which conjugates f to the rotation z..-...+ e21ripz .
Since h is real analytic, it extends to a complex analytic diffeomorphism
on some small neighborhood of olI}, and the conclusion follows. 0

As an example, Figure 32 shows the Julia set for a cubic rational map
of the form f(z) = e21ritz2(z - 4)/(1 - 4z), with the unit circle as an
f -invariant curve. The unit circle and the superattracting fixed point at
the origin have been marked. Here the constant t = .6151732· .. has been
chosen so that the rotation number p will be equal to (J5 -1)/2. (Com
pare Problem 15-d.) Since p is Diophantine, it follows that the unit circle
is contained in a Herman ring. This Julia set is invariant under inversion
in the unit circle (Problem 15-b). There is one critical point on each of the
two components of the boundary of this Herman ring, namely one at the
center of approximate symmetry and one at its image under inversion.

Just as in the case of a quadratic polynomial, the map f restricted to
the basin of infinity is conjugate to the map w ..-...+ w2 on the unit disk. This
helps to explain why the outer parts of the Julia set appear to be symmetric
under 180 0 rotation, although the inner parts do not. The Julia set can be
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expressed as a union J1 U J2 U J3 of three non-overlapping compact subsets
where each Ja; maps bijectively onto the entire Julia set. Here J1 is
everything to the right of the central critical point, J3 is its image under
inversion, and J2 is everything else. Any two of the Ja; intersect at most
in a single critical point.

This is the simplest kind of example one can find, since Shishikura has
shown that a Herman ring can exist only if the degree d is at least 3
(compare Milnor [2000c]), and since it is easy to prove that a polynomial
map cannot have any Herman ring (Problem 15-a). The rings constructed in
this way are very special in that they are symmetric under inversion in the
unit circle, with f(l/z) == 1/ f(z). (Compare Problem 15-b. The original
construction in Herman [1979], based on work of Helson and Sarason, was
more flexible and did not require symmetry.)

Shishikura's more general construction, based on quasiconformal sur
gery, also avoids the need for symmetry. In the simplest case, given rational
maps of degree d1 and d2 having invariant Siegel disks with rotation num
bers +p and -p respectively, Shishikura's construction cuts out a small
concentric disk from each, and then glues the resulting boundaries together.
Making corresponding modifications at each of the infinitely many iterated
preimages of each of the Siegel disks and then applying the Morrey-Ahlfors
Bers Measurable Riemann Mapping Theorem to obtain a compatible con
formal structure, he obtains a rational map of degree dl + d2 - 1 with a
Herman ring of rotation number p. There is a converse construction, which
cuts along the central circle of a Herman ring and then pastes in a pair of
Siegel disks. Thus the following statement is an immediate consequence:

The possible rotation numbers for Herman rings are exactly the
same as the possible rotation numbers for Siegel disks.

In particular, any number satisfying the Bryuno condition of Theorem 11.10
can occur as the rotation number of a Herman ring.

Although Herman rings do not contain any critical points, nonetheless
they are closely associated with critical points.

Lemma 15.7. If U is a Herman ring, then every boundary
point of U belongs to the closure of the orbit of some critical
point. The boundary au has two connected components, each
of which is an infinite set.

The proof of the first statement is almost identical to the proof of Theo
rem 11.17 or Corollary 14.4, while the second follows from Problem 5-b and
the Jordan curve theorem. D
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Concluding Problems

Problem 15-a. No polynomial Herman rings. Using the maximum
modulus principle, show that no polynomial map can have a Herman ring.

Problem 15-lJ. Symmetry of Blaschke products. For any Blasch
ke product f : C --+ C show that the Julia set is invariant under the
inversion Z r--t l/z. Show that z is a critical point of f if and only if l/z
is a critical point, and show that z is a zero of f if and only if l/z is a
pole.

Problem 15-c. Proper self-maps of JI)). A holomorphic map
f : JI)) --+ JI)) is said to be proper if the inverse image of any compact subset of
JI)) is compact. Show that any proper holomorphic map from JI)) onto itself
can be expressed uniquely as a Blaschke product (15 : 1), with aj E JI)).

Problem 15-d. Computing rotation numbers. (1) Show that
the rotation number rot(f) can be deduced directly from the cyclic order
relations on a single orbit, in a form convenient for computer calculations,
as follows. Choose representatives t; E [0,1) for the elements of the orbit
of zero, so that ti foi(O) (mod Z). If we exclude the trivial case tl = 0,
then tl cuts [0,1) into two disjoint intervals II = [0,tl) and 10 = [tl, 1).
Define a sequence of bits (b2' b3, b4, ... ) by the requirement that tn E Ibn'

If F is the unique lift with F(O) = tl, show that

Rot(F) = lim (b2 + b3 + ·.·+ bn)/n.
n-1-OO

(2) Furthermore, if a second such map f' has bit sequence (b2, b3, ...),
and if

using the lexicographical order for bit sequences, show that

Rot(F) < Rot(F').
(We can then estimate Rot(F) rapidly by comparing its bit sequence with
the bit sequences of rigid rotations.)



§16. The Sullivan Classification of Fatou Components

The results in this section are due in part to Fatou and Julia, but with
major contributions by Sullivan.

A Fatou component for a nonlinear rational map f will mean any
connected component of the Fatou set c , J(f). Evidently f carries
each Fatou component U onto some Fatou component U' by a proper
holomorphic map. First consider the special case U == U'.

Theorem 16.1. If f maps the Fatou component U onto itself,
then there are just four possibilities, as follows: Either U is the
immediate basin for an attracting fixed point or for one petal of
a parabolic fixed point which has multiplier A == 1 or else U is
a Siegel disk or Herman ring.

Here we are lumping together the case of a superattracting fixed point,
with multiplier A == 0, and the case of a geometrically attracting fixed
point, with A =1= o. Note that immediate attractive or parabolic basins
always contain critical points by Theorems 8.6 and 10.15, while rotation
domains (that is, Siegel disks and Herman rings) evidently cannot contain
critical points.

Much of the proof of Theorem 16.1 has already been carried out in §5.
In fact, according to Theorem 5.2 and Lemma 5.5, a priori there are just
four possibilities. They are:

(a) U contains an attracting fixed point;

(b) all orbits in U converge to a boundary fixed point;

(c) f is an automorphism of finite order; or

(d) f is conjugate to an irrational rotation of a disk, punctured
disk, or annulus.

In case (a) we are done. Case (c) cannot occur, since our standing hypothesis
that the degree is 2 or more guarantees that there are only countably many
periodic points. In case (d) we cannot have a punctured disk, since the
puncture point would have to be a fixed point belonging to the Fatou set,
so that U would be a subset of a Siegel disk, rather than a full Fatou
component. Thus, in order to prove Theorem 16.1, we need only show that
the boundary fixed point in case (b) must be parabolic with A = 1. This
boundary fixed point certainly cannot be an attracting point or a Siegel
point, since it belongs to the Julia set. Furthermore, it cannot be repelling,

167
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since it attracts all orbits in U. Thus it must be indifferent, IAI = 1. To
prove Theorem 16.1, we need only show that A is precisely equal to +1.

The proof will be based on the following statement, which is due to
Douady and Sullivan. (Compare Sullivan [1983] or Douady and Hubbard
[1984-85, p. 70]. For a more classical alternative, see Lyubich [1986, p.
72].) Let

be a map which is defined and holomorphic in some neighborhood V of the
origin and which has a fixed point with multiplier A at z = o. By a path
in V" {O} which converges to the origin we will mean a continuous map
p : [0, (0) ~ V <, {O} satisfying the condition that p(t) tends to zero as
t ~ 00. (Here [0,(0) denotes the half-open interval consisting of all real
numbers t ~ 0.) Note that such a path p may have self-intersections.

Lemma 16.2 (Snail Lemma). Suppose that there exists a path
p : [0, (0) ~ V ,,{O} which is mapped into itself by f in such
a way that f (p(t)) = p(t + 1) and which converges to the origin
as t ---* 00. Then either IAI < 1 or A= 1.

In other words, the origin must be either an attracting fixed point or a
parabolic fixed point with A precisely equal to 1.

Proof of Lemma 16.2. By hypothesis, the orbit p(O) ~ p(l) ~
p(2) ~ . .. in V" {O} converges towards the origin. Thus the origin is a
fixed point and cannot be repelling; the multiplier must satisfy IAI ::; 1. Let
us assume that IAI = 1 with A=I 1 and show that this hypothesis leads to
a contradiction.

As the path t ~ p(t) winds closer and closer to the origin, the behavior
of the map f on p(t) is more and more dominated by the linear term
z ~ Xz, Thus we have the asymptotic equality p(t+ 1) rv Ap(t) as t ~ 00.

If the path p has no self-intersections, then the image must resemble a very
tight spiral as shown in Figure 33 (left side), and we can sketch a proof as
follows. Draw a radial segment E joining two turns of this spiral, as shown.
Then the region W bounded by E together with a segment of the spiral
will be mapped strictly into itself by f. Therefore, by the Schwarz Lemma,
the fixed point of f at the point 0 E W must be strictly attracting, which
contradicts the hypothesis that IAI = 1.

In order to fill in the details of this argument and to allow for the
possibility of self-intersections, let us introduce polar coordinates (r,e) on
<C" {O}, setting z = rei£) with r > 0 and e E lR/21rZ. Lift P to a path
p(t) = (r(t), 8(t)) in the universal covering of <C,,{O}, where 8(t) is areal
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e

v

Figure 33. Simple curve in C" {O} on the left, and a nonsimple
curve lifted to the universal covering on the right.

number. As t tends to infinity, note that

r(t) ~ 0 and B(t + 1) == B(t) + c + 0(1), (16 : 1)

where c is a uniquely defined real constant with eic == A. Similarly,
choosing "o > 0 so that f is univalent on the disk of radius ro, we can
lift f to a map ](r, B) == (r', B') on the universal covering, where ] is
defined and univalent for 0 < r < ro and for all BE IR. Note that

r' rv rand ()' == () + c + 0(1) as r ~ 0,

where c is the same constant which occurs in (16 : 1) provided that we
choose the correct lift of f. (It follows that we can extend ] continuously
over [0, ro) x lR so that it is a translation, ](0, B) == (0, B+ c), when
r == 0.)

We must prove that c == o. Suppose, for example, that c is strictly
positive. Then we could derive a contradiction as follows. Choose a constant
rl < ro so that the map ](r, B) == (r', Bf

) satisfies Bf > B+ c/2 whenever
r :::; rl. Then choose tl so that r(t) :::; rl and hence B(t+ 1) > B(t) + c/2
whenever t 2: tl. Furthermore, choose BI so that B(t) < BI for t :::; tl.
Now in the (r, B) plane, consider the connected region V which lies above
the line B== BI , to the right of the line r == 0, and to the left of the curve
p[tl, (0). It follows easily that ] maps V univalently into itself and that
the r-coordinate tends to zero under iteration of ] restricted to V. Hence,
if W is the image of V under projection to the z-plane, it follows that
W is a neighborhood of the origin and that all orbits in W converge to the
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origin. Therefore, the origin is an attracting fixed point, and IAI < 1. D

Here is a completely equivalent statement, which will be useful in §18.
Again let f be a holomorphic map of the form f (z) == AZ + a2 z2 + · · ·
near the origin.

Corollary 16.3. Now suppose that p: [0,00) -t V ,,{O} is
a path which converges to the origin, with f (p(t)) == p(t - 1)
for t 2: 1 (so that points on this path are pushed away from the
origin). Then the multiplier A must satisfy either IAI > 1 or
A == 1.

Proof. Since the orbit

· .. ~ p(2) ~ p(l) ~ p(O)

is repelled by the origin, the multiplier A cannot be zero. Hence f- 1 is
defined and holomorphic near the origin. Applying Lemma 16.2 to the map
9 == I-I, the conclusion follows. 0

Proof of Theorem 16.1. Recall that we have already discussed all of
the cases except (b) above. Thus we need only consider a Fatou component
U which is mapped into itself by f in such a way that all orbits converge
to a boundary fixed point WQ. Choose any basepoint ZQ in U, and choose
any path p : [0,1] -t U from ZQ == p(O) to f(zQ) == p(I). Extending for all
t 2: 0 by setting p(t+ 1) == f(p(t)) , we obtain a path in U which converges
to the boundary point WQ as t -t 00. Therefore, according to Lemma 16.2,
the fixed point WQ must be either parabolic with A == 1 or attracting. But
WQ belongs to the Julia set, and hence cannot be attracting. D

Thus we have classified the Fatou components which are mapped onto
themselves by I. There is a completely analogous description of Fatou
components which cycle periodically under f. These are just the Fatou
components which are fixed by some iterate of I. Each one is either:

(1) the immediate attractive basin for some attracting periodic point,
(2) the immediate basin for some petal of a parabolic periodic point,
(3) one member of a cycle of Siegel disks, or
(4) one member of a cycle of Herman rings.

In cases (3) and (4), the topological type of the domain U is uniquely
specified by this description. In cases (1) and (2), as noted in Theorem
8.9 and Problem 10-f, U must be either simply connected or infinitely
connected.

By §10, there can be at most a finite number of attracting basins and
Siegel disks. In fact, according to Shishikura [1987], there can be at most
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2d - 2 distinct cycles of periodic Fatou components, where d is the degree.
(In particular, there can be at most 2d - 2 cycles of Herman rings.)

In order to complete the picture, we need the following fundamental
theorem, which asserts that there are no wandering Fatou components.

Theorem 16.4 (Sullivan Nonwandering Theorem). Every
Fatou component U for a rational map is eventually periodic.
That is, there necessarily exist integers n ~ 0 and p ~ 1 so that
the nth forward image fon(u) is mapped onto itself by fOP.
In particular, it follows that every Fatou component is either
a branched covering or a biholomorphic copy of some periodic
Fatou component, which necessarily belongs to one of the four
types described above.

The proof, by quasiconformal deformation, will be outlined in Appendix
F. (Compare Sullivan [1985], Carleson and Gamelin [1993].) However, the
idea of the proof can be described very briefly as follows: If a wandering
Fatou component were to exist, with all forward images pairwise disjoint,
then using the Measurable Riemann Mapping Theorem of Morrey, Ahlfors,
and Bers one could construct an infinite-dimensional space of nonisomorphic
deformations of i, all of which would have to be rational maps of the same
degree. But the space of rational maps of fixed degree is finite dimensional.

Recall from §14 that f is postcritically finite if every critical orbit is
finite. (Compare Corollary 14.5.)

Corollary 16.5. If a postcritically finite rational map has no su
'f!....erattractive periodic orbit, then its Julia set is the entire sphere
c.

By Theorems 8.6 and 10.15 it cannot have any attracting or parabolic
basins, and by Theorem 11.17 and Lemma 15.7 it cannot have any rotation
domains. D

We will give a more direct proof for this statement in Corollary 19.8.

Remark 16.6. Transcendental Maps. The analogs of both Theo
rems 16.1 and 16.4 fail for the iterates of a transcendental map
f : C ----+ C. In fact there are two new kinds of Fatou component, which
cannot occur for rational maps. There may be wandering domains (Problem
16-c), and there may be invariant domains U = f(U) such that no orbit
in U has any accumulation point in the finite plane C . These are now
known as Baker domains. (Problem 16-d). Of course every orbit in a Baker
domain must converge to the point at infinity within <C, but the point at
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Figure 34. Julia set for z r-+ z2 - I + O.li (Problem 16-b).

Figure 35. Julia set for z r-+ z + sin(21fz) (Problem 16-c). Here,
unlike all other Julia set pictures in these notes, the Julia set has
been colored white.

Figure 36. Julia set for z r-+ z + eZ
- I (Problem 16-d).
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infinity is an essential singularity of f and hence looks very different from
a parabolic point.

Concluding Problems

Problem 16-a. Limits of iterates. Give a sharper formulation of
the defining property of the Fatou set C" J for a rational function as
follows. If V is a connected open subset of C" J, show that the set of
all limits of successive iterates fonlv as n ~ 00 is either (1) a finite set
of constant maps from V into an attracting or parabolic periodic orbit, or
(2) a compact one-parameter family of maps, consisting of all compositions
Re 0 fOkl v , with ko :S k < ko + p. Here r- is to be some fixed iterate
with values in a rotation domain belonging to a cycle of rotation domains
of period p, and Re is the rotation of this domain through angle e.

Problem 16-b. Counting components. (1) If a quadratic polyno
mial map has either an attracting fixed point or a parabolic fixed point of
multiplier A == 1, show that there is only one bounded Fatou component.
Compare Figures 5a, 11, 24 (pp. 42, 80, 121). (2) If it has an attracting
cycle of period 2, show that there are three bounded components which map
according to the pattern Ul ~ Uo ~ Uf and that the remaining bounded
components are iterated preimages of Uf where each set f-n(Uf) is made
up of 2n distinct components. Identify nine of these components in Figure
34. (3) What is the corresponding description for a cycle of attracting or
parabolic basins with period p, as in Figures 5d, 21 (pp. 42, 109), or for
the case of a Siegel fixed point as in Figures 26, 28 (pp. 127, 132)?

Problem 16-c. Wandering domains. Show that the transcendental
map

f(z) == z + sin(21Tz)

has one family of wandering domains {Un} with f(Un) == Un + 1 and one
family {Vn} with f(Vn) == Vn - 1 (Figure 35). Describe the Fatou set for
the corresponding map of the cylinder C/Z.

Problem 16-d. A Baker domain. Show that the map

f (z) == z + eZ
- 1

has a fully invariant Baker domain U == f- 1(U) (Figure 36). In particular,
show that all critical values belong to the half-plane Re(z) < 0 and that all
orbits {Zj} in this half-plane satisfy limj~oo Re(zj) == -00. Show that
there is an associated map of the cylinder C/21Ti71.



USING THE FATOU SET TO STUDY THE JULIA SET

§17. Prime Ends and Local Connectivity

Caratheodory's theory of "prime ends" is the basic tool for relating an open
set of complex numbers to its complementary closed set. Let U be a simply
connected subset of C such that the complement C" U is infinite. The
Riemann Mapping Theorem asserts that there exists a conformal isomor
phism

f",.J

1/J : II}~ U.

In some cases, 1/J will extend to a homeomorphism from the closed disk ]I))

onto the closure U, so that the topological boundary au is homeomorphic
to the circle a]I)). (See Figures 5a (p.42) and 37a, together with Theorem
17.16.) However, this is not true in general, since the boundary au may
be an extremely complicated object. As an example, Figure 37b shows a
region U such that one point of au (with countably many short spikes
sticking out from it) corresponds to a Cantor set of distinct points of the
circle a]I)). Figures 37c, 37d show examples for which an entire interval of
points of au corresponds to a single point of the circle. (See also Problem
5-a.) An effective analysis of the relationship between the compact set au
and the boundary circle aII} was carried out by Caratheodory [1913] and
will be described here.

Finding Short Arcs. The main construction will be purely topolog
ical, but we first use analytic methods to prove several lemmas about the
existence of short arcs. Let I == (0, <5) be an open interval of real numbers,
and let ]2 C C be the open square, consisting of all z == x + iy with
x, y E]. Suppose that we are given some conformal metric on 12 of the
form p(z)ldzl where p:]2 ---+ (0, (0) is a continuous strictly positive real
valued function. (We do not assume that p(z) is bounded.) By definition,
the area of ]2 in this metric is the integral

A = Jh2 p(x+iy)2dxdy,

and the length of each horizontal line segment y == constant is the integral

L(y) == 1 p(x + iy) dx.
xEI

We will need the following. (Compare Appendix B.)

174
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(a)

(b)

- -

- -

(c) Cd)

Figure 37. The boundaries of four simply connected regions in C.

Lemma 17.1 (Length-Area Inequality). If the area A is
finite, then the length L(y) is finite for almost every height y E

I, and the average of L(y)2 satisfies

~ h L(y)2 dy < A. (17: 1)

Proof. We will use the Schwarz Inequality in the form *

(h f(x)g(X)dx)2::; (hf(x)2dx) (h g(X)2 dX) , (17:2)

where f and 9 are square-integrable real-valued functions on I == (0,6).
Taking f(x) == 1 and g(x) == p(x + iy), this yields

L(y)2 < 8· h p(x + iy)2 dx.

*If J f 2dx == t 2 Jg2dx where t > 0, then (17: 2) can be proved by manipulating
the inequalities J(f ± tg)2dx 2: O. The case J f 2dx == 0 can be proved in a similar

manner by letting t tend to zero.
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Integrating this inequality over y and dividing by b, we obtain the required
inequality (17: 1). If A is finite, it evidently follows that L(y) is finite
for y outside of a set of Lebesgue measure zero. D

For a "majority" of values of y, we can give a more precise upper bound
as follows.

Corollary 17.2. The set 8 consisting of all y E 1 with
L(y) :::; J2A has Lebesgue measure £(8) > £(1)/2.

Proof. Evidently

<5 A ~ hL(y)2dy > h,s (hA)2 dy + Is 0 2Af(I" S),

and the conclusion follows since £(1) = b. D

In the application, consider some univalent embedding

'f}:12 ~ U c c.
Pulling the spherical metric from U back to 12, we obtain a conformal
metric of the form p(z)ldzl on 12 . (Compare (2 : 4).) Evidently the area
A of 12 in this metric is at most equal to the area 41T of C.

Corollary 17.3. Given such a univalent embedding of 12 onto
U C C, almost every horizontal line segment y = constant
in 12 maps to a curve of finite spherical length; and more than
half (in the sense of Lebesgue measure) of these horizontal line
segments have spherical length at most J2A, where A is the
spherical area of U. Similar statements hold for vertical line
segments x = constant.

The proof is immediate. D

Now consider a simply connected open set U c e with infinite com-
plement and some choice of conformal isomorphism 1/J : ]IJ) --t U.

Theorem 17.4 (Fatou; Riesz and Riesz). For almost every
point ei O of the circle 8]IJ) the radial line r ~ re i B maps under
1/J to a curve of finite spherical length in U. In particular, the
radial limit

exists for Lebesgue almost every (). However, if we fix any par
ticular point UQ E 8U, then the set of () such that this radial
limit is equal to UQ has Lebesgue measure zero.
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We will say briefly that almost every image curve r ~ 'ljJ(reiO) in U
lands at some single point of au and that different values of () almost
always correspond to distinct landing points.

Remark. Fatou, in his thesis, showed that any bounded holomorphic
function on lIJ) has radial limits in almost all directions, whether or not it is
univalent. (See, for example, Hoffman [1962, p. 38].) However the univalent
case is all that we will need and is easier to prove than the general theorem.

Proof of Theorem 17.4 (using results from Appendix A). The
first half of Theorem 17.4 follows easily from Corollary 17.3, as follows. Let
IHI- be the left half-plane, consisting of all points x + iy E <C with x < O.
Map IHI- onto lIJ)" {O} by the exponential map x + iy ~ eXeiy . Then the
square

-21f < X < 0, o ~ y < 21f

in IHI- maps under 'ljJ 0 exp onto a neighborhood of the boundary in U.
Almost every line y == constant in IHI- maps onto a curve of finite
spherical length, which therefore tends to a well-defined limit as x/I.

If U == 'ljJ (lIJ)) is a bounded subset of <C, then a theorem of F. and
M. Riesz, as stated in §11 and proved in Theorem A.3 of Appendix A,
asserts that any given radial limit can occur only for a set of directions eiO

of measure zero. For any univalent ib , we can reduce to the bounded case
in two steps, as follows. First suppose that the image 'ljJ(lIJ)) == U omits
an entire neighborhood of some point ZQ of C. Then by composing 'ljJ
with a fractional linear transformation which carries ZQ to 00, we reduce
to the bounded case. In general, 'ljJ(lIJ)) must omit at least two values,
which we may take to be 0 and 00. Then ViP can be defined as a single
valued function which omits an entire open set of points. Since the squaring
function ViP ~ 'ljJ takes curves of finite spherical length to curves of finite
spherical length, we are reduced to the previous case. D

Here is a topological complement. (Compare Figure 41 (p. 196), taking
U to be the basin of infinity C" K.) Recall that au is connected by
Problem 5-b.

Lemma 17.5. If two different curves r ~ 'ljJ(re i 01 ) and
r ~ 'ljJ(re i 02 ) land at the same point UQ E au, then this point
UQ disconnects the boundary of U.

Proof. These two curves, together with their landing point, form a
Jordan curve r, which separates the sphere C into two open sets VI
and V2. Similarly, the angles (}I and (}2 separate the circle lR./21fZ into
two open intervals II and 12, numbered so that the rays corresponding
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to angles ()j E Ij are contained in the corresponding open set Vj. By
Theorem 17.4, each of these intervals must contain at least one angle ()j

corresponding to a ray which lands at a point Uj =1= UQ in au. Since the
separating curve r intersects au only at UQ, this proves that the point
UQ separates au. D

Prime Ends. Next we describe some constructions which depend only
on the topology of the pair (U, aU) and not on conformal structure. We
<:ontinue to assume that U is a simply connected open subset of the sphere
C and that au has more than one element.

Definition. By a crosscut (or "transverse arc") for the pair (U, au),
we will mean a subset A c U which is homeomorphic to the open interval
(0,1), such that the closure A is homeomorphic to a closed interval with
only the two endpoints in au.

Note that it is very easy to construct examples of crosscuts. For example,
if U is a bounded subset of C, then we can start with any short line segment
inside U and extend in both directions until it first hits the boundary.

Lemma 17.6. Any crosscut A divides U into two connected
components.

Proof. The quotient space U / au, in which the boundary is identified
to a point, is evidently homeomorphic to the 2-sphere. Since A corresponds
to a Jordan curve in this quotient 2-sphere, the conclusion follows from the
Jordan Curve Theorem. (See, for example, Munkres [1975].) D

Either of the two connected components of U" A will be called briefly
a crosscut neighborhood N cU. Note that we can recover the crosscut A
from such a crosscut neighborhood since A = U n BN:

Main Definition. By a fundamental chain N = {Nj} in U, we will
mean a nested sequence

Nl ~ N2 ~ N3 ~ ...

of crosscut neighborhoods Nj C U such that the closures Aj of the corre
sponding crosscuts Aj = U n aNj are disjoint and such that the diameter
of A j tends to zero as j ~ 00, using the spherical metric. (Since U is
compact, this condition depends only on the topology and not on the par
ticular choice of metric.) Two fundamental chains {Nj} and {Nk} are
equivalent if every Nj contains some Nk, and conversely every Nk con
tains some Nj. An equivalence class [. of fundamental chains is called a
prime end for the pair (U, au).

There are a number of possible minor variations on these basic defi-
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nitions. (Compare Ahlfors [1973], Epstein [1981], Mather [1982], Ohtsuka
[1970].) The present version is close to Caratheodory's original construction.

Note that only the crosscuts Aj are required to become small as j
tends to infinity. In examples such as Figures 37c and 37d (p. 175), the
crosscut neighborhood Nj may well have diameter bounded away from
zero. Note also that the Aj need not converge to a single point. (Compare
Figure 9, p. 63.)

Definition. The intersection of the closures N j C U is called the
impression of the fundamental chain {Nj} or of the corresponding end E,

Lemma 17.7. For any fundamental chain {Nj}, the intersec-
tion of the open sets Nj is vacuous. However, the impression
nN j is a nonvacuous compact connected subset of au.

Proof. For any Z E U we will find a j with Z tf. Nj. Choose a point
Zo E U "Nl and a path P c U joining Zo to z. If 8 is the distance from
the compact set P to au and if j is large enough so that the diameter of
A j is less than 8, then evidently A j n P = 0, so A j cannot disconnect ZQ

from z. Since ZQ tf. N j , it follows that Z tf. Nj. Hence nN j is a subset
of au. This set is clearly compact and nonvacuous. For the proof that it
is connected, see Problem 5-b. D

This impression may consist of a single point ZQ E au, as in Figures
37a and 37b. In this case we say that {Nj} or £ converges to the point
ZQ . Evidently the impression consists of a single point if and only if the
diameter of Nj tends to zero as j ~ 00. However, in examples such as
Figures 37c and 37d the impression may well be a nontrivial continuum.
(See also Figures 9, 38, 40; pp. 63, 187, 192.) Note that two different prime
ends may converge to the same point (Figures 37b, 37c), or more generally
have impressions which intersect each other.

We will say that two fundamental chains {Nj} and {Nk} are eventually
disjoint if N, n Nk == 0 whenever both j and k are sufficiently large.

Lemma 17.8. Any two fundamental chains {Nj} and {Nk}
in U are either equivalent or eventually disjoint.

Proof. If Nj n Nk =I 0 for all j and k, then we will show that for
each j there is a k so that Nj ~ Nk. We first show that every crosscut
A~ with k sufficiently large must intersect the neighborhood Nj+l. In
fact we have assumed that every Nk intersects Nj+l. Since nNk = 0 by
Lemma 17.7, it follows that the complement U" Nk must also intersect
Nj+l for large k. Since Nj+l is connected, this implies that the common
boundary A~ must intersect Nj+l.
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If no Nk were contained in Nj, then every Nk would intersect the
complement U" Nj. An argument just like that above would then show
that A~ must intersect U" Nj whenever k is large. But if A~ intersects
both U" Nj and Nj+l, then it must cross both Aj and Aj+l. Hence
its diameter must be greater than or equal to the distance between Aj and
Aj+l. This completes the proof, since it contradicts the hypothesis that the
diameter of A~ tends to zero as k ~ 00. D

Now we will combine the topological and analytic arguments. We return
f'",J .-.

to the study of a conformal isomorphism 7/J: II))~ U c (C.

Lemma 17.9 (Main Lemma). Given any point eiO E aII)),

there exists a fundamental chain {Nj } in II)) which converges to
eiO and which maps under 7/J to a fundamental chain {7/J(Nj ) }

in U.

Proof. We must construct the Nl ~ N2 ~ ... in II)), converging to
eiO, so that the associated crosscuts A j map to crosscuts in U which have
disjoint closures and which have diameters tending to zero. As in the proof of
Theorem 17.4, we will make use of the exponential map exp : IHI- ~ II)) <, { O} ,
where lHI- is the left half-plane. In fact, we will actually construct crosscut
neighborhoods Nj in IHI-, converging to the boundary point i(), and then
map to II)) by the exponential map. Each Nj will be an open rectangle

-E < X < 0, Cl < y < C2

in IHI-. Thus the corresponding crosscut Aj C lHI- will be made up of three
of the four edges of this rectangle and will have endpoints O+iCl and 0+iC2
in alHI-. The construction will be inductive. Given Nf, ... , Nj-l we first
choose 8 < 1/i. which is small enough so that the square 88 defined by
the inequalities

-28 ::; x < 0, () - 8 ::; y ::; () + 8

is contained in Nj-l. Mapping 88 into U by 7/J 0 exp, let A8 be the
spherical area of its image. Evidently this area tends to zero as 8 ~ O.
Using Corollary 17.2, we can choose constants Cl and C2 so that

() - 8 < Cl < () < C2 < () + 8

and so that the horizontal line segments y == Ck in 88 map to curves of
length at most J2A8 in U ct. This will guarantee that the images of
these line segments in U land at well-defined points of au as x /0. We
must also take care to see that these landing points are distinct from each
other, and distinct from the endpoints of the crosscuts 7/J 0 exp(Ah ) with
h < j. However, this does not pose any additional difficulty, in view of
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Theorem 17.4.

Finally, we must choose a vertical line segment x == -E inside 88 which
also maps to a curve of length :::; J2A8 in U. Setting

Nj == (-E, 0) X (Cl, C2) c lHI-,

the inductive construction is complete. Mapping into lI)), we obtain the
required crosscut neighborhoods Nj == exp(Nj) elI)). 0

The inverse isomorphism 1jJ-l : U ---+ lI)) is much better behaved.

Corollary 17.10. Any path p : [0,1) ---+ U which lands at
a well-defined point of au maps under 1jJ-l to a path in lI))

which lands at a well-defined point of alI)). Furthermore, paths
which land at distinct points of au map to paths which land at
distinct points of lI)).

Proof. Let eiO E alI)) be any accumulation point of the path
t r-+ 1jJ-l 0 p(t) as t / 1. Choose some fundamental chain {Nj} converging
to eiO as in Lemma 17.9, so that the image under 1jJ is a fundamental chain
{1jJ(Nj)} in U. For each j, we will prove that 1jJ-l 0 p(t) E Nj for all t
which are sufficiently close to 1. Otherwise, for some jo we could find a
sequence of points tj converging to 1 so that 1jJ-l 0 p(tj) tf- Njo. Since eiO

is an accumulation point of the path 1jJ-l 0 P in lI)), this would imply that
this path must pass through both of the crosscuts Ajo and Ajo+1 infinitely
often as t / 1. Hence the image path p : [0,1) ---+ U must pass through
both 1jJ(Ajo) and 1jJ(Ajo+1) infinitely often. Since there is some positive
distance between these crosscuts in U, this contradicts the hypothesis that
p(t) converges as t / 1.

If paths p : [0,1) ---+ U and q : [0,1) ---+ U landing at two distinct
points of au pulled back to paths 1jJ-l 0 P and 1jJ-l 0 q landing at a
single point of alI)), then, choosing {Nj } as above, each crosscut A j with
j large would cut both 1jJ-l 0 P and 1jJ-l 0 q. Hence the image crosscut
1jJ (Aj) C U would cut both p and q. As j ---+ 00, the diameter of 1jJ (Aj )
tends to zero, while its intersection points with p and q tend to distinct
points of au. Evidently this is impossible. 0

Corollary 17.11. Every fundamental chain {Nk} in U maps
under 1jJ-l : U ---+ JI)) to a fundamental chain {1jJ-l(Nk)} in JI)).

Proof. Let Ak be the crosscut which bounds Nk. It follows from
Corollary 17.10 that each 1jJ-l(Ak) is a crosscut in lI)), so that each
1jJ-l(Nk) is a crosscut neighborhood in JI)). It also follows that the clo
sures of all of these crosscuts 1jJ-l(Ak) are disjoint. We must prove that
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the diameter of 1);-l(Ak) tends to zero as k --+ 00. Choose some accumula
tion point ei () E oJI} for these sets 1);-l(Ak)and choose a fundamental chain
{ Nj} in JI} which converges to ei() and which maps to a fundamental chain
{1);(Nj)} in U. Then Njn1);-l(Nk) =I- 0, and hence 1);(Nj)nNk=I- 0 for all
j and k. Therefore, by Lemma 17.8, the two fundamental chains {1); (s,)}
and {Nk} in U are equivalent. It follows that every Nj contains some
1);-1 (Nk). Since the diameter of the entire neighborhood Nj clearly tends
to zero as j --+ 00, the conclusion follows. D

It follows easily from Lemma 17.9 and Corollary 17.11 that 1); induces
a one-to-one correspondence between prime ends of JI} and prime ends of
U. Furthermore the impression of any prime end of JI} is a single point of
oJI}, and each point of oJI} is the impression of one and only one prime end.
We can express these facts in clearer form as follows.

Define the Ceretheodory compactification f) of U to be the disjoint
union of U and the set consisting of all prime ends of U, with the follow
ing topology. For any crosscut neighborhood N C U let Iv C f) be the
union of the set N itself, and the collection of all prime ends E which
are represented by fundamental chains {Nj} with Nj eN. These neigh-
borhoods Iv, together with the open subsets of U, form a basis for the
required topology.

Theorem 17.12. The Caraiheodoru compactijication f5> of the
open disk is canonically homeomorphic to the closed disk JI}.

Furthermore, any conformal isomorphism 1); : JI} --+ U C C
extends uniquely to a homeomorphism from JI} rv f5> onto f).

The proof is straightforward and will be left to the reader. D

Local Connectivity. A Hausdorff space X is said to be locally con
nected if the following condition is satisfied (see, for example, Kuratowski
[1968]):

(a) Every point x E X has arbitrarily small connected (but
not necessarily open) neighborhoods.

Other equivalent conditions can be described as follows.

Lemma 17.13. X is locally connected if and only if:

(b) every x E X has arbitrarily small connected open
neighborhoods, or

(c) every open subset of X is a union of connected open
subsets.
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If X is compact metric, then an equivalent condition is that:

(d) for every E > 0 there exists 6 > 0 so that any two
points of distance < 6 are contained in a connected subset
of X of diameter < E.

Proof. It is easy to see that (d) =? (a) =? (c) =? (b) =? (a). To show
that (b) =? (d), let {Ya } be the collection of all connected open sets of
diameter < E, and let 6 be the minimum of dist (x, y) as (x, y) varies
over the compact set (X x X) "U(Ya x Ya ) , where 6 > 0 by (b). D

Remark. Sometimes it is important to study the situation around a
single point x EX. There is no universally accepted usage, but it seems
reasonable to say that X is locally connected at x if (a) is satisfied at the
single point x, and openly locally connected at x if (b) is satisfied. For the
difference between these two requirements, see Problem 17-b.

Theorem 17.14 (Caratheodory). A conformal isomorphism
I"'V -.

rljJ : lD~ U c C extends to a continuous map from the closed
disk lD onto U if and only if the boundary au is locally con
nected, or if and only if the complement C" U is locally con
nected.

Proof. If either au or C" U is locally connected, then we will show
that for any fundamental sequence {Nj} in U the impression nN j con
sists of a single point. It will then follow easily that rljJ extends continuously
over the boundary of lD.

With E and 6 as in Lemma 17.13(d), choose j large enough so that
the crosscut Aj = U n aNj has diameter less than 6. It follows that the
two endpoints of A j have dista~ce less than 6 and hence are contained in
a compact connected set Y c C "U of diameter less than E. Then the
compact set Y u Aj c C separates Nj from U" Nj, for otherwise we
could choose some smooth embedded arc A' C C which is disjoint from
Y u Aj and joins some point x E Nj to a point y E U <, N'], Taking A'
together with a suitably chosen arc A" C U from x to y which cuts once
across the crosscut A j , we could construct a Jordan curve A' U A" which
separates the two endpoints of A j . Hence it would separate Y, which is
impossible since Y was assumed connected.

This compact set Y U A j has diameter less than E + 6. If E + 6 < 7f /2,
then one of the connected components of the complement C" (Y U A j )

contains an entire hemisphere, while all of the other connected components
must have diameter less than E + 6. If E + 6 is also smaller than the
diameter of U" N 1 , then it follows that U" N j must be contained in the
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large component of <C" (Y U Aj ) , and hence N, must have diameter less
than E + 6. Since E and 6 can be arbitrarily small, this proves that the
impression nNj can only be a single point. Using Lemma 17.9, it follows
easily that 1/J extends continuously over a]IJ).

To prove the converse statement, we need the following.

Lemma 17.15. If f is a continuous map from a compact locally
connected space X onto a Hausdorff space Y, then Y is also
compact and locally connected.

In fact, it will be convenient to adopt the convention that all topological
spaces are to be Hausdorff.

Proof of Lemma 17.15. This image f(X) = Y is certainly compact.
Given any point y E Y and open neighborhood N C Y, we can consider
the compact set f-l(y) C X with open neighborhood f-l(N). Let Va
range over all connected open subsets of f-l(N) which intersect f-l(y).
Then the union Uf(Va ) is a connected subset of N. It is also a neighbor-

hood of y, since it contains the open neighborhood Y" f (X -, UVa) of
y. D

The proof of Theorem 17.14 continues as follows. If 1/J extends contin
uously to '¢ : JI) ----* U, then '¢ maps the circle alI)) onto au, so au is
locally connected. We must show that <C" u is also locally connected. Here
it is only necessary to consider the situation about a point Zo E au, since
<C <U is clearly locally connected away from au. Choose an arbitrarily
small connected neighborhood N of ZQ within au, and then choose E so
that the ball of radius E about Z intersected with au is contained in N.
The union of N and the ball of radius E about Z within <C" U is then
the required small connected neighborhood. D

Combining this theorem with Lemma 17.5, we obtain the following.

Theorem 17.16 (Caratheodory}. If the boundary of U is a
"-J

Jordan curve, then 1/J : lI))~ U extends to a homeomorphism
from the closed disk ]IJ) onto the closure U.

Proof. If au is a Jordan curve, that is, a homeomorphic image of
the circle, then we certainly have a continuous extension 1/J : ]I)) ----* U by
Theorem 17.14. Since a Jordan curve cannot be separated by any single
point, it follows from Lemma 17.5 that this extension is one-to-one, and
hence is a homeomorphism. D

Definitions. The space X is path-connected if there exists a contin
uous map from the unit interval [0, 1] into X which joins any two given
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points, and arcwise connected if there is a topological embedding of [0,1]
into X which joins any two given distinct points. It is locally path-connected
if every point has arbitrarily small path-connected neighborhoods.

As one example, note that the boundary of a simply connected set is
always connected by Problem 5-b. However, it need not be path-connected
(Figure 37d, p. 175).

To conclude this section, we prove two well-known results.

Lemma 17.17. If a compact metric space X is locally con
nected, then it is locally path-connected.

It follows easily that every connected component is path-connected.
Here is a further statement.

Lemma 17.18. If a Hausdorff space is path-connected, then it
is necessarily arcwise connected.

Proof of Lemma 17.17. Let X be compact metric and locally con
nected. Given E > 0, it follows from Lemma 17.13 that we can choose
a sequence of numbers 8n > 0 so that any two points with distance
dist(x, x') < 8n are contained in a connected set of diameter less than
E/2n . We will prove that any two points x(O) and x(l) with distance
dist(x(O),x(I)) < 80 can be joined by a path of diameter at most 4E.

The plan of attack is as follows. We will choose a sequence of denom
inators 1 == ko < kl < k2 < ... , each of which divides the next, by
induction. Also, for each fraction of the form i/kn between 0 and 1 we will
choose an intermediate point x (i / kn ) satisfying the following condition: If
li/kn - j/kn+1 \ ::; l/kn then the distance between x(i/kn) and x(j/kn+l)
must be less than E/2n . Furthermore, the distance between x(i/kn) and
x((i + l)/kn ) will be less than 8n . The inductive construction follows.
Given x(i/kn) and x((i + 1)/kn), choose some connected set C which
contains both and has diameter less than E/2n . The points x(i/kn) and
x((i + l)/kn ) can be joined within C by a finite chain of points so that
two consecutive points have distance less than 8n + l . Taking kn+l to be a
suitably large multiple of kn , we can evidently choose the required points
x(j/kn+1) for i/kn < j/kn+l < (i + l)/kn from this chain, allowing du
plications if necessary. Thus we may assume that x(r) has been defined
inductively for a dense set of rational numbers r == i / kn in the unit interval.

Next we will prove that this densely defined correspondence r ~ x(r)
is uniformly continuous. Let rand r' be any two rational numbers for
which x(r) and x(r') are defined. If Ir - r/l ::; 1/kn, then we can choose
i/kn so that both Ir- i/knl and Ir' - i/knl are at most l/kn. It follows
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dist(x(r), x(i/kn )) < c/2n + c/2n+l + ... ,

and similarly for x(r'). Hence dist(x(r), x(r')) < 4c/2n . This proves
uniform continuity, and it follows that there is a unique continuous extension
t ~ x(t) which is defined for all t E [0,1]. In this way, we have constructed
the required path of diameter at most 4c from x(O) to x(l). Thus X is
locally path-connected, as required. D

Proof of Lemma 17.18. Let f == fa : [0,1] ---+ X be any continuous
path with f(O) =f f(l). We must construct an embedded arc A c X from
f(O) to f(l). Choose a closed subinterval II == [aI, bl] C [0,1] whose
length °::; £(11) == bl - al < 1 is as large as possible, subject to the
condition that f(al) == f(bl). Now, among all subintervals of [0,1] which
are disjoint from II, choose an interval 12 == [a2, b2] of maximal length
subject to the condition f(a2) == f(b2)' Continue this process inductively,
constructing disjoint subintervals of maximal lengths £(11) ~ £(12) ~ · · · ~° subject to the condition that f is constant on the boundary of each Ij.

Let a: [0,1] ---+ X be the unique map which takes the constant value
a(Ij) == f( aIj) on each of these closed intervals Ij and which coincides
with f outside of these subintervals. Then it is easy to check that a is
continuous and that for each x E a([O, 1]) the preimage a-I (x) C [0,1]
is a (possibly degenerate) closed interval of real numbers. Note that the
image A == a([O,l]) C X can be totally ordered by specifying that
a(s) «a(t) if and only if a(s) and a(t) are distinct points with s < t.

A homeomorphism h between the interval [0,1] and the set A can
be constructed as follows. Choose a countable dense subset {tl' t2, }
in the open interval (0, 1) and a countable dense subset {aI, a2, }
in A, excluding the endpoints a(O) and a(l). Now construct a one
to-one correspondence i ~ j (i) by induction: Let j (1) == 1, and if
j(l), j(2), ... , j(i - 1) have already been chosen, let j(i) be the small
est positive integer which is distinct from j(l), ... , j(i - 1) and which
satisfies the condition that

th < ti ¢=::? aj(h)« aj(i)

for h < i. The required homeomorphism h: [0, 1] ---+ A is now defined by
mapping each Dedekind cut in {ti} to the corresponding Dedekind cut in
{aj} so that h(ti) == aj(i) and so that t < ti ¢=::? h(t)« h(ti). D
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Figure 38. The witch's broom.

Concluding Problems
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Problem 17-a. Deformation of paths. With 1jJ : IIJ) ~ U as in
Lemma 17.9, consider a one-parameter family of paths Pi : [0,1) --+ U, all
landing at the same point of au, where 0::; r ::; 1. Show that the paths
1jJ-I 0 Pi all land at the same point of aIIJ).

Problem 17-b. Local connectivity at a point. Let X c ce be the
compact connected set which is obtained from the unit interval [0,1] by
drawing line segments from 1 to the points !(1 +i/n) for n = 1, 2, 3, ...
and then adjoining the successive images of this configuration under the
map z ~ z/2 (Figure 38). Show that X is locally connected at the origin,
but not openly locally connected.



§18. Polynomial Dynamics: External Rays

First recall some definitions from §9. Let j : e ---t e be a monic polynomial
map

j(z) == zn + an_lZn-1 + . · . + alz + ao

with n 2:: 2. (In this section, the degree will be denoted by n.) Then j
has a superattracting fixed point at infinity. In particular, it is not difficult
to find a constant Tf so that every point z in the neighborhood Izi > Tf

of infinity belongs to the basin of attraction A(00). The complement of
the basin A(00), that is, the set of all points z E C with bounded forward
orbit under j, is called the filled Julia set K == K(j). By Lemma 9.4, this
filled Julia set is always a compact subset of the plane, consisting of the Julia
set J together with the bounded components (if any) of the complement
C <, J. These bounded components are all simply connected, and the Julia
set J is equal to the topological boundary 8K. Throughout this section
we will assume the following.

Standing Hypothesis. The Julia set J is connected, or equivalently
the filled Julia set K is connected.

Then by Theorem 9.5 the complement C"K is conformally isomorphic
to C" II)) under the Bottcher isomorphism

¢:C"K~C"II))

which conjugates the map j outside K to the nth power map w r---1' ui"

outside the closed unit disk, with ¢(z) asymptotic to the identity map at
infinity. The continuous function G: C ---+ IR defined by

G(z) == {log 1¢(z)1 > 0 for z E C <, K,
o for z E K

is called the Green's function for K (Definition 9.6). Note the identity

G(j(z)) == nG(z).

Each locus G-1(c) == {z ; C (z) == c} with c > 0 is called an equipotential
curve around the filled Julia set K. Note that j maps each equipotential
C-1(c) to the equipotential C-1(nc) by an n-to-one covering map. The
orthogonal trajectories

{z ; arg(¢(z)) == constant}

of the family of equipotential curves are called external rays for K. We

188
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Figure 39. Julia set for the "Douedy rabbit"
z 1---+ z2 + c with c ~ -.12256 + .74486i.

In the top figure, some equipotentials of the form G == 2nGo
have been drawn in. The lower figure shows several periodic or
pre-periodic external rays.

189
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will use the notation Rt C C "K for the external ray with angle t, where
now we measure angle as a fraction of a full turn, so that t E lR/Z. By
definition, Rt is the image under the inverse Bottcher map ¢-l of the
half-line consisting of all products re 21rit E C <, lIJ), with r > 1. Note the
identity

In particular, if the angle t E lR./Z is periodic under multiplication by n,
then the ray Rt is periodic. For example, if nPt t (mod Z), then it
follows that fOP maps the ray, Rt onto itself.

Now consider the limit

1'(t) == lim ¢-1(re21rit).
r~l

Whenever this limit exists, we will say that the ray R t lands at the point
1'(t), which necessarily belongs to the Julia set J == oK.

Lemma 18.1. If the ray R t lands at a single point 1'(t) of the
Julia set, then the ray Rnt lands at the point 1'(nt) == f (1'(t)) .
Furthermore each of the n rays of the form R(t+j)jn lands at
one of the points in f- 1(1'(t )) , and every point in f- 1(1'(t )) is
the landing point of at least one such ray.

Proof. If z E J is not a critical point, then f maps some neighbor
hood N of z diffeomorphically onto a neighborhood N' of f(z), carrying
any ray R; n N to Rns n N'. Thus if Rs lands at z then Rns lands at
f (z), while if Rt lands at f (z) then for some uniquely determined s of
the form (t+ j)/n the ray R; must land at z. If z is a critical point, the
situation is similar, except that N maps to N' by a branched covering,
so that each ray landing at f (z) is covered by two or more rays landing
at z. 0

In particular, if the ray Rt is periodic of period p 2 1, and if Rt
lands at a point 1'(t) , then it follows that 1'(t) is a periodic point of f
with period dividing p.

Fatou showed that most rays do land, and the Riesz brothers showed
that distinct angles usually correspond to distinct landing points. More pre
cisely, applying Theorem 17.4 to the basin of infinity A( (0) C C, we obtain
the following.

Theorem 18.2 (Most Rays Land). For all t E lR/Z outside
of a set of measure zero, the ray Rt has a well-defined landing
point 1'(t) E J(f). Furthermore, for each fixed ZQ E J, the set
of t with 1'(t) == ZQ has measure zero.
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However, it is definitely not true that rays land in all cases. Using
Caratheodory's work, we can give a precise criterion.

Theorem 18.3 (Landing Criterion). For any given f with
connected Julia set, the following four conditions are equivalent.
• Every external ray Rt lands at a point {"(t) which depends

continuously on the angle t.
• The Julia set J is locally connected.
• The filled Julia set K is locally connected.
• The inverse Bottcher map cjJ-l : C <, IIJ) --+ C "K extends

continuously over the boundary 8IIJ), and this extended map
carries each e27fit E 8IIJ) to {"(t) E J(f).

Furthermore, whenever these conditions are satisfied, the result
ing map {": JR./Z --+ J(f) satisfies the semiconjugacy identity

{"(nt) == f({"(t))

and maps the circle JR./Z onto the Julia set J(f).

Definition. This map {" from JR./Z onto the locally connected
polynomial Julia set J(f) will be called the Csretheodory semiconjugacy
for J(f).

Proof of Theorem 18.3. First suppose that {": lR/Z --+ J is defined
and continuous. Then the image {"(JR./Z) is certainly a nonvacuous compact
subset of J. Starting with an arbitrary point, say ,,(0), in this image, we
see inductively, using Lemma 18.1, that all iterated preimages also belong
to ,,(JR./Z). Therefore by Corollary 4.13, the image {"(JR./Z) is the entire
Julia set J, and by Lemma 17.15, J is locally connected. The remaining
statements in Theorem 18.3 now follow immediately from Caratheodory's
Theorem 17.14, applied to the conformal isomorphism c , II} --+ t <, K.
o

Remark. A priori, it is possible that every external ray may land even
if K is not locally connected. An example of a compact set (but not a
filled Julia set) with this property is the symmetric comb, shown in Figure
40. It consists of the lines [-1, 1] x {±cn } (here c == .75 ), together with
the axes [-1,1] x {O} and {O} x [-1,1]. Evidently, in such an example,
the associated landing point function t r-t {"(t) cannot be continuous.

Here is another result, which follows immediately from Caratheodory's
Theorem 17.16.

Corollary 18.4 (Simple Closed Curves). The Julia set J
is a simple closed curve if and only if l" maps IR/Z homeomor-
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----- - ----~ -- ~-- -- - ~-----~~

Figure 40. A symmetric comb.

phically onto J.

For examples, see Figures 5a, 11, 14, and 24 (pp. 42, 80, 94, 121).

The following basic result due to Sullivan and Douady will be proved
below. (See Sullivan [1983] and also Lyubich [1986, p. 85].)

Theorem 18.5 (Locally Connected Julia Sets). If the Julia
set J of a polynomial map f is locally connected) then every
periodic point in J is either repelling or parabolic. Furthermore
every cycle of Siegel disks for f contains at least one critical
point on its boundary.

Recall from §11 that a Cremer point can be characterized as a periodic
point which belongs to the Julia set but is neither repelling nor parabolic.
Thus the following is a completely equivalent statement.

Corollary 18.6 (Some Julia Sets are Not Locally Con
nected). If f is a polynomial map with a Cremer point) or
with a cycle of Siegel disks whose boundary contains no critical
point) then the Julia set J(f) is not locally connected.

Remark. It is essential for these results that f be a polynomial.
Roesch [1998] has described examples of rational maps with locally con
nected Julia set which have a Cremer point. In fact the Julia set of a
map with Cremer point can be the entire Riemann sphere: If f(z) ==
z(z + a)/((3z + 1) where a and (3 are generic points on the unit cir
cle, then z == 0 and z == 00 are Cremer points by Corollary 11.3; but
using Shishikura [1987] one can show that J(f) == C.

The following supplementary statement holds even for nonpolynomials.
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Lemma 18.7 (Siegel Disk Boundaries). If a rational map
f has a Siegel disk ~ == f(~) such that the boundary 8~

is locally connected or such that the Julia set J(f) is locally
connected, then 8~ must be a simple closed curve, and f re
stricted to 8~ must be topologically conjugate to an irrational
rotation. In particular, there can be no periodic points in the
boundary.

Examples of Cremer points were constructed in §11, and examples of
Siegel disks with no boundary critical point have been given by Herman
[1986] (compare Douady [1987]). However, there is no known example of a
Siegel disk which has a boundary periodic point, or a Siegel disk which is
not bounded by a simple closed curve.

Proof of Lemma 18.7. Choose a conformal isomorphism 1/J : lI)) -+ ~

satisfying the conjugacy identity

'ljJ(>.w) = f('ljJ(w)) ,

where A has the form e21fi e with ~ E IR "Q. Arguing as in Theorem 17.14,
we see that 1/J extends to a continuous map W: lI)) -+ ~ which must satisfy
this same identity. But this implies that 8lI)) maps homeomorphically onto
8~, for otherwise, if w(wo) == w(uwo) for some u -I 1, lui == Iwol == 1,
then it would follow that W(AkwO) == W(Akuwo) for k == 1, 2, ... , and
hence that W(w) == W(uw) for all w on the unit circle. If the group of
all such u were dense on the circle, then W(8lI))) would be a single point,
which is impossible. On the other hand, if this group were generated by
some root of unity, then the result of gluing a neighborhood of Wo in the
boundary of lI)) to a neighborhood of uwo would be a nonorientable surface
embedded in e, which is also impossible. This contradiction proves Lemma
18.7. D

The proof of Theorem 18.5 will be based on the following. Let zo be a
fixed point in the Julia set J. If J is locally connected, then '"'I : IR/Z -+ J
is continuous and onto, hence the set X == '"'I-I (zo) (consisting of all angles
t such that R t lands at zo) is a nonvacuous compact subset of the circle.
We claim that the n-tupling map t ~ nt carries X homeomorphically
onto itself. In fact the fixed point zo certainly cannot be a critical point
of i, since it lies in the Julia set, so f maps a small neighborhood of zo
diffeomorphically onto a small neighborhood of Zo, carrying external rays
landing at Zo bijectively to external rays landing at zo.

Lemma 18.8. Let n 2: 2 be an integer and let X C IR/Z be a
compact set which is carried homeomorphically into itself by the



194 THE JULIA SET

map t ~ nt (mod Z). Then X is finite.

Proof. In fact we will prove the following more general result. Let
X be a compact metric space with distance function dist(x, y), and let
h : X ~ h(X) c X be a homeomorphism which is expanding in the
following sense: There should exist numbers E > 0 and k > 1 so that

dist(h(x), h(y)) 2: k dist(x, y) (18 : 1)

whenever dist(x, y) < E. Then we will show that X is finite. Evidently
this hypothesis is satisfied in the situation of Lemma 18.8, so this argument
will prove the lemma.

Since h-1 : h(X) ~ X is uniformly continuous, we can choose 8 > 0
so that dist(x, y) < E whenever dist(h(x), h(y)) < 8. But this implies that
dist(x, y) < 8/k by (18 : 1). Since X is compact, we can choose some
finite number, say m, of sets of diameter 8 which cover X and hence
cover hOP(X). Applying h:», we obtain m sets of diameter 8/kP which
cover X. Since p can be arbitrarily large, this proves that X can have at
most m points. D

The proof of Theorem 18.5 will also require the following statement,
which does not assume local connectivity. We have shown that the set of
external rays landing on the fixed point ZQ is finite and maps bijectively
to itself under f. Hence the angles of these rays must be periodic under
multiplication by the degree n. Replacing f by some iterate if necessary,
we may assume that these angles are actually fixed, nt t (mod Z), so
that f(Rt ) == Rt .

Lemma 18.9. If a fixed ray Rt == f(Rt ) lands at ZQ, then ZQ

is either a repelling or a parabolic fixed point.

Proof. This follows easily from Lemma 16.2 (the Snail Lemma). First
note that each equipotential {z E C ; G(z) == constant> O} intersects
the ray Rt in a single point. Hence we can parametrize Rt as the image
of a topological embedding p : IR ~ C <, K, which maps each s E IR to the
unique point Z E Rt with log G(z) == s. (In fact, s can be identified with
the Poincare arclength parameter along Rt ; compare the proof of Theorem
18.10.) Since G(f(z)) == nG(z), we have f(p(s)) == p(s + logn), and it
follows from Corollary 16.3 that the landing point

ZQ == ry (t) == lim p (s )
s~-oo

is indeed a repelling or parabolic fixed point. D

Proof of Theorem 18.5. If ZQ is a fixed point in a locally connected
Julia set, then the preceding two lemmas and the accompanying discussion
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show that ZQ must be a repelling or parabolic point. The extension to
periodic points is straightforward. Now consider an f -invariant Siegel disk
~ == f(~). Since ry is a continuous map from lR./Z onto J, it follows
that the set X == ry-l(8~) c lR./Z is compact and infinite, with nX C
X. Hence by Lemma 18.8, the map t ~ nt from X to itself cannot be
injective. Therefore, there must be two distinct rays Rt 1 and Rt 2 landing
on 8~ with f (Rt 1) == f (Rt 2) · Since f IaD. is one-to-one, these two rays
must land at a common point ry(tl) == ry(t2) , and evidently this common
landing point must be a critical point of f. This completes the proof of
Theorem 18.5 for a Siegel disk of period 1, and the extension to higher
periods is straightforward. D

Definition. An external ray Rt is called rational if its angle t E lR./Z
is rational and is called periodic if t is periodic under multiplication by the
degree n so that nPt t (mod 1) for some p ~ 1.

Note that Rt is eventually periodic under multiplication by n if and
only if t is rational, and is periodic if and only if the number t is ra
tional with denominator relatively prime to n. (If t is rational with
denominator d, then the successive images of Rt under f have angles
nt, n2t, n3t , ... (mod Z) with denominators dividing d. Since there are
only finitely many such fractions modulo Z, this sequence must eventually
repeat. In the special case where d is relatively prime to n, the fractions
with denominator d are permuted under multiplication by n modulo Z,
hence t is periodic.)

We will prove the following basic results. We continue to assume that
K is connected but do not assume local connectivity.

Theorem 18.10 (Rational Rays Land). Every periodic ex
ternal ray lands at a periodic point which is either repelling or
parabolic. If t is rational but not periodic, then the ray Rt
lands at a point which is eventually periodic but not periodic.

(Compare Douady and Hubbard [1984-85] and Pommerenke [1986].)
The converse result, perhaps due to Douady, is more difficult. (Compare
Eremenko and Levin [1989], Petersen [1993], and Hubbard [1993].)

Theorem 18.11 (Repelling and Parabolic Points Are
Landing Points). Every repelling or parabolic periodic point
is the landing point of at least one periodic ray.

The following supplementary statement is much easier to prove.

Lemma 18.12. If one periodic ray lands at ZQ, then only finitely
many rays land at ZQ, and these rays are all periodic of the same
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period (which may be larger than the period of zo).

1/3 1/6

3/8

5/8

1/4

3/4

1/8

7/8

o
1/2

2/3

o

5/6

Figure 41. Julia sets for z r-t z3 - .75z +~/4 and z r-t z3 - iz2 + z
with some external rays indicated.

As an example, Figure 41 shows the Julia sets for the cubic maps
f(z) = z3 - 3z/4 +~/4 and g(z) = z3 - iz2 + z. In the left-hand exam
ple, the 0 and 1/2 rays land at distinct fixed points; the 1/8, 1/4, 3/8,
and 3/4 rays land at the third fixed point; while the 5/8 and 7/8 rays
land on a period 2 orbit. In the right-hand example, the 0 and 1/2 rays
must both land at the parabolic fixed point z = 0, since the remaining
fixed point at z = i is superattracting and hence does not belong to the
Julia set. The 1/6, 1/3, 2/3, and 5/6 rays have denominator divisible by
3 and therefore land at pre-periodic points. In fact, these four rays land at
the two disjoint preimages of zero. The analogous discussion for Figure 39
(p. 189) will be left to the reader.

In the parabolic case, we can sharpen these statements as follows.

Theorem 18.13 (The Parabolic Case). Recall that the mul
tiplier at a parabolic fixed point is a primitive q th root of unity
for some q 2: 1. Every ray which lands at such a point Zo has
period exactly q. Furthermore, for every repelling petal P at
zo, there is at least one ray landing at Zo through the petal P.

Example 1. Consider the cubic map g(z) = z3 - iz2 + z of Figure 41
(right side). The parabolic fixed point z = 0 has multiplier A = 1, and
there is only one repelling petal, yet two distinct rays Ro and R 1/ 2 land at
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this point. Figure 19 (p. 106) shows a similar example, with three repelling
petals but four fixed landing rays.

Example 2. Now consider the map f(z) == z2 + exp(21fi · 3/7)z of
Figure 21 (p. 109). Here the multiplier is a seventh root of unity, and there
are seven repelling petals about the origin. Hence there must be at least
seven external rays landing at the origin, and their angles must be fractions
with denominator 127 == 27 - 1, so as .to be periodic of period 7. In fact
a little experimentation shows that only the ray with angle 21/127 and
its successive iterates under doubling modulo 1 will fit in the right order
around the origin. (Compare Goldberg [1992].) Thus there are just seven
rays which land at zero, one in each repelling petal. The numerators of the
corresponding angles are 21, 42, 84, 41, 82, 37, 74.

The proofs begin as follows.
Proof of Lemma 18.12. First consider the special case of a fixed ray

Rto == f(Rto) . In other words, suppose that to is a number of the form
j/(n - 1), so that to nto (mod Z). If Rto lands at zo, then clearly
f(zo) == zo·

Let X be the set of all angles x E lR/Z such that the ray Rx lands at
zo. Since f maps a neighborhood of Zo diffeomorphically onto a neigh
borhood of zo, preserving the cyclic order of the rays which land at zo,
it follows that the n-tupling map carries X injectively into itself preserv
ing cyclic order. For every x E X with x ¢ to (mod Z) and hence
nk x ¢ to (mod Z), define the sequence Xo, Xl, ... of representative points
for the orbit of x within the interval (to, to + 1) by the congruence

Xk nkx (mod Z) with to < Xk < to + 1.

First suppose that Xo < Xl, and hence to < Xo < Xl < X2 < · .. < to + 1.
Then the Xk must converge to some angle ii , which is necessarily a fixed
point for the map t ~ nt (mod Z). But this is impossible, since this
map has only strictly repelling fixed points. Similarly, the case Xo > Xl is
impossible. This proves that Xo == Xl so that X is one of the n - 1 fixed
points of the map t ~ nt (mod Z).

Now suppose that the smallest period of a ray Rt landing at Zo is
p > 1. Replacing f by the iterate 9 == fOP, the argument above shows
that every ray which lands at Zo is carried into itself by 9 and hence has
period ::; p under f. This proves that the period is exactly p. D

Proof of Theorem 18.10. We will make use of the Poincare metric
on C" K rv C <, IIJ) . Note that f is a local isometry for this metric. In
fact the universal covering of C" IIJ) is isomorphic to the right half-plane
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but Zk =I- 0 for k sufficiently large.

IHI+ = {w = u + iv ; u > O} under the exponential map. Here the real
part u of w corresponds to the Green's function G on C" K. The
map f on C" K corresponds to the nth power map on C" IIJ), and to
the Poincare isometry w ~ nw on IHI+. Each external ray corresponds
to a horizontal half-line v = constant in IHI+, and the Poincare arclength
J Idwl/u reduces to Jdu/u = Jdlogu along each such half-line.

Again, consider first the case of a fixed ray f(Rt ) = Rt . As in the proof
of Lemma 18.9, we can introduce the parameter s = log G(z) along this
ray, so that Rt is the image of a path p : lR ---+ C <, K, where f maps
p(s) to p(s + log n). Thus Rt = p(lR) is the union of path segments

h = p([k log n, (k + 1) log n])

of Poincare arclength log n, where k ranges over all integers, and where f
maps Ik isometrically onto Ik+l' On the other hand, G(p(s)) = eS tends
to zero as s ---+ - 00, so any limit point z of p(s) as s ---+ - 00 must belong
to the Julia set J = 8K. Using Theorem 3.4, given any neighborhood N of
z we can find a smaller neighborhood N' so that any I k which intersects
N' is contained in N. Since f maps one endpoint of lk to the other, this
shows that N n f(N) =I- 0 for every neighborhood N, so that z must be
a fixed point of f. But the set of all limit points must be connected. (See
Problem 5-b.) Since f has only finitely many fixed points, this proves that
the ray Rt must land at a single point, which is necessarily a fixed point of
the map I, and is necessarily repelling or parabolic by Lemma 18.9. The
corresponding statement for a ray of period p now follows by applying the
argument above to the iterate g = fOP.

Finally, if t belongs to Q/Z then it must certainly be eventually pe
riodic under multiplication by n, so it follows by Lemma 18.1 that the ray
R t lands. This completes the proof of Theorem 18.10. D

The proof that at least one periodic ray lands on a repelling or parabolic
point will be based on the following ideas. It clearly suffices to consider the
special case of a fixed point at the origin.

Definition. We assume that 0 = f(O) is either repelling or parabolic.
By a backward orbit for the map f: ce ---+ C we mean an infinite sequence
z = (zo, Zl, ... ) of points Zk E ce which satisfy Zk = f(Zk+l) , so that
Zo ~ Zl ~ Z2 ~ .... Let E be the space consisting of all such sequences
which converge to zero nontrivially in backward time, so that

lim Zk = 0,
k-HX)

To specify a topology for this space E, we can first choose neighborhoods
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Vo and VI of 0 so that f maps va diffeomorphically onto VI. Let
9 : VI ~ Vo be the inverse map. The space E can be described as the
union of the nested subsets

Eo C EI C E2 C···,

where Z E Ek if and only if Zj E Vo nVI-, {O} for all j 2: k. If Z belongs to
Ek , then every coordinate of z can be expressed as a holomorphic function
of Zk. In fact Zj = fo(k-j)(Zk) if j :::; k, and Zj = go(j-k) (Zk) if j 2: k.
Now topologize E so that each Ek is an open subset and so that each
correspondence z 1-+ Zk maps Ek homeomorphically into Vo. By this
same construction, we can assign a conformal structure to E, so that each
connected component of E becomes a Riemann surface. Note that the shift
map (zo, ZI, Z2, ... ) 1-+ (ZI, Z2, Z3, ... ) is then a conformal isomorphism,
with inverse f: E ~ E defined by the formula

f(zo, ZI, Z2, · .. ) = (f(zo), f(ZI), f(Z3), ... ).

Figure 42. The set E rv C for one of the repelling fixed points of
Figure 39 (p. 189) 1 with k shaded. Here f permutes the three
components of E" tc 1 and f03 maps each component Uk to
itseli, expanding by a factor of A3 ~ 1.357 - .004 i.

If the origin is a repelling point of multiplier A, then we can define a

canonical diffeomorphism n : E ~ C <, {O} by setting

~(z) = lim Akzk'
k-wcx:

(Compare the proof of Theorem 8.2, Koenigs Linearization.) Thus E is con-
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nected, and hence a Riemann surface, in the repelling case. In the parabolic
case, E will be a union of m simply connected Riemann surfaces Ep rv C,
where m is the number of repelling petals in the Leau-Fatou flower around
the origin. In fact, replacing f by some iterate if necessary, we may assume
that the multiplier of f at the origin is +1. For each repelling petal P,
let Ep C E be the set of z such that Zk E P for k sufficiently large, and
let Ccp : P --t C be the Fatou coordinate, satisfying ocp (f (z)) == ccp(z) + 1
whenever both Z and f(z) belong to P. Thus ap(zk) == ap(zk+l) + 1

f"'o..J

for large k, and we can define a conformal isomorphism <I>p : Ep ~ C
by the formula <I>p(z) == ap(zk) + k for any k which is large enough so
that the points Zk, Zk+ 1, ... all belong to P.

Now let k C E be the closed subset consisting of all points z
(zo, Zl, ... ) E E for which the Zk belong to the filled Julia set K.

Lemma 18.14. Let Ui, be any connected component of E" k.
Then Uo is a universal covering of C" K under the projection

7r : (zo, Zl, ... ) t---+ Zo from Uo to C" K.

Proof. To show that 7r : Uo --t C "K is actually a covering map,
consider any simply connected open set Wee" K. Then we will show
that W is evenly covered in Uo. Let z == (zo, Zl, ... ) be any point
of Uo with Zo E W. Since each fOk : C <, K --t C "K is a covering
map, there is a unique branch 9k : W --t C "K of f- k restricted to W
such that 9k(ZO) == Zk. Since the set C" K is hyperbolic, the collection
of maps {9k} forms a normal family. In fact the sequence {9k} must
converge locally uniformly to the zero map, for otherwise we could choose a
subsequence converging locally uniformly to a non-zero holomorphic limit.
This is impossible since, if k is large enough so that 9j(ZO) == Zj belongs
to Vo for j 2: k, then 9k maps a small compact neighborhood N of Zo
into Va, and it follows easily that the successive images 9j (N) converge
uniformly to zero as j --t 00.

Now the required lifting g: W --t Uo from W to Uo is defined by

g(z) = (z, gl(Z), 92(Z), ... ).

Note that g(zo) is equal to the specified z E Uc: Thus W is evenly
covered, which proves that 7r: Uo --t C "K is a covering map.

On the other hand, each connected component Uo of E" k is simply
connected: Consider any closed loop h : IR./Z --t Ue . Setting h(t) ==
(ha(t), hl(t), ... ) we can choose k so that hk(IR./Z) is contained in a
linearizing neighborhood or a petal. This image loop can be shrunk to a
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point within C" K, since it cannot enclose any point of the large connected
set K. It follows easily that the loop h(lR/Z) can be contracted within
Uo · This completes the proof that the covering map Uo ~ C "K is a
universal covering. D

Lemma 18.15 (Main Lemma). Each component Uo of
E" k is mapped onto itself by some iterate of f.

First consider the repelling case, with ~ : E~ C <, {O}. The proof
of Lemma 18.15 in this case begins as follows. Consider the sequence
of successively larger concentric circles Cq C E, defined by the equation
\~(z)1 = \Alq for q 2: 0, where A is the multiplier so that f(Cq) = Cq+l .

Lemma 18.16. Some image Uk = fok(Uo) , with k E Z, has the
following property for every q > O. Using the Poincare metric
associated with the set Uc , the two subsets UknCo and UknCq
have distance less than or equal to q log n within Uk.

Proof. Note that any two such images Uk and Uf are either equal or
disjoint. Let U be the union of these open sets Uk. The Green's function
G 0 1f : E ~ lR is harmonic and strictly positive on U, and identically
zero on 8U C k. Let Go = (G 0 1f) (z) be the maximum value which is
attained by G 0 1f on the set U n Co, and suppose that z E Ui: Since
foq(U nCo) = U n Cq, and since (G 0 1f 0 foq)(z) = nq (G 0 1f)(z) where
n is the degree, it follows that the maximum value of G 0 1f on U nCq is
nqGo, attained at the point foq (z). In Uk, just as in C" K , the orthogonal
trajectories of the equipotentials Go 1f(z) = constant can be described as
external rays and can be parametrized by their Poincare arclength log Go 1f .

Start at the point zE UknCO and follow the external ray through this point
until we first arrive at some z' E Ui. nCq . The Poincare length of this ray
segment is 10g(G o 1f)(z') -log(G o 1f)(z) ~ log(nqGo) -log(Go) = q logn,
as required. D

To prove Lemma 18.15 in the repelling case, we must show that the
sets Uk cannot be pairwise disjoint. Suppose to the contrary that the Uk
are pairwise disjoint. Then we will show that the Poincare distance in Uk
between UknCO and UknCq would have to increase more than linearly with
q, which is impossible by Lemma 18.16. This contradiction will complete
the proof. The argument is based on the following estimate.

Lemma 18.17. Consider the vertical strip S of width w con
sisting of all complex numbers x + iy with 0 ~ x ~ w. Let
U be a simply connected region which intersects both boundary
lines, which we denote briefly by {x = O} and {x = w}, and
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let a == fsnu dx dy be the Euclidean area of S n U. Then the
Poincare distance between U n{x == O} and U n{x == w} within
U is greater than w 2 / 4 a.

In particular, as the area tends to zero with w fixed, this distance tends
to infinity. The proof will be based on the following inequality. If "Y is a
smooth path segment in U with Poincare arclength Lu(1), then

! Lu(-y) :S hIdzl/dist(z, aU) :S 2 Lu(-y) , (18 : 2)

using Euclidean distance to the boundary. See Appendix A, Corollary A.8.
Using this inequality, the proof of Lemma 18.17 proceeds as follows.

Let R(xo) be the length of the intersection of U with the vertical line
{x == xo}, so that a == fa R(x) dx. Let J be the subset of the interval I ==

[0, w] consisting of points x such that R(x) :s; 2a/w. Then the Lebesgue
measure of J satisfies Leb( J) > w /2. In fact

a= {f(x)dx ;::: ( f(x)dx> Leb(I"J)2a/w,
if if"J

which implies that Leb(J>. J) < w/2, and hence Leb( J) > w /2. Note that
the Euclidean distance of any point z == x + iy E S n U from au is at
most R(x)/2. Using (18 : 2), it follows that the Poincare length LU(1) of
any path from {x == O} to {x == w} within U satisfies

Lu(-y) ;::: hdx/f(x) ;::: i dx/f(x) ;::: Leb(J) w/2a > w2/4a.

This proves Lemma 18.17. 0

We will use the flat metric Idfl:I/fl: on the set E rv C" {Ole (Equiva
lently, we could identify E with the bi-infinite cylinder C/(21fiZ) with its
usual flat Euclidean metric, using the conformal equivalence Z ~ log fl:(z).)
Using this metric, note that f maps E isometrically onto itself. Let
Aq c E be the annulus bounded by the circles Cq and Cq+l , and let
a stand for area with respect to this flat metric. Assuming that the Uk
are pairwise disjoint, since a(Ao) is finite it follows that a(Uk n Ao) tends
to zero as Ik I~ 00. Since fo q maps the intersection U-q n Ao isometri
cally onto UonAq , it follows that a(UonAq ) also tends to zero as q ~ 00.

Using Lemma 18.17, it follows that the Poincare distance, within Uo , be
tween Cq and Cq+1 tends to infinity as q ~ 00. Hence the Poincare
distance within Uo between Co and Cq increases more than linearly with
q. A similar argument applies to the Poincare distance within each U, but
this contradicts Lemma 18.16, and this contradiction completes the proof
of Lemma 18.15 in the repelling case. 0
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Proof of Theorem 18.11 in the Repelling Case. By Lemma 18.15
we can choose k > 0 so that fok maps the simply connected set Uo
biholomorphically onto itself, evidently without fixed points. Hence we can
form a quotient Riemann surface S by identifying each z E Uo with
fOk(z). We know from §2 that S can only be an annulus or a punctured
disk. However, the punctured disk case is impossible, since Lemma 18.17
easily yields a positive lower bound for the Poincare arclength of a path
joining z to fOk(z). Thus S is an annulus. In particular, there is a unique
simple closed Poincare geodesic on S. (Compare Problem 2-f. Intuitively,
think of a rubber band placed around a napkin ring which shrinks to the
unique simple closed curve of minimal length.) Lifting to the universal
covering Uo of S, we obtain an fok -invariant bi-infinite Poincare geodesic.
Now projecting to C" K we obtain an fOk-invariant bi-infinite Poincare
geodesic p : lR ---t C <, K. Since the Green's function G (p(s)) tends to
infinity as s ---t +00, this can only be an external ray. (Any Poincare
geodesic in the right half-plane is either horizontal, corresponding to an
external ray, or else has bounded real part.) On the other hand, since the
Koenigs coordinate of p(s) tends to zero as s ---t - 00, this ray lands at the
origin. This proves Theorem 18.11 in the repelling case. 0

Proofs in the Parabolic Case. As noted earlier, it suffices to consider
the case A == 1. Recall that the set Ep consists of backward orbits which
converge to zero through a given repelling petal P, with Fatou isomorphism

rv

<Pp : Ep~C satisfying <Pp 0 f(z) == <pp(z) + 1. Recall also that every
repelling petal P must intersect the neighboring attracting petals. In fact
every z E P with ¢(z) sufficiently far from the real axis must have orbit
converging to zero and hence belong to the filled Julia set K. It follows
that any point z E Ep for which <pp(z) _u + iv with Ivl sufficiently
large must belong to the corresponding set K. In other words, the entire
image <Pp(Ep" K) c C must be contained in a strip Ivl < constant, of
finite height. In place of the circles Cq and annuli Aq of the argument
above, we now use the vertical lines

Lq == {z E Ep ; Re(<Pp(z)) == q}

and the vertical strips bounded by L q and L q+l . An argument analogous
to that of Lemma 18.16 shows that the Poincare distance between Lo and
Lq within a suitable Uk is less than or equal to q log n. On the other hand,
if the images Uk == fOk(UO) were pairwise disjoint, then an area argument,
just like that above, would show that this distance must grow more than
linearly with q. This contradiction completes the proof of Lemma 18.15.

In fact, in this parabolic case with A == 1, we get the sharper statement
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that f(Uo) == U«. For if U1 == f(Uo) =I Uc ; then the image <I>p(U1) in the
strip {u + iv; Ivl < constant} would have to lie either above or below the
image <I>p(Uo). If, for example, it were above, then <I>p(U2) would have to
be above <I>p(U1) , and so on, so that Uk =I Uo for all k > O.

Now, as in the argument above, we can form a quotient annulus S by
identifying each z E Uo with f(z). The unique simple closed geodesic in
S lifts to a bi-infinite geodesic in Uo, which projects to an external ray
Rt == f(Rt ) which must land at the origin through the given repelling petal
P. This completes the proof of Theorems 18.11 and 18.13. D

Further development and application of these ideas may be found, for
example, in Goldberg and Milnor [1993], Kiwi [1997, 1999], Milnor [2000a,
2000b], Schleicher [2000], and Schleicher and Zimmer [2003].



§19. Hyperbolic and Subhyperbolic Maps

This section will describe some examples of locally connected Julia sets,
using arguments due to Sullivan, Thurston, Douady, and Hubbard.

Definition. A rational map f will be called dynamically hyperbolic
if f is expanding on its Julia set J in the following sense: There exists
a conformal metric p., defined on some neighborhood of J, such that the
derivative D fz at every point z E J satisfies the inequality

IIDfz(v)II JL > Ilvll JL

for every nonzero vector v in the tangent space TCz . (Notation as in the
proof of Theorem 2.11.) Since J is compact, it follows that there exists
an expansion constant k > 1 with the property that II D f z II JL ~ k for all
points z in some neighborhood of J. In particular, any smooth path of
length L in this neighborhood maps to a smooth path of length ~ kL.
It follows easily that every z E J has some open neighborhood N; in C
such that the associated Riemannian distance function satisfies

distJL(f(x) , f(y)) ~ k· distJL(x, y) (19 : 1)

for all x,yENz .

Recall from §11 that the postcritical set P of f is the collection of all
forward images fo j (c) with j > 0, where c ranges over the critical points
of f.

Theorem 19.1 (Hyperbolic Maps). A rational map of degree
d ~ 2 is dynamically hyperbolic if and only if its postcritical
closure P is disjoint from its Julia set, or if and only if the
orbit of every critical point converges to an attracting periodic
orbit. In fact if f is hyperbolic, then every orbit in its Fatou set
must converge to an attracting periodic orbit.

Remark. Hyperbolic maps have many other important properties. Ev
ery hyperbolic Julia set has area zero (see for example Carleson and Gamelin
[1993]). It is not hard to see that every periodic orbit for a hyperbolic map
must be either attracting or repelling. If f is hyperbolic, then every nearby
map is also hyperbolic. Furthermore, according to Mane, Sad, and Sullivan
[1983] or Lyubich [1983a, 1990], the Julia set J(f) deforms continuously
under a deformation of f through hyperbolic maps. In contrast, in the

205
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nonhyperbolic case, a small change in f may well lead to a drastic alter
ation of J(f). For example, if a Siegel point becomes repelling under a
small deformation of i , then it will suddenly belong to the Julia set.

The well-known Generic Hyperbolicity Conjecture is the conjecture that
every rational map can be approximated arbitrarily closely by a hyperbolic
map. (See for example McMullen [1994b].) However, this has not been
proved, even for quadratic polynomials.

Proof of Theorem 19.1. Let V be the complement C" P and let
W == f- 1(V ) C C. As in the proof of Theorem 11.17, we see that W c V
and that f maps W onto V by a d-fold covering map. Furthermore, if
we exclude the trivial case of a map which is conjugate to z ~ z±d, then
every connected component of V or W is conformally hyperbolic.

Now suppose that P n J == 0, or in other words that J c V. Then
W must be strictly smaller than V, for otherwise V would map to itself
under f and hence be contained in the Fatou set. In fact any connected
component of W which intersects J must be strictly smaller than the
corresponding component of V. It follows, arguing as in (11 : 6), that
liD fzllv > 1 for every z E W. (Here the subscript V indicates that we
use the Poincare metric associated with the hyperbolic surface V.) Since
JeW, this proves that f is dynamically hyperbolic.

(Remark: An alternative version of this argument would be based
on the observation that r' must lift to a single-valued map F from the
universal covering surface V to itself. Then F must be distance decreasing
for the Poincare metric on V, and hence f must be distance increasing for
the Poincare metric on V. Compare the proof of Theorem 19.6.)

Conversely, suppose that f is dynamically hyperbolic. Thus we can
choose some conformal metric Jl on a neighborhood of J so that f is
expanding with expansion factor ~ k > 1 throughout some possibly smaller
neighborhood V' of J. It certainly follows that there cannot be any critical
point in V'. Let NE(J) be the open E-neighborhood of J with respect to
this metric. Then we can choose E> 0 small enough so that:

(1) every point in the open E-neighborhood NE(J) can be joined to J
within V' by at least one minimal geodesic for the metric Jl; and

(2) f- 1NE(J) c V'.

For any z E f- 1NE ( J), it follows that

dist(z, J) < dist(f(z), J)/k.

In fact, a minimal geodesic from f(z) to J will necessarily lie within
N E (J), and one of its d preimages will join the point z to J and will
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have length at most dist(f(z), J)/k.
It follows that an arbitrary orbit Zo ~ Zl ~ · .. in the Fatou set can

contain at most a finite number of points in N€ (J). In fact, no point outside
of N€(J) can map into N€(J), while if an orbit starts in N€(J) <, J, then
the distance between Zi and J must increase by a factor of k or more
with each iteration until the orbit leaves N€ (J), never to return. Therefore
any accumulation point z for this orbit lies in the Fatou set. If U is the
Fatou component containing z, then evidently some iterate fOP must map
U into itself. According to the classification of periodic Fatou components
in Theorem 16.1, U must be either an attracting basin, a parabolic basin,
or a rotation domain. Since U clearly cannot be a parabolic basin, and by
Theorem 11.17 and Lemma 15.7 cannot be a rotation domain, it must be an
attracting basin. Therefore the orbit Zo ~ Zl ~ · .. must converge to the
associated attracting periodic orbit. In particular, the orbit of any critical
point must converge to an attracting periodic orbit. This clearly implies
that P n J == 0 and completes the proof of Theorem 19.1. D

Theorem 19.2 (Local Connectivity). If the Julia set of a
hyperbolic map is connected, then it is locally connected.

(Note that a Julia set which is not connected can never be locally con
nected, since it must have infinitely many connected components by Corol
lary 4.15.)

The proof of Theorem 19.2 will be based on three lemmas.

Lemma 19.3 (Fatou Component Boundaries). If U is a
simply connected Fatou component for a hyperbolic map, then
the boundary au is locally connected.

Proof. First consider the case of an invariant component U == f(U).
Choose a conformal isomorphism ¢:]I)) ~ U so that ¢(0) is the attracting
fixed point in U. Then F == ¢-l 0 f 0 ¢ is a proper holomorphic map from
]I)) to itself, with F(O) == 0, and with at least one critical point by Theorem
8.6. For any 0 < r < 1, it follows from the Schwarz Lemma that F maps
the disk ]I))r of radius r into some disk of strictly smaller radius.

If r is sufficiently close to 1, then it is not hard to see that the closure of
the annulus Ao = p-l (]I))r) ,,]I))r is fibered by radial line segments (Figure
43). That is, each radial line {teie ; 0 < t < I} intersects Ao in a closed
interval Ie which varies smoothly with e. To see this, express F as a
Blaschke product

F(w) = eia IT(w - aj)/(l- lijW).

(See Problem 15-c.) If ww = 1, then a brief computation shows that the
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Figure 43. The annulus Ao == p-I (JI))r) <, JI))r .

radial derivative
d log P (w ) r (W )

dlog(w) w F(w)

takes the form E(l- ajaj)/\w - aj\2 > o. Hence for \wl close to +1 the
real part of this radial derivative is still positive, which implies transversality
of the required intersection.

Since f is hyperbolic, we can choose a conformal metric in some neigh
borhood of J::J au so that f is expanding near J with expansion con
stant k > 1. Choose r < 1 large enough so that ¢(JI))" JI))r) is contained
in this neighborhood. Using the induced metric on JI))" JI))r, let M be the
maximum of the lengths of the radial intervals Io. Now consider the se
quence of annuli Ao, AI, A2, ... , converging to the boundary of JI)), where
Am == p-m(Ao) . Note that the closure of each Am is fibered by the
connected components of the preimages p-m(Io) and that each such com
ponent curve segment has length at most M / km . Hence we can inductively
construct a sequence of homeomorphisms

gm : aJI))r t--t p-malI))r
so that go is the identity map and so that gm(reiO) and gm+l(reiO) are
the two endpoints of the same fiber in the annulus Am. Then

dist(gm(reio
) , gm+l(reiO

) ) ::; M/km,

hence the maps

form a Cauchy sequence. Therefore they converge uniformly to a continuous
limit map from alI))r onto au. By Theorem 17.14, this proves that au is
locally connected.
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The case of a periodic Fatou component U = fOP(U) now follows by
applying this argument to the iterate fOP. Since any Fatou component
U is eventually periodic by Theorem 19.1 (or by Sullivan's Nonwandering
Theorem 16.4), and since au is locally homeomorphic to afoq(U), the
conclusion follows. 0

Remark. In the special case of a polynomial map, note that Lemma
19.3 by itself implies Theorem 19.2, since the basin of infinity for a poly
nomial map is an invariant Fatou component, with boundary equal to the
entire Julia set.

For the next lemma, we use the spherical metric on C.
Lemma 19.4 (Most Fatou Components Are Small). If f
is hyperbolic with connected Julia set, then for every E > 0 there
are only finitely many Fatou components with diameter greater
than E.

In other words, if there are infinitely many Fatou components, num
bered in any order as Ul, U2, ... , then the diameter of Uj in the spherical
metric must tend to zero as j ---* 00. (However, a hyperbolic map with dis
connected Julia set may well have infinitely many Fatou components with
diameter bounded away from zero. See Figure 6d, p.43, for McMullen's
example. I don't know any such example with connected Julia set, even in
the nonhyperbolic case.)

Proof of Lemma 19.4. As in the proof of Theorem 19.1, we can choose
a conformal metric J-l with expansion constant k > 1 in a neighborhood
V' of J, and choose E > 0 so that the closure N E = N E ( J) of the
E- neighborhood of J is contained in V', with f- 1(NE) C NE , Thus, if
a Fatou component U is contained in N E , then every component U' of
r' (U) is contained in NE , and satisfies

diam(U') :s; diam(U) / k ,

using the infimum of J-l-Iengths of paths within N E as distance function.
Note that the various Fatou components Uj, together with NE , form

an open cover of the compact space C. Choosing a finite subcover, we see
that all but finitely many of the Uj are contained in NE • For each Uj,
we know from Theorem 19.1 that some forward image fOR (Uj) contains an
attracting periodic point, and hence is not contained in NE • Define the level
of Uj to be the smallest f ~ 0 such that fOR (Uj) et NE • Since there are
only finitely many Uj of level zero, it follows that there are only finitely
many of each fixed level. If M is the maximum diam(Uj) among the Uj
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of levell, then it follows that

diam(Uj) < M / kf - 1

for each Uj of level I! 2: 1. Evidently this tends to zero as I!~ 00. Since all
but finitely many of the Uj lie within the compact set N E, it follows easily
that the diameters in the spherical metric also tend to zero, as required. D

Lemma 19.5 (Locally Connected Sets in 8 2 ) . If X is a
compact subset of the sphere 8 2 such that every component of
8 2 "X has locally connected boundary and such that there are
at most finitely many components with diameter > E for any
E > 0, then X is locally connected.

(For the converse statement, see Problem 19-f.)

Proof. Given a point x E X and a neighborhood NE(x) of radius
E, using the spherical metric, we will find a smaller neighborhood N8(X)
so that any point in X n N8(X) is joined to x by a connected subset of
X n NE(x). In fact, choose 8 < E/2 so that, for any component Uj of
8 2

<, X, any two points of aUj with distance less than 8 are joined by
a connected subset of aUj of diameter less than E/2. (See Lemma 17.13.
Evidently we need only consider the finitely many Uj which have diameter
2: E/2.) Now for any y E X n N8(X) , take the spherical geodesic I from
x to y and replace each connected component of I" X by a connected
subset of the boundary of the corresponding Uj with diameter less than
E/2. The result will be a connected subset of X n NE containing both x
and y. This proves that X is locally connected at the arbitrary point
x. D

Proof of Theorem 19.2. This follows immediately from Lemmas 19.3,
19.4, and 19.5. D

Douady and Hubbard, using ideas of Thurston, also consider a wider
class of mappings which they call subhyperbolic. These may have critical
points in the Julia set, but only if their orbits are eventually periodic. The
only change in the definition is that the conformal metric in a neighborhood
of J is now allowed to have a finite number of relatively mild singularities
in the postcritical set. To understand the allowed singularities, consider a
smooth conformal metric p(w)ldwl which is invariant under rotation of the
w-plane through an angle of 21T[m radians, and consider the identification
space in which w is identified with e21ri / m w . The resulting object is a
smooth Riemannian manifold except at the origin, where it has a cone point.
If we set z == w m , then the induced metric in the z-plane has the form
Jf(z)ldzl, where
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Figure 44. On the left: disk in the w -plane. Three fundamental
domains under 1200 rotation are indicated. On the right: quotient
space in the pushed forward metric.

I
dz 1-1 P ( yIZ)

')'(z) = p(w) dw = mIzI 1- 1/m '

Thus ,,(z) ---+ 00 as z ---+ 0, but the singularity is relatively innocuous since
any reasonable path t ~ z(t) still has finite length J,,(z(t))ldz(t)l.

Definition. A conformal metric on a Riemann surface, with the expres
sion ,,(z)IdzI in terms of a local uniformizing parameter z, will be called an
orbifold metric if the function ,,(z) is smooth and nonzero except at a locally
finite collection of "ramified points" aI, a2, ... where it blows up in the
following special way. There should be integers "i ~ 2 called the ramifica
tion indices at the points aj such that, if we take a local branched covering
by setting z(w) == aj +wl/j , then the induced metric ,,(z(w))ldz/dwl·ldwl
on the w-plane is smooth and nonsingular throughout some neighborhood
of the origin. We will say that I is expanding with respect to such a metric
if its derivative satisfies IIDlpl1 ~ k > 1 whenever p and I(p) are not
ramified points. (Note that we cannot expect the sharper condition (19: 1)
near a critical point.)

Definition. The rational map I is subhyperbolic if it is expanding with
respect to some orbifold metric on a neighborhood of its Julia set.

Following Douady and Hubbard [1984-85], we have the following two
results. (Compare Corollary 14.5.)

Theorem 19.6. A rational map is subhyperbolic if and only if
every critical orbit is either finite or converges to an attracting
periodic orbit.

Theorem 19.7. If I is subhyperbolic with J (I) connected,
then J(f) is locally connected.

The proof of Theorem 19.7 is essentially identical to the proof of The
orem 19.2. In particular, the proofs of Lemmas 19.3 and 19.4 work equally
well in the subhyperbolic case. Details will be left to the reader. D
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Proof of Theorem 19.6. The argument is just an elaboration of the
proof of Theorem 19.1. In one direction, if j is expanding with respect
to some orbifold metric defined near the Julia set, then just as in Theorem
19.1 there is a neighborhood NE(J) so that every orbit in the Fatou set
eventually leaves this neighborhood, never to return. Hence it can only
converge to an attractive periodic orbit. On the other hand, if c is a
critical point in the Julia set, then every forward image joi(c), i > 0,
must be one of the ramification points aj for our orbifold metric, since the
map t" has derivative zero at the critical point c and yet must satisfy
IIDj~ill ~ ki at points arbitrarily close to c. The collection of ramified
points in J is required to be locally finite, so it follows that the orbit of c
must be eventually periodic.

Orbifolds. For the proof in the other direction, we must introduce
more ideas from Thurston's theory of orbifolds. (See Appendix E for a brief
introduction to this theory.)

Definition. For our purposes, an orbifold (8, v) will just mean a Rie
mann surface 8, together with a locally finite collection of marked points
aj (to be called ramified points), each of which is assigned a ramification
index Vj == v(aj) ~ 2 as above. For any point z which is not one of the
aj we set v(z) == 1.

Now let j be a rational map such that every critical orbit is either
finite or converges to an attracting cycle. We assign to j the associated
canonicalorbifold (8, v) as follows. As underlying Riemann surface 8 we
take the Riemann sphere <C with all attracting periodic orbits removed. As
ramified points aj we take all postcritical points, that is, all points which
have the form aj == jok (c) for some k > 0 and for some critical point c
of j. Since every critical orbit is either finite or converges to a periodic
attractor, we see easily that this collection of points aj is locally finite
in 8 (although perhaps not in <C). In order to specify the corresponding
ramification indices Vj == v(aj) , we will need another definition. If j(Zl) ==

Z2, with local power series development,

j(z) == Z2 + b(z - Zl)n + (higher terms),

where b =I 0 and n 2 1. Then the integer n == n(j, Zl) is called the local
degree or the branch index of j at Zl. Now choose the v(aj) ~ 2 to be the
smallest integers which satisfy the following condition.

Condition (*). For any Z E 8, the ramification index
v(j(z)) at the image point must be some multiple of the product
n(j, z) v(z).
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To construct these integers v(aj ), where aj ranges over all postcrit
ical points in 8, we consider all pairs (c, m) where c is a critical point
with fom(c) = aj, and choose v(aj) to be the least common multiple of
the corresponding branch indices n(fom, c). (Note that aj itself may be
a critical point, since one critical point may eventually map to another.)
There are only finitely many such pairs (c, m) since we have removed all
superattracting periodic orbits, so this least common multiple is well defined
and finite. It is not hard to check that it provides a minimal solution to the
required Condition (*).

(Remark. For some purposes it is convenient to extend this definition
to all points of e by setting v(f (z)) = 00 whenever z is an attracting
periodic point.)

As in Appendix E, we consider the universal covering surface

s. --+ (8, v)

for this canonical orbifold, that is, the unique regular branched covering of
8 which is simply connected and has the given u : 8 --+ Z as ramification
function. Such a universal covering could fail to exist only if 8 were the
entire Riemann sphere with at most two ramified points (see Lemma E.l),
and it is straightforward to show that this case can never occur for our
canonical orbifold.

Since f- 1(8) c 8, it is not difficult to see that r' lifts to a single
valued holomorphic map F : s; --+ Sv. In fact Condition (*) is exactly
what is needed in order to guarantee that such a lifting of f- 1 exists locally,
and since Sv is simply connected there is no obstruction to extending to a
global lifting. There are now three possible cases.

Conformally Hyperbolic Case. If Sv is hyperbolic, then F must
either preserve or decrease the Poincare metric for this universal covering
surface. If F were metric preserving, then f would preserve the orbifold
metric for (8, v), and it would follow that every periodic point for f in
8 must be indifferent, which is impossible. Hence F must be metric de
creasing, and f must be metric increasing. Since J is compact, it follows
that IIDFwll::; 11k < 1 whenever w E Sv projects into a suitably chosen
neighborhood W of J. Hence II Df z II 2: k > 1 for every z E W such
that z and f(z) are not ramified points, which completes the proof in this
case.
__ Conformally Euclidean Case. The easiest way to proceed when
8v is a Euclidean surface is simply to change the ramification function u .
For example, if we choose some periodic orbit in 8 and replace u by a
ramification function v' which is equal to 2v on this orbit and equal to v
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elsewhere, then Condition (*) will be preserved while 8V l as a nontrivial
branched covering of 8v ~ C, will certainly be hyperbolic. The proof then
goes through as above. (For a more informative argument in the Euclidean
case, see Theorem 19.9.)

Spherical Case. If s, were conformally equivalent to C, then S
would have to be the whole Riemann sphere. Furthermore, since F is a lift
of i', the composition

S""' F S""' projection S f S
v -----+ v -----+ -----+

would have to coincide with the projection map, and yet its degree would
have to be strictly larger than the degree of the projection map. Thus this
case can never occur. This completes the proof of Theorem 19.6. 0

As a corollary, we obtain a sharper version of Corollary 16.5.

Corollary 19.8. If f is subhyperbolic with no attracting peri
odic orbits, so that S is the entire Riemann sphere, then f is
expanding with respect to its orbifold metric on the entire sphere.
Hence the Fatou set is vacuous, and J(f) is the entire sphere.

In the Euclidean case, a more careful argument yields a much more
precise description of the subhyperbolic map f. In order to determine the
geometry of s., we introduce the orbifold Euler characteristic

X(S, v) = X(S) +L (v(~j) - 1),
to be summed over all points aj with v(aj) =I- 1. (Here x(S) is the
ordinary Euler characteristic, equal to 2 - m, where m is the number
of points in the complement C" S.) It follows easily from Lemma E.4
(Appendix E) that the universal covering surface 8v is either spherical,
hyperbolic, or Euclidean according to whether X(S, v) is positive, negative,
or zero.

Theorem 19.9. If x(S, v) == 0, then f induces a linear iso
".!!orphism ] (w) = can + f3 from the Euclidean covering space
S; rv C onto itself. In this case, the Julia set is either a cir
cle or a line segment, or the entire Riemann sphere. Here the
expansion constant lad is equal to the degree d when J is
I-dimensional and is equal to Vd when J is the entire sphere.

Compare §7. (Caution: The coefficient a itself is not uniquely deter
mined, since the lifting of f to the covering surface is determined only up
to composition with a deck transformation. The deck transformations may
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well have fixed points, since we are dealing with a branched covering, but
necessarily have the form W t--+ a'w + (3' where a' is some root of unity.)

Proof of Theorem 19.9. Starting with the orbifold (8, v) associated
with a subhyperbolic map j, construct a new orbifold (8', J.-l) as follows.
Let 8' == j-l(8) be obtained from the open set 8 by removing all imme
diate preimages of attracting periodic points, and define J.L == j* (v) by the
formula

J.-l(z) == v(l(z))/n(l, z),

where n(j, z) is the branch index. It follows from Condition (*) that
J.-l(z) is an integer with J.-l(z) 2: v(z) for all z E 8'. Evidently it follows
that

X(8', J.-l) ::; X(8, v)

with equality only if 8' == 8 and J.-l == u. But by Lemma E.2 in Appendix
E, since the map I : (8', J.-l) ---t (8, v) is a "d-fold covering of orbifolds," we
conclude that f induces an isomorphism S~ ----+ Sv of universal covering
surfaces and also that the Riemann-Hurwitz formula takes the form

X(8', J.-l) == X(8, v) d.

Combining these two statements, we see that

X(8, v) d :S X(8, v),

with equality if and only if 8 == 1-1 (8) and v == 1*u . Since d 2: 2, this
provides another proof that X(8, v) :::; O. Furthermore, it shows that we are
in the Euclidean case X(8, v) == 0 if and only if 8 == r' (8) and v == 1*v ,
so that I maps (8, v) to itself by a d-fold covering of orbifolds.

Thus, when s; is conformally Euclidean, it follows that j lifts to
a necessarily linear automorphism ] (w) == can + f3 of the universal covering
surface s; f'..J C. Furthermore, since 8 is fully invariant under I, it follows
from Lemma 4.9 that the complement <C" 8 has at most two points. We
now consider the three possibilities.

Case o. If 8 == <C, then we can compute the degree by integrating
II D Iz II over the sphere. In fact, using the (locally Euclidean) orbifold met
ric, note that j maps a generic small region of area A to a region of area
lal 2A. Integrating over S, we see that the degree d must be equal to
lal2 . In fact, it can be shown that such maps i , with Euclidean orbifold
and with the entire Riemann sphere as Julia set, are precisely the Lettes
maps. (Compare Definition 7.4, as well as Milnor [2004b].)
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Case 1. If S ~ C, then solving the required equation

X(S, v) = 1 - L (vtz) - 1) = 0,

it is not difficult to check that there must be exactly two ramification points,
both with index v(z) == 2. The corresponding universal covering space is
isomorphic to C, with the integers as branch points, and with all linear
maps of the form w ~ ±w + m as deck transformations. Since f must
carry integers to integers, it follows easily that f is a Chebyshev map up
to sign, with an interval as Julia set and with degree [o].

Case 2. If S rv C <, {O}, then there can be no ramification points, and
it follows that f is conjugate to z ~ z±d. Thus the Julia set is a circle,
and again d == lal. 0

Other Locally Connected Julia Sets. Many other Julia sets are
known to be locally connected. For quadratic polynomials, the most impor
tant result is the Yoccoz proof that the Julia set is locally connected provided
that it is connected, with no Cremer points or Siegel disks, and is not in
finitely renormalizable. (See Douady and Hubbard [1985], McMullen [1994a,
1994b, 1996], Milnor [1999, 2000a], and Lyubich [1999] for renormalization;
and see Hubbard [1993], Yoccoz [1999/2003], Milnor [2000b], and Lyubich
[1997/2000] for the Yoccoz theorem.) Another important example is given
by the Petersen-Zakeri proof of local connectivity for a generic quadratic
polynomial with Siegel disk. (See Petersen [1996, 1998], Yampolsky [1999],
and Petersen and Zakeri [2004].) A rational map is called geometrically fi
nite if the orbit of every critical point in its Julia set is eventually periodic.
Recall from §16 that every critical orbit in the Fatou set must converge
to an attracting cycle or to a parabolic cycle. Thus, in the geometrically
finite case we have very strict control of all critical orbits. In particular,
it follows from Corollary 14.4 and Lemma 15.7 that a geometrically finite
map can have no Cremer points, Siegel disks, or Herman rings. Tan Lei and
Yin [1996] and Pilgrim and Tan Lei [2000] have proved the following much
sharper version of Theorem 19.7: If f is geometrically finite, then every
connected component of its Julia set is locally connected.

Concluding Problems
Problem 19-a. The nonwandering set. By definition, the nonwan

dering set for a continuous map f : X --7 X is the closed subset n c X
consisting of all x E X such that for every neighborhood U of x there
exists an integer k > 0 such that U n fOk (U) =1= 0. Using the results of
§§4 and 16, show that the nonwandering set for a rational f is the disjoint
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union of its Julia set, its rotation domains (if any), and its set of attracting
periodic points.

Problem 19-b. Axiom A. In the literature on smooth dynamical
systems a I-dimensional map is said to satisfy Smale's Axiom A if and only
if the following two conditions are satisfied:

(1) The nonwandering set 0 splits as the union of a closed subset
0+ on which f is infinitesimally expanding with respect to a
suitable Riemannian metric, and a closed subset 0- on which
f is contracting. *

(2) Periodic points are everywhere dense in O.

(See, for example, Smale [1967], Shub [1987].) Show that a rational map is
hyperbolic if and only if it satisfies Axiom A.

Problem 19-c. An orbifold example. (1) Show that the Julia
set for the rational map z ~ (1 - 2/z)2n is the entire Riemann sphere.
(2) For n > 1, show that the orbifold metric for this example is hyperbolic.
(3) For n == 1, show that it is Euclidean. (In fact f is a Lattes map in this
case; compare Definition 7.4. The associated semiconjugacy e : 'If --+ e
has degree 4 (Milnor [2004b, §8.I]).

Problem 19-d. The Euclidean case. For any subhyperbolic map
whose canonical orbifold metric is Euclidean, show that every periodic orbit
outside of the finite postcritical set has multiplier A satisfying IAI == nP/ 8

where n is the degree, p is the period, and <5 is the dimension (1 or 2) of
the Julia set.

Problem 19-e. Expansive maps. A map f from a metric space to
itself is said to be expansive on a subset X if there exists € > 0 so that, for
any two points x =I y whose orbits remain in X forever, there exists some
k ~ 0 so that fOk (x) and fOk (y) have distance greater than e. Using
Sullivan's results from §I6, show that a rational map is expansive on some
neighborhood of its Julia set if and only if it is hyperbolic. (However, a map
with a parabolic fixed point may be expansive on the Julia set itself.)

Problem 19-f. Locally connected sets in the 2-sphere. Give
a complete characterization of compact locally connected subsets of the
2-sphere as follows. (1) Prove the following theorem of Torhorst:

If X C 8 2 is compact and locally connected, then the boundary

"In higher dimensions, (1) is replaced by the assumption that the tangent vector bundle
of the underlying manifold, restricted to n, splits as the direct sum of a bundle on which
the derivative D f is expanding and a bundle on which it is contracting.
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of every complementary component must be locally connected.

(See Whyburn [1964] and compare the proof of Theorem 17.14.) (2) Fur
thermore, prove that:

If there are infinitely many complementary components, then
their diameters tend to zero. *

(3) Now using Lemma 19.5, conclude that these two conditions are necessary
and sufficient for local connectivity.

* Here is one possible proof outline: Let U be a component of 8 2 " X of diameter

greater than 4E, with E small. After rotating the sphere, we may assume that U

contains a pair of points at distance 2E from the equator, one in the northern hemisphere

and one in the southern. Then each parallel at distance less than E from the equator

must intersect U in at least one interval whose endpoints cannot be joined within X

by any connected set of diameter less than E. Let bu be the infimum of the lengths of

such intervals. Then U has area A(U) 2:: 2E bu. Now if there were infinitely many such

components U, then their areas would tend to zero, hence the numbers bu would tend

to zero, and X would not be locally connected.



Appendix A. Theorems from Classical Analysis

This appendix will describe some miscellaneous theorems from classical com
plex variable theory. We first complete the proofs of Theorem 11.14, The
orem 17.4, and Theorem 18.2 by proving Jensen's inequality and the Riesz
brothers' theorem. We then describe results from the theory of univalent *
functions, due to Gronwall and Bieberbach, in order to prove the Koebe
Quarter Theorem for use in Appendix G.

We begin with a discussion of Jensen's t inequality. Let j: II) ~ <C be a
holomorphic function on the open disk which is not identically zero. Given
any radius 0 < r < 1, we can form the average

AU, r) = .2- r21r
log If(reiB)ldO (A : 1)

21r io
of the quantity log Ij (z )lover the circle Iz I == r .

Theorem A.l (Jensen [1899]). This average A(j, r) is
monotone increasing as a function of r. Hence A(j, r) either
converges to a finite limit or diverges to +00 as r / 1.

In fact the proof will show something much more precise.

Lemma A.2. If we consider A(j, r) as a function of log r ,
then it is piecewise linear, with slope dA(j, r) / d log r equal to
the number of roots of j inside the disk II)r of radius r, where
each root is to be counted with its appropriate multiplicity.

In particular, the function A(j, r) is determined, up to an additive
constant, by the location of the roots of j. To prove this lemma, note
first that we can write dB == dz/iz around any loop Izi == r. Consider an
annulus A == {z; ro < Izi < rI} which contains no zeros of j. According
to the Argument Principle, the integral

n = _1 J d log f (z) = _1 1 j' (z) dz
21ri ]fzl=r 21ri Jlzl=r j(z)

*A function of one complex variable is called univalent if it is holomorphic and injective.

t Johan Ludwig Jensen (1859-1925) was president of the Danish telephone company.

He was very active in mathematics although he never held an academic position. (His

career is reminiscent of that of Jorgen Pedersen Gram (1850-1916), another famous

Danish mathematician, who was an insurance executive.)

219
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measures the number of zeros of f inside the disk IT))r. In particular,
choosing ro < r < rl, we see that the difference log f (z) - log z" can be
defined as a single-valued holomorphic function throughout this annulus A.
Therefore, the integral of (log f (z) - log z") dz/ iz around a loop Izi = r
must be independent of r, as long as ro < r < rl. Taking the real part, it
follows that the difference A(f, r) - A(zn, r) is a constant, independent of
r. Since A(zn, r) == n log r, this proves that the function log r r-+ A(f, r)
is linear with slope n for ro < r < rl .

Finally, note that the average A(f, r) takes a well-defined finite value
even when f has one or more zeros on the circle Izi == r , since the singular
ityof log If(z)1 at a zero of f is relatively mild. (Compare the indefinite
integral flog Ixldx == x log Ixl- x, which is continuous as a function of x.)
Continuity of A(f, r) as r varies through such a singularity is not difficult
and will be left to the reader. D

Theorem A.3 (F. and M. Riesz [1916]). Suppose that
f : IT)) ~ C is bounded and holomorphic on the open unit disk.
If the radial limit

lim f (reiO
)

r/l

exists and takes some constant value Co for () belonging to a
set E C [0, 21f] of positive Lebesgue measure, then f must be
identically equal to co.

(Compare Theorem 17.4, which combines this statement with a theorem
of Fatou.)

Proof of Theorem A.3. Without loss of generality, we may assume
that Co == 0 and that f (IT))) cIT)). Let E (E, 8) be the measurable set
consisting of all () E E such that

If(reio)I < E whenever 1 - 8 < r < 1.

Evidently, for each fixed E, the sets E( E, 8) form a nested family with union
equal to E. Therefore the Lebesgue measure f(E(E,8)) must tend to the
limit f(E) as 8 ~ o. In particular, given E we can choose 8 so that
f(E(E,8)) > f(E)/2. Now consider the average A(f,r) of (A : 1) for some
fixed r > 1-8. Since If (z)I < 1 for all zEIT)), the expression log If(reiO)I
is less than zero everywhere, and less than log E throughout a set E( E, 8)
of measure at least f (E) /2. This proves that

21fA(f,r) < 10g(E)f(E)/2

whenever r is sufficiently close to 1. Since E can be arbitrarily small, this
implies that Iim,/1 A(f, r) = -00, which contradicts Theorem A.I unless
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Now consider the following situation. Let K be a compact connected
subset of C and suppose that the complement C" K is conformally dif
feomorphic to the complement C,,]I)).

Lemma A.4 (Area Formula, Gronwall [1914-15]). Let

7jJ : C "IIJ) ---+ C" K

be a conformal isomorphism, with Laurent series expansion

7jJ(w) == blW + bo + b-l/W + b_2/w2 + ....
Then the 2-dimensional Lebesgue measure of K is given by

area(K) = 7r"L nlbn l
2 = 7r(lblI2 -ILlI2 - 21b_212_ ... ).

n:::;l

Proof. For any r > 1 consider the image under 7jJ of the circle
Iwl == r . This will be some embedded circle in C which encloses a region of
area say A(r). We can compute this area by Green's Theorem, as follows.
Let 7jJ(rei B) == z == x + iy. Then

A(r) = f xdy = - f ydx = Ji f zdz,

to be integrated around the image of Iwl == r . Substituting the Laurent
series z == '""" b ui" with W == rneni B this yieldsLJn~l n , ,

A(r) = ~ "L nbmbnrm+n f e(n-m)iOdB.
m,n~l

Since the integral equals 21r if m == n and is zero otherwise, we obtain

A(r) == 1r"L nlbn l
2 r 2n

.
n~l

Therefore, taking the limit as r ~ 1, we obtain the required formula. 0

Remark. Unfortunately, it is difficult to make any estimate on the rate
of convergence of this series. If the set K has a complicated shape, then it
seems likely that very high order terms will play an important role.

One trivial consequence of Lemma A.4 is the inequality
00

Ibl l2 2: "L m lb-mI2 .
1

In particular we have the following.
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Corollary A.5 (Gronwall Inequality). With K c C and
~(w) == L:n~I bnwn as above, we have IbII ~ Ib_II, with equality
if and only if K is a straight line segment.

Proof. Since area(K) ~ 0, we have IbII ~ Ib-ll. Furthermore, if equal
ity holds, then all of the remaining coefficients must be zero:
b-2 == b-3 == ... == o. After a rotation of the w coordinate and a lin
ear transformation of the z == ~(w) coordinate, the Laurent series will
reduce to the simple formula z == w + w-1 . As noted in §7, this transfor
mation carries C,,]IJ) diffeomorphically onto the complement of the interval
[-2,2]. (Compare Lemma 7.1 as well as Problems 7-c, 7-d.) D

Now consider an open set U C C which contains the origin and is
conformally isomorphic to the open disk.

Lemma A.6 (Bieberbach Inequality). If ~ : IIJ) ~ U is
a conformal isomorphism with power series expansion
~(TJ) == L:n>I anTJn, then la21 ::; 21aII, with equality if and
only if C -, U - is a closed half-line pointing towards the origin.

Remark. The Bieberbach Conjecture (proposed by Bieberbach [1916]
and proved by de Branges [1985]) asserts that lanl ::; n/all for all n. Again,
equality holds if C" U is a closed half-line pointing towards the origin, for
example for ~(TJ) == TJ + 2TJ2 + 3TJ3 + ··· == TJ / (1 - TJ)2 .

Proof of Lemma A.6. After a scale change, multiplying ~(TJ) by a
constant, we may assume that al == 1. Let us set TJ == 1/w2 , so that each
point TJ =I 0 in ]IJ) corresponds to two points ±w E <C <, IIJ). Similarly, set
~(TJ) == ( == 1/z2, so that each (=I 0 in U corresponds to two points ±z
in some neighborhood N == - N of infinity. A brief computation shows
that ~ corresponds to a Laurent series of the form

W f-+ Z = Ih/'l/J(1/w2) = W - ~a2/w + (terms in 1/w3
, 1/w5

, ... )

which maps C" IIJ) diffeomorphically onto N. Thus la2/ ::; 2 == 2al by
Gronwall's Inequality, with equality if and only if N is the complement of
a line segment, necessarily centered at the origin. Expressing this condition
on N in terms of the coordinate (== 1/z2, we see that equality holds if and
only if U is the complement of a half-line pointing towards the origin. D

Theorem A.7 (Koebe-Bieberbach Quarter Theorem).
Again suppose that the map

TJ ~ ~(TJ) == aITJ + a2TJ
2 + · · ·

carries the unit disk IIJ) diffeomorphically onto an open set
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u c C. Then the distance r between the origin and the bound
ary of U satisfies

~Iall ~ r ~ lall. (A: 2)

Here the first equality holds if and only if C "U is a half-line
pointing towards the origin, and the second equality holds if and
only if U is a disk centered at the origin.

In particular, in the special case aI == 1 the open set U = r¢(II)))

necessarily contains the disk II))lj4 of radius 1/ 4 centered at the origin,
so that r¢-l : II))lj4 -7 II)) is well defined and univalent. The left-hand
inequality in (A : 2) was conjectured and partially proved by Koebe and
later completely proved by Bieberbach. The right-hand inequality is an easy
consequence of the Schwarz Lemma.

Proof of Theorem A.7. Without loss of generality, we may assume
that al = 1. If Zo E au is a boundary point with minimal distance r
from the origin, then we must prove that ~ ~ r ~ 1. We will compose 'ljJ
with the linear fractional transformation z r--+ z / (1 - z / zo) which maps Zo
to infinity. Then the composition is also univalent on II)), and has the form

'r/ r--+ r¢('r/) / (1 - r¢('r/) / zo) = 'r/ + (a2 + 1/zo)'r/2 + ... .

By Bieberbach's Inequality (Lemma A.6), we have la21 ~ 2 and
la2 + l/zol ~ 2, hence 11/zol == l/r ~ 4 or r ~ 1/4. Here equality
holds only if la21 = 2 and 1/Zo = -2a2. The exact description of U then
follows easily.

On the other hand, suppose that r ~ 1. Then the inverse mapping r¢-l

is defined and holomorphic throughout the unit disk II)) and takes values in
II)). Since its derivative at zero is 1, it follows from the Schwarz Lemma 1.2
that 'ljJ is the identity map, with r == 1. D

Here is an interesting restatement of the Quarter Theorem. Let
ds == p(z)ldzl be the Poincare metric on the open set U, and let r = r(z)
be the distance from z to the boundary of U.

Corollary A.B. If U c C is simply connected, then the
Poincare metric ds = p(z)ldzl on U agrees with the metric
Idzl/r(z) up to a factor of 2 in either direction. That is,

1 2
2r(z) :::; p(z) :::; r(z)

for all z E U. Again, the left equality holds if and only if C" U
is a half-line pointing towards the point z E U, and the right
equality holds if and only if U is a round disk centered at z.
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This follows, since we can choose ~ : [)) -+ U mapping the origin to
any given point of U, and since the Poincare metric at the center of [)) is
21d7]1. 0

As an example, if U is a half-plane, then the Poincare metric precisely
agrees with the (l/r)-metric Idzl/r.

-2 -1 0

Figure 45. Upper bounds for the area of the filled Julia
set for fc(z) = z2 + c in the range -2::; c :::; .25.

Concluding Problem

Problem A-I. Area of the filled Julia set. Consider the polynomial
map fc(z) == z2 + c. Let w = ¢(z) be the associated Bottcher map near
infinity, and let z = ~ (w) be the inverse map. (1) In analogy with equation
(9 : 5), show that ~ satisfies the identity

~(w2) == ~(w)2+c,

and conclude that ~ has Laurent series of the form

'ljJ(w) = w(l + Pl(C)jw2 + P2(C)jw4 + P3(C)jw6 + ... ),

where each Pk(c) is a polynomial of degree k with rational coefficients.
(2) Let K c be the filled Julia set for f c . Show that the area of K c is
upper semicontinuous* as a function of c. (3) If K; is connected, or in
other words if c belongs to the Mandelbrot * set, show by Lemma A.4 that

* Compare Lemma 11.15 for semicontinuity and Appendix G for the Mandelbrot set.
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its area is given by the formula

area(Kc) = 7f(1-lpl(C)12 - 3Ip2(C)12 - 5Ip3(C)12 _ ... ). (A: 3)

(Compare Figure 45, which graphs the upper bounds obtained by summing
either 1, 10, 100, 1000, 10000, or 100000 terms of this series for real values
of c. For example, the topmost graph represents the estimate

area(Ke ) :S 1r(1-lpI(c)12
) = 1r(1-lcI2 j 4).

Evidently area(Ke) attains its maximum of 1r = area(llJ)) for c = O.
Unfortunately, the series (A : 3) converges very slowly, and I don't know
of any useful lower bound for the area.) (4) On the other hand, show that
equation (A : 3) breaks down when K; is not connected. In fact the left
side is zero but the right side is -00. Show that the sum

IPI (c) 1
2 + 3\p2 (c) 1

2 + 51p3 (c) \2 + ...
is infinite. In fact, when K; is not connected, show that rljJ cannot be
extended as a holomorphic function over all of <C" K e , and conclude that
the sequence of coefficients PI(c) , P2(c) , ... must be unbounded. The area
is zero in this case, since K; coincides with the Julia set and since Ie is
hyperbolic.



Appendix B. Length-Area-Modulus Inequalities

This appendix will first study the conformal geometry of a rectangle. (Com
pare Lemma 17.1.) Let R == [0,~x] x [0,~y] be a closed rectangle in the
plane of complex numbers z == x + iy, and let R == (0, ~x) x (0, ~y) be
its interior. By a conformal metric on R we mean a metric of the form

ds == p(z)ldzl

where z ~ p(z) > ° is any strictly positive real-valued function which is
defined and continuous throughout the open rectangle. In terms of such a
metric, the length of a smooth curve 1 : (a, b) -+ R is defined to be the
integral

L p(, ) = i b
p(,(t))ld,,(t)l,

and the area of a region U c R is defined to be

areap(U) = Jfu p(x + iy)2dx dy.

In the special case of the Euclidean metric ds == Idzl, with p(z) identically
equal to 1, the subscript p will be omitted.

y .
11

y l1y

I1x

Lemma B.l (Main Lemma). If areap(R) is finite, then for
Lebesgue almost every y E (0,~y) the length Lp(TJy) of the hor
izontal line TJy : t ~ (t, y) at height y is finite. Furthermore,
there exists y so that

L p(TJy)2 areap(R) (B : 1)
(~x)2 :::; ~x~y'

In fact, the set consisting of all y E (0, ~y) for which this
inequality is satisfied has positive Lebesgue measure.

Remark. Note that ~x is equal to L(TJy) , the Euclidean length, and
that the product ~x~y is equal to area(R), the Euclidean area. Evidently

226
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the inequality (B : 1) is best possible, for in the special case of the Euclidean
metric with p - 1, both sides of (B : 1) are equal to + 1.

Proof of Lemma B.l. We use the Schwarz inequality

(lab f(x )g(x) dx) 2 ~ (lab f(x)2 dX) . (lab g(x)2 dx) ,

which says (after taking a square root) that the inner product of any two
vectors in the Euclidean vector space of square integrable real functions
on an interval is less than or equal to the product of their norms. Taking
f(x) =1 and g(x) = p(x,y) for some fixed y, we obtain.c p(x, y) dx) 2 < ~x fa~X p(x, y)2dx,

or in other words
2 r~x 2

L p (7Jy) ~ ~x io p(x, y) dx,

for each constant height y . Integrating this inequality over the interval
o< y < ~y and then dividing by ~y, we get

1 r~Y 2 ~x
~y io L p(7Jy) dy < ~y areap(A). (B : 2)

In other words, the average over all y in the interval (0, ~y) of L p(1]y)2

is less than or equal to ~~ areap(A). Further details of the proof are
straightforward. 0

y

x

Now let us form a cylinder C of circumference ~x and height ~y

by gluing the left and right edges of our rectangle together. (Alternatively,
C can be described as the Riemann surface which is obtained from the
infinitely wide strip 0 < y < ~y in the z-plane by identifying each point
z = x + iy with its translate x + ~x + iy. Compare Problem 2-f.)

Definitions. The modulus of such a cylinder C = (JR/(Z~x)) x (0, ~y)
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is defined to be the ratio of height to circumference,

mod(C) == ~y/~x > o.
By the winding number of a closed curve 1 in C we mean the integer

W = ~x f, dx.

Theorem B.2 (Length-Area Inequality for Cylinders).
For any conformal metric p(z)ldzl of finite area on the cylinder
C there exists some simple closed curve 1 with winding number
+1 whose length L p (1) == f,p(z)ldzl satisfies the inequality

Lp(1)2 < areap(C)/mod(C). (B : 3)

Furthermore, this result is best possible: If we use the Euclidean
metric Idz I then

L(1)2 2 area(C)/mod(C)

for every such curve 1.

(B : 4)

(B : 5)

Proof of Theorem B.2. Just as in the proof of Lemma B.1, we find
a horizontal curve T/y with

2 ~x are~(C)
Lp (1Jy) ~ ..6.yareap(C) = mod(C)·

On the other hand, in the Euclidean case, for any closed curve 1 of winding
number 1 we have

L(')') = f, Idzl 2: f, dx = ..6.x,

hence L(1)2 2 (~x)2 == area(C)/mod(C). D

Definitions. A Riemann surface A is said to be an annulus if it is
conformally isomorphic to some cylinder. (Compare Example 2.4.) An
embedded annulus A c C is said to be essentially embedded if it contains
a curve which has winding number 1 around the cylinder C.

Here is an important consequence of Theorem B.2.

Corollary B.3 (Area-Modulus Inequality). Let A c C be
an essentially embedded annulus in the cylinder C, and suppose
that A is conformally isomorphic to a cylinder CA. Then

mod(CA) < area( A)
mod(C) area( C) < 1.
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In particular, it follows that

mod(CA) :s; mod(C).

229

(B : 6)

Proof. Let ( ~ z be the embedding of CA onto A c C. The
Euclidean metric Idzl on C, restricted to A, pulls back to some conformal
metric p(()ld(1 on CA, where p(() = Idz/d(l. AccordingtoTheoremB.2,
there exists a curve ry' with winding number 1 about CA whose length
satisfies

This length coincides with the Euclidean length L (ry) of the corresponding
curve ry in A c C, and area, (CA) is equal to the Euclidean area area(A) ,
so we can write this inequality as

L(ry)2 < area(A)/mod(CA).

But according to (B : 4) we have

area(C) /mod(C) < L(ry)2.

Combining these two inequalities, we obtain

area(C)/mod(C) :s; area(A)/mod(CA),

which is equivalent to the required inequality (B : 5). D

Corollary B.4. If two cylinders are conformally isomorphic,
then their moduli are equal.

Proof. If C' is conformally isomorphic to C then (B : 6) asserts that
mod(C') :s; mod(C), and similarly mod(C) :s; mod(C') . D

It follows that the modulus of an annulus A can be defined as the mod
ulus of any conformally isomorphic cylinder. If A is essentially embedded
in some other annulus A', it then follows from (B : 6) that

mod(A) :s; mod(A'). (B : 6')

Examples B.5. If Ar is the annulus consisting of all wEe with
1 < Iwl < r, then setting z = ilog(w) (mod 21rZ) we map Ar conformally
onto a cylinder of height log(r) and circumference 21r. Hence

mod (Ar ) = log(r)/21r.

On the other hand, if we construct an annulus A from the upper half
plane ]HI by identifying w with kw for some k > 1, then setting z =
log(w) (mod log(k)) we map A onto a cylinder of height 1r and circum-
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ference log(k). Hence

mod (H/(w kw)) = 1f/log(k).

Corollary B.6 (Crotzsch Inequality). Suppose that A' c A
and A" c A are two disjoint annuli, each essentially embedded
in A. Then

mod(A') + mod(A") ::; mod(A).

Proof. We may assume that A is a cylinder C. According to (B : 5)
we have

mod(A') area(A') mod(A") area(A")
<, < .

mod(C) - area(C) mod(C) - area(C)

where all areas are Euclidean. Using the inequality

area(A') + area(A") ::; area(C),

the conclusion follows. D

Now consider a flat torus 1r = C/A. Here A c C is to be a 2
dimensional lattice, that is, an additive subgroup of the complex numbers,
spanned by two elements Al and A2 where AI/A2 fj. JR. Let A c 1r be
an embedded annulus.

By the "winding number" of A in T we will mean the lattice element
w E A which is constructed as follows. Under the universal covering map
C ---+ 'll', the central curve of A lifts to a curve segment which joins some
point Zo E C to a translate Zo + w by the required lattice element. We
say that A c T is an essentially embedded annulus if w =I- o.

Corollary B.7 (Bers Inequality). If the annulus A is essen
tially embedded in the fiat torus T = C/A with winding number
w E A, then

d(A)
area(1r)

rna :::; Iw12 ' (B : 7)

Roughly speaking, if A winds many times around the torus, so that Iwl
is large, then this annulus A must be very thin. A slightly sharper version
of this inequality will be given in Problem B-3.

Proof. Choose a cylinder C' which is conformally isomorphic to A.
The Euclidean metric Idzl on A c T corresponds to some metric p(()ld(1
on C', with

area, (C') = area(A).
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By Theorem B.2 we can choose a curve ry' of winding number 1 on 0', or
a corresponding curve ry on A c 'I', with

Lb)2 = L b')2 < areap(C') = area(A) area(T)
p - mod(C') mod(A) ~ mod(A)'

Now if we lift ry to the universal covering space <C, then it will join
some point ZQ to ZQ + w. Hence its Euclidean length L (ry) must satisfy
L( ry) 2: Iwl. Thus

1 1

2 < area(T)
W - mod(A) ,

which is equivalent to the required inequality (B : 7). D

Now consider the following situation. Let U c <C be a bounded simply
connected open set, and let K cUbe a compact connected subset, so that
the difference A = U "K is a topological annulus. As noted in Example
2.4, such an annulus must be conformally isomorphic to a finite or infinite
cylinder. By definition an infinite cylinder, that is, a cylinder of infinite
height, has infinite modulus. (Such an infinite cylinder may be either one
sided infinite and hence conformally isomorphic to a punctured disk, or
two-sided infinite and conformally isomorphic to the punctured plane.)

Corollary B.8. Suppose that K C U as described above. Then
K reduces to a single point if and only if the annulus A =
U "K has infinite modulus. Furthermore, the diameter of K
is bounded by the inequality

4 di (K)2 < area(A) < area(U) (B : 8)
lam - mod(A) - modt.A}'

Proof. According to Theorem B.2, there exists a curve with winding
number 1 about A whose length satisfies L2 :::; area(A)/mod(A). Since
K is enclosed within this curve, it follows easily that diam(K) :::; L/2, and
the inequality (B : 8) follows. Conversely, if K is a single point, then A
contains an essentially embedded punctured disk and it follows from (B : 6')
that mod(A) = 00. D

The following ideas are due to McMullen. (See Branner and Hubbard
[1992, §5.4].) The isoperimetric inequality asserts that the area enclosed by
a plane curve of length L is at most L2/ (47f), with equality if and only if
the curve is a round circle. (See, for example, Courant and Robbins [1941].)
Combining this with the argument above, we see that

L2 area(A)
area(K) :::; 4'"" <

/I - 47f mod(A)'



232 APPENDIX B

Writing this inequality as 41f mod(A) :::; area(A)/area(K) and adding +1
to both sides we obtain the completely equivalent inequality

1 + 41fmod(A) :::; area(U)/area(K),

or in other words
area(U)

area(K) :S d(A) · (B : 9)1 + 41fmo
This can be sharpened as follows:

Corollary B.9 (McMullen Inequality). If A == U "K as
above, then

area(K) :::; area(U)/e41rffiOd(A).

Proof. Cut the annulus A up into n concentric annuli Ai, each
of modulus equal to mod(A)/n. Let K; be the bounded component of
the complement of Ai, and assume that these annuli are nested so that
Ai U K, == Ki+l with K; == K, and let Kn+l == AUK == U. Then
area(Ki+l)/area(Ki) 2: 1 + 41fmod(A)/n by (B : 9), hence

area(U)/area(K) 2: (1 + 41fmod(A)/n )n,

where the right-hand side converges to e41rffiOd(A) as n ---t 00. D

Concluding Problems

Problem B-1. Many short lines. In the situation of Lemma B.1 on
the unit square [0,1] x [0,1], show that more than half of the horizontal

curves 1]y have length Lp (1]y ) :S )2areap(I2) . (Here "more than half" is
to be interpreted in the sense of Lebesgue measure.)

Problem B-2. Defining the modulus by potential theory. Recall
that a real-valued function u on a Riemann surface is harmonic if and only
if it can be described locally as the real part of a complex analytic function
u + iv. (Compare Problems 9-b, 9-d.) The harmonic conjugate of u is
the real-valued function v, well defined locally up to an additive constant.
(1) With the cylinder C as in Theorem B.2, show that there is one and
only one harmonic function u : C ---t lR such that u(x + iy) ---t 0 as x + iy
tends to the bottom boundary y == 0, and u( x + iy) ---t 1 as x + iy
tends to the top boundary. In fact this function is given by the formula
u(x + iy) == y/~y. (2) If "y is a curve with winding number +1 around
C, show that

i i d(u + iv) = i d(x + iy)j!:1y = mo~(Cr
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Problem B-3. Bers inequality for multiple annuli. (1) If the
flat torus T == C/A contains several disjoint annuli Ai, all with the same
winding number w E A, show that

L mod(Ai ) < area(1r)/lwI 2
.

(2) If two essentially embedded annuli are disjoint, show that they neces
sarily have the same winding number.

Problem B-4. Branner-Hubbard criterion. Let

tc, :) K2 :) K3 :) ...

be compact connected subsets of C with each Kn+l contained in the inte
rior of Kn . Suppose further that each interior K~ is simply connected, so
that each difference An == K~ "Kn+l is an annulus. (1) If L:fmod(An)
is infinite, show that the intersection nK n reduces to a single point.
(2) Show that the converse statement is false: this intersection may re
duce to a single point even though L:fmod(An) < 00. (As a first step,
you could consider the open unit disk JI)) and a closed disk JI))' of radius

-Io< r < 1 centered at 1 - r - E, showing that mod(JI)) <, JI))) tends to zero
as E~O.)



Appendix C. Rotations, Continued Fractions,
and Rational Approximation

(Compare §§11 and 15.) The study of recurrence is a central topic in many
parts of dynamics: How often and how closely does an orbit return to a
neighborhood of its initial point? In the case of irrational rotations of a circle
we can give a rather precise description of the answer. This description,
which has its roots in classical number theory, turns out to be important
not only in holomorphic dynamics, but also in celestial mechanics and other
areas where "small divisor" problems occur.

1
14

10

2

15

11

3 16

12

Figure 46. Successive orbit points under a rotation through the
angle of ~ == J5 - 2 == .2360 ... (mod Z) 1 with close returns at
times q == 1, 4, 17, 72, . . .. The first five orbit points have been
emphasized.

Let Sl C C be the unit circle, consisting of all complex numbers of
absolute value 1. Given some fixed A == e21fi e E Sl, we are interested in
the dynamical system z 1---+ Az for z E Sl. Since any two orbits are
isometric under a rotation of the circle, it suffices to study the orbit

1 1---+ A 1---+ A2
1---+ A3

1---+ ••••

We are particularly interested in the case where A is not a root of unity,
so that there is no periodic point. Figure 46 illustrates a typical example,

234
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showing the first eighteen points on the orbit. (To simplify the picture, each
Ak is labeled simply by k.)

Definition. We will say that the sequence AI , A2, A3, . .. has a close
return to AD == 1 at the time q if Aq is closer to 1 than any of its
predecessors:

IAq - 11 < IAk - 11 for k == 1, 2, 3, ... , q - 1.

As usual, we can equally well use the additive model lR/Z for the circle,
in place of the multiplicative model 31 == {A E C : IAI == I}. These are
related by letting each ~ E lR/Z correspond to A == e27rie E 3 1 . Thus a
completely equivalent problem is to study the dynamical system

x ~ x + ~ (mod Z),

with typical orbit
o ~ ~ ~ 2~ ~ 3~ ~ ...

in lR/Z. By definition, the angle ~ E lR/Z is called the rotation number of
this orbit. (Compare §15.)

Any two distinct points ~, fI E lR/Z cut the circle lR/Z into two arcs
with total length 1. Define the distance II~ - fill::; 1/2 to be the length of
the shorter arc, or to be zero if ~ == fl. The distance between the points ~

and 0 will also be described as the norm II~II.

With this notation, we can define q 2: 1 to be a close return time under
rotation by ~ if

Ilq~11 < Ilk~11 for all k with 0 < k < q.

This is equivalent to the previous definition, in view of the easily verified
identity

where the function x ~ 2 sin(1fx) is strictly monotone for 0::; x ::; 1/2.
If the rotation number is rational, ~ - p/ q, then there will be only

finitely many close return times, with q as the largest. However, to fix
our ideas, let us concentrate on the case where ~ is irrational, so that the
orbit points k~ E lR/Z are all distinct. Then there are infinitely many close
return times, and we can number them as

1 == q1 < in < q3 < ....

The distance dn == Ilqn~11 between 0 and the orbit point qn~ will be called
the nth close return distance. Evidently

d1 > d2 > d3 > ... > 0,
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with dl < 1/2. Here is a preliminary remark. (Compare equation (C : 9)
and Problem C-l.)

Lemma C .1. For each n ~ 2, the first qn orbit points

0, ~, 2~, ... , (qn - 1)~

divide the circle lR/Z up into qn distinct segments, each of
which has length at least dn-I. Therefore dn-I < 1/qn .

Proof. Given any integers 0::; j < k < qn, the distance between the
orbit points j~ and k~ around the circle is equal to the distance II (k- j)~11

between 0 and (k- j)~. Suppose that one of these distances II(k-j)~11 is
strictly less than dn-I. If k - j ::; qn-I this would contradict the defining
property of qn-I, while if qn-I < k - j < qn then it would contradict the
defining property of qn. Thus we must have

II(k - j)~11 ~ dn-I,

as required. The lengths of these complementary intervals cannot all be
equal since ~ is irrational, so the minimum length dn-I must be strictly
less than the average length 1/qn . 0

It will be convenient to set qo == 0 and do == 1.

Theorem C.2. The sequence of close return times satisfies

qn+1 qn-I (mod qn) for all n ~ 1.

Thus there exist positive integers aI, a2, a3, . .. (known as
partial quotients) which satisfy the equation

qn+1 == qn-I + anqn for n ~ 1, (C : 1)

with qo == 0, ql == 1, and q2 == al > 2. Similarly, the sequence
of close return distances satisfies

dn+1 == dn-I - andn for n ~ 1, (C : 2)

using these same integers an, with do == 1 and dl == II~II.

Thus an can be described either as the integer part int (qn+l/qn) , which
governs how rapidly the numbers qn are growing, or as the integer part
int (dn-I / dn), which governs how rapidly the dn, are tending to zero.

Proof of Theorem C.2, by induction on n. For each k ~ 0, let
Xk be the unique real number in the interval -1/2 < Xk :s 1/2 which
represents the residue class k~ (mod Z), so that IXkl == Ilk~ll. To start the
induction, if al is the largest integer with aldl < 1, then it is easy to
see that the first and second close return times are ql == 1 and q2 == aI,
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with close return distances dl == II~II and d2 == 1 - aIdl, as required.
Furthermore, these two close returns occur on opposite sides of zero. For
example, if x q1 == +dl, then x q2 == -d2.

•
~-1+ 2~

• •
~+1 0

•

Figure 47. Locations of three successive close returns along the in
terval (-1/2, 1/2), illustrated for the case an == 3 so that dn+1 ==

dn-I - 3dn. As in the previous figure, each point Xk along the
orbit is labeled simply by the integer k. Depending on the parity
of n, the orientation of this figure may be reversed.

Now suppose inductively that we have two consecutive close returns, at
qn-I~ and at qn~, lying on opposite sides of zero. Thus

dn-I == Ixqn-11 > dn == IX qn I with x qn-1x qn < o.
Define an ~ 1 to be the largest integer for which andn < dn-I. We must
show that qn+1 == qn-I + anqn and that dn+1 == dn-I - andn. The proof
will be based on the following auxiliary statement.

Lemma C.3. For 0 < k ::; qn+l, the point Xk lies strictly
between x qn-1 and x qn if and only if k is a number of the form
kj == qn-I + jqn with 1 ::; j ::; an. In particular, it follows that
the next close return time is given by qn+1 == kan == qn-I +anqn.

Proof of Lemma C.3. Suppose, to fix our ideas, that x qn- 1 < 0 <
X qn, as illustrated in Figure 47, so that x qn-1 == -dn-I and x qn == dn. If
Xk lies in the open interval (xqn-1, X qn) , then it follows from the definition
of qn that k > qn. Let R == k - qn > 0, so that

Xl == xk - dn E (Xqn-1 - dn , 0).

There are now two possibilities: If the point Xl has distance less than
dn from x qn-1' then Xl == x qn-1 and hence R == qn-I by Lemma C.l.
Otherwise, Xl must be strictly to the right of x qn- 1 ' in which case we can
repeat the argument using R in place of k. After finitely many repetitions
of this argument, we must find a difference m == k - ad-, with X m close to
x qn- 1 and hence m == qn-I. This completes the proof of both Lemma C.3
and Theorem C.2. D

Corollary C.4. The close return times qn increase at least ex
ponentially fast as n ----+ 00. Similarly the close return distances
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dn decrease to zero at least exponentially fast as n ~ 00.

1
+-

an

Proof. This follows from the inequalities qn+1 == anqn + qn-I 2:: 2qn-1
and 2dn+1 ::; andn + dn+1 == dn-I. D

These constructions are closely related to the classical continued fraction
algorithm. Given any real number 0 < r < 1, we can construct a finite or
infinite sequence aI, a2, a3, of positive integers, as well as a finite or
infinite sequence rl, r2, r3, of remainder terms, by induction as follows.
We start with ro == r and set

l/rn-I == an + rn (C : 3)

for n 2:: 1, with an E Z and 0 ::; rn < 1. Thus an can be described as the
integer part, int (l/rn-I), and r n can be described as the fractional part
frac(l/rn-I). First suppose that ro == r is a rational number p/q. Then
rl will be a rational number with denominator p strictly less than q. It
follows that this procedure must terminate after at most q steps, reaching
some rn which is equal to zero, so that l/rn-I == an E Z, while l/rn is not
defined. In this case we obtain the finite continued fraction equation

p 1 1 1
q al + T1 al + 1 = ... = -a-I-+---1----

a2 + r2 a2 + .

1
+-

an

1
al+------

a2 + .1+---
an + .

1
al + --------

a2 + .

r ==

or more compactly p/q == l/(al + 1/(a2 + ... + l/(an-I + l/an)·· .)),
with an 2:: 2. On the other hand, if r is irrational, then all of the rn
will be irrational, and this inductive procedure continues indefinitely. This
construction is often summarized by the infinite continued fraction equation

1 1
lim ---------
n~oo

Convergence of this limit will be proved below.
To translate Theorem C.2 into the continued fraction terminology,

simply set r == II~II ::; 1/2 and

rn == dn+l/dn or equivalently dn == rOrl .. · rn-I.

Dividing equation (C : 2) by dn and rearranging terms, we get

dn-I/dn == an + dn+l/dn,
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or in other words 1/rn-I == an + r n , as required. In particular, this shows
that the continued fraction for any number r E (0,1/2] can be interpreted
in terms of the study of close returns. (In fact, continued fractions in the
case 1/2 < r < 1 can easily be reduced to the case 0 < r < 1/2. See
Problem C-2.)

For any r E (0,1), it is not difficult to check that each product qnr is
congruent to (_l)n+Idn modulo Z, so that the sum

(C : 4)

is an integer. These numbers can be computed inductively as follows:
Multiply equation (C : 1) by the constant r and then add the equation

(_l)n+Idn+1 == (-I)nandn + (-I)n- Id
n_l,

which is equivalent to (C : 2), to obtain

Pn+1 == anPn + Pn-I· (C : 5)

The first two values are Po == 1 and PI == O. Applying (C : 5) we find
that the subsequent values P2 == 1, P3 == oa , . .. are rapidly increasing.
Furthermore, dividing equation (C : 4) by qn, we see that the initial ratio
r is closely approximated by the rational number Pn/qn' In fact

Pn = r + (-1t dn
, (C : 6)

qn qn

where dn/qn tends very rapidly to zero by Corollary C.4. These successive
approximations, known as convergents to r, are ordered as follows:

o= PI < P3 < ... < r < ... < P4 < P2 = ~ (C : 7)
qi q3 q4 q2 al

Note that each of these convergents can be defined by the finite continued
fraction expansion

Pn+l/qn+1 == 1/(al + 1/(a2 + 1/(. ··+ 1/(an-l + 1/an) · · .))).

(Caution: Most authors use a different numbering.) Using matrix notation,
we can write equations (C : 1) and (C : 5) as

[
Pn qn] [0 1] [Pn-I qn-l ]

Pn+1 qn+1 - 1 an Pn qn '

and hence by induction

[P~:I q~:J = [~ a
1J [~ .'. [~ an

1
_2] '" [~ :J.
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In particular, it follows that the determinant of this matrix is given by

Pnqn+1 - qnPn+1 == (-l)n.

In particular, Pn and 'In are relatively prime, so that each Pn/qn is a frac
tion in lowest terms. Furthermore, the difference between two successive
approximations is given by

I
Pn+I Pn I 1 (C : 8)
qn+1 - qn ~ qnqn+l·

Since these numbers converge rapidly to zero, it follows that the successive
convergents Pn/qn (or in other words the successive finite continued fraction
expansions) do indeed converge to the limit r.

Combining (C : 6) and (C : 8), we see that

dn dn+1 1-+-- ,
qn qn+I qnqn+ I

or in other words qndn+1 + qn+Idn == 1. (For a geometric interpretation of
this equality, see Problem C-1.) Since qndn+1 < qn+Idn, it follows that

1/2 < qn+Idn < 1, (C : 9)

yielding a sharper form of the inequality dn < l/qn+1 of Lemma C.1.
Now look at the converse problem. Suppose that we are given an infinite

sequence aI, a2, . .. of positive integers. Then we can define associated
integers Pn and qn by equations (C : 1) and (C : 5). The fractions Pn/qn
will satisfy (C : 7) and are ordered as in (C : 6). Thus we can define r as
the limit of Pn/qn as n --t 00. It is not difficult to check that we recover
the given integers an from the continued fraction expansion of this r.

Applying this discussion to the sequence of close return times for a circle
rotation, we obtain the following.

Corollary C.5. The finite or infinite sequence of close return
times qi, in, ... , or equivalently the finite or infinite sequence
of integers aI, a2, ... , determines the rotation number ~ up to
sign. Here al 2: 2 (since dl == II~II ::; 1/2) and a given infinite
sequence of numbers a; 2: 1 can occur if and only if the initial
integer satisfies al 2: 2. A finite sequence (al, ... , an) can
occur if and only if both al 2: 2 and an 2: 2.

The proof will be left to the reader. D

The subject of "best" rational approximations to an irrational number
x E (0, 1) is closely related. Setting r == x, note the following: The
convergent Pn/qn is closer to x than any fraction P/ q with denominator
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o< q < qn. In fact we have Iqx - pi 2: Iqnx - Pnl > 0 by the definition of
qn. Multiplying this by the inequality l/q> l/qn > 0, we obtain

Ix - p/ql > Ix - Pn/qnl ,

as asserted.
Let a 2: 2 be a real number. Recall from §11 that an irrational number

x is Diophantine of order ::; a if there exists E > 0 so that

Ix - EI > ~q qa

for all rational numbers P/ q, or in other words if the collection of products
Ix - p/qlqa = Iqx - plqa-l is bounded away from zero. We can express this
condition as a limitation on the rate of growth of the associated integers qn
as follows.

Lemma C.6. The irrational number x E (0,1) is Diophan
tine of order ::; a if and only if there is a constant C so that
qn+l ::; C q:;-l for all n.

For example, x is Diophantine of order 2 if and only if the ratios qn+l/qn
are bounded, or if and only if the integer parts an = int (qn+1/qn) are
bounded.

Proof of Lemma C.6. If 'In < q < qn+l, then we have

Iqx - pi 2: dn = Iqn x - Pnl

for every integer p. Multiplying this inequality by qa-l > c:', it follows
that

Iqx - plqa-l > Iqnx - Pnlq~-l.

But we know from the inequality (C : 9) that the error dn = Iqnx - Pnl is
equal to 1/qn+1, up to a factor of 2. Thus it suffices to know that the ratios
q,::-l/qn+l are bounded away from zero, or equivalently that the reciprocals
qn+l/q,::-l are bounded. D

Let 1J(a) C IR <, Q be the set of all irrational numbers which are Dio
phantine of order ::; a, and let

1J(2+) = n1J(a),
a>2

1J(00) = U 1J(a).
a<oo

Note that 1J(2) c 1J(2+) C 1J(a) c 1J(00) whenever 2 < a.

Lemma C.7. The complement IR" 1J(a) has Hausdorff di
mension ::; 2/a. Hence the set IR" (1J( (0) U Q) of Liouville
numbers has Hausdorff dimension zero.
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Proof. It suffices to work in the unit interval [0,1] (or equivalently in
lR/Z ). We must prove that for any real number d > 21a and any E > 0
it is possible to cover [0,1] n V(a) by intervals Ij so that Ef(Ij)d < E,

where f(Ij) denotes the length of Ij. We proceed as follows. (Compare
the proof of Lemma 11.7.) If ~ ~ V(a), then for every E > 0 there exists
a fraction piq with I~ - piql ::; EIqQ. That is, ~ belongs to a union
of intervals of length 2EIqQ. For each fixed q there are at most q + 1
different choices for plq E [0,1], so the sum of lengths to the dth power
is at most (q+ 1)(2ElqQ)d for each q. Summing over q, the total is at
most (2E)d Eq (q + 1)/ qQd, which is finite, and tends to zero as E --t 0,
provided that ad> 2. Therefore, lR" V(a) has Hausdorff dimension
::; 2/a. Taking the intersection as a --t 00, it follows that lR" V( (0) has
Hausdorff dimension zero. D

Here is a complementary result.

Lemma e.8. The set V(2) of numbers of bounded type has
measure zero.

(For a much sharper statement, see Problem C-6.) Combining Lemma
C.8 with Lemma 11.7, we see that almost all real numbers belong to the
difference set V(2+) <, V(2).

The proof of Lemma C.8 will be based on some classical elementary
number theory. Let us say that two rational numbers vl« < p'lq' are Farey
neighbors if the determinant p'q - q'p is equal to +1, so that

p' p 1
- - - (C : 10)
q' q qq"

We will need the following fact. For any fixed m > 0, consider the set of all
fractions in the unit interval with denominator at most m. Then any two
consecutive fractions in this set are Farey neighbors. To prove this, given
two fractions p/ q < p' / q' consider the lattice A C Z2 spanned by the
two vectors v = (q, p) and w = (q', p'). Then the determinant p'q - q'p
can be identified with the number of elements in the quotient group Z2 / A.
Hence, if the two are not Farey neighbors, we can find a vector (s, r) E Z2
which is not in A. Furthermore, we can assume that (s, r) lies in the
interior of the fundamental parallelogram consisting of all ov + {3w with
a, {3 E [0,1]. Then the slope r I s must lie strictly between piq and p'Iq'.
Furthermore, replacing (s, r) by v + w - (8, r) if necessary, we can as
sume that s::; (q + q')/2::; max{q,q'}. This proves the required assertion:
fractions piq and p' / q' which are not Farey neighbors can never be con
secutive elements in the collection of all fractions with denominator ::; m.
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Proof of Lemma C.8. For any rational 0 < E < 1, let X€ be the set
of real numbers x which satisfy the inequality Ix - p/ql > E/q2 for every
pair of integers q > 0 and p. Let 1 c JR be any interval which is "rational"
in the sense that it has rational endpoints, and let £(1) be its length. Then
we will show that it is possible to cover X€ n I by finitely many rational
intervals of total length ::; (1- E)£(I). Repeating this construction n times,
we can cover X€ n I with rational intervals of total length ::; (1 - E)n£(I).
Since this expression tends to zero as n ~ 00, it will follow that X€ has
measure zero, and hence that V(2) = U€ X€ also has measure zero.

First consider the case where the endpoints p/q < p'/q' are Farey
neighbors, so that £(I) = 1/qq'. Let I' be the subinterval I" (1- U 1+)
where

1+ = (p'/q' - E/(q')2, p'/q'].

Then X€ n I c I'. Furthermore, one of these two subintervals must have
length £(I±) 2:: E £(1); hence £(1') ::; (1 - E)£(I) , as required.

For the more general case, where £(1) > l/qq', we proceed as follows.
Let m be the maximum of q and q', and consider the Farey series con
sisting of all fractions p"/q" in the interval I with denominator q"::; m.
These points cut the interval I up into subintervals II, ... , IN, such that
the endpoints of each Ij are Farey neighbors. Applying the construction
above to each Ij, the conclusion follows. D

Concluding Problems

Problem C-1. Partition of the circle by orbit points. If the
consecutive orbit points O,~, 2~, ... , (k - 1)~ are distinct, then they cut
JR/Z up into k nonoverlapping intervals. (1) If a and b are the lengths of
the intervals to the left and right of 0, show that each of these k intervals
has length either a, b, or a + b. In the special case k = qn + qn+l, show
that qn of these intervals have length dn+l while the remaining qn+l have
length dn . (Compare Lemma C.l and equation (C : 9).)

Problem C-2. Comparing x and 1 - x . If the irrational number
x E (0, 1/2) has continued fraction expansion x = l/(al + 1/(a2 + ))
with al 2:: 2, show that x' = 1 - x has expansion l/(al + 1/(a2 + ))
with

a~ = 1, a~ = a1 - 1, and a~ = an-l for n 2:: 3.

Show similarly that q~ = qn-l and d~ = dn- l for n 2::: 3.
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Problem C-3. Fibonacci numbers. (1) In the simplest possible
case al == a2 == · · · == 1, show that

{qn} == {Pn+l} == {a, 1, 1, 2, 3, 5, 8, 13, 21, ... },

yielding the sequence of Fibonacci numbers. (2) Prove the asymptotic for
mula qn rv ,n/ V5 as n ---t 00, and hence Pn/ qn ---t 1/, as n ---t 00, where
, == (V5 + 1)/2. Show that this special case corresponds to the slowest
possible growth for the sequences {Pn} and {qn}.

Problem C-4. Quadratic irrationals. Show that x E IR "Q satisfies
a quadratic polynomial equation with integer coefficients if and only if the
sequence of partial quotients aI, a2, ... for its continued fraction expansion
is eventually periodic.

Problem C-5. Continued fractions and Euler polynomials. De
fine the Euler polynomials

P(0) == 1, P(x) == x, P(x, y) == 1 + xy,

P (x, y, z) == x + z + xyz, ...

by setting P(XI, X2, ... , xn) equal to the sum of all distinct monomials in
the variables Xl, ... , Xn which can be obtained from the product XIX2 · · · Xn
by striking out any number of consecutive pairs. (Here 0 denotes the empty
set of arguments.) Note that

P(XI, X2, ... ,xn) == P(xn, Xn-l, ... , Xl),

and show that

P(XI, ... ,Xn+l) == P(XI, ... , Xn-l) + P(XI, ... , xn) Xn+l

for n ~ 1. For any continued fraction, show that the numerators Pn and
denominators qn can be expressed as polynomial functions of the partial
quotients a; by the formulas

Pn+l == P(a2, ... , an), qn+l == P(al' · · · , an),

so that

1

1

1
+ 1

an-l +
an

al + ---------
a2 + .

P(a2, , an)
P(al' , an) .
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Figure 48. Graph of the Gauss map.
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Problem C-6. The Gauss map. Define the Gauss map 9 from the
half-open interval (0,1] to itself by the requirement that

g(x) l/x (mod Z).

Thus 9 is discontinuous at l/n for every integer n 2: 1. (See Figure 48.)
(1) Show that the probability measure

/1(8) - _1_ { ~
log 2 is 1 + x

on (0,1] is g-invariant, in the sense that /1 0 g-l == u, (2) It can be shown
that this measure is ergodic; that is, every measurable g-invariant subset
8 == g-1(8) must have measure either zero or one. (See, for example,
Cornfeld, Fomin, and Sinai [1982].) Assuming this, prove that for all x E

(0,1) outside of a set of Lebesgue measure zero, every integer k 2: 1 must
occur infinitely often among the set of partial quotients {aI, a2, ... } in the
continued fraction expansion.

Remark. Using the Birkhoff Ergodic Theorem, one can prove a much
more precise statement:

For Lebesgue almost every x , the frequency

lim 1 L 1
n-HX) n

{i~n: ai=k}

of occurrences of some given integer k 2: 1 among the ai is well
defined and equal to

J1 (k : i ' ~) = log2 ( 1 + ~) - log2 ( 1 + k: 1) ·

For example, the frequencies of 1,2,3 are roughly .4150, .1699, and .0931.



Appendix D. Two or More Complex Variables

Let M be a complex manifold of dimension n 2: 2, and let F: M ~ M be
a holomorphic map. As in the I-dimensional case, we are interested in study
ing the behavior of the family of iterates Fok . Some of the constructions
for the I-dimensional case can be carried over to this higher dimensional
case without essential change. However, there are many surprises and new
difficulties.

Polynomial Maps. First consider the case of a nonlinear polynomial
map

F(zI, .. · ,zn) = (II (ZI, · · · , zn), ... 1 fn(Zll · · · , Zn))

from the coordinate space en to itself. The Jacobian determinant det(F')
of such a mapping is a polynomial function from en to e, with the set of
critical points of F as its locus of zeros. However, unlike the I-dimensional
case, where the finitely many critical points playa crucial role, there must
be either uncountably many critical points or no critical points at all in the
higher dimensional case. If there are no critical points, then this Jacobian
determinant must be a nonzero constant. In all known cases, F will then
have a well-defined inverse F-1 : en ~ en which is also a polynomial map.
Such a polynomial map with polynomial inverse is called a polynomial auto
morphism of en. (The well-known Jacobian conjecture is the assertion that
every polynomial map of en without critical points must be a polynomial
automorphism. )

The Henon maps provide a well-known family of 2-dimensional exam
ples. Suppose that we start with a polynomial function f : <C ~ e of
degree d 2: 2 and a complex constant b i= o. Consider doubly infinite
sequences of complex numbers ... , Z-l, Zo, Zl, Z2, . .. satisfying the dif
ference equation

(D : 1)

Evidently we can solve for (Zk' Zk+l) as a holomorphic function of
(Zk-l, Zk), and the resulting transformation

F(Zk-l, Zk) = (Zk' f(Zk) - 6Zk-l)

will be a polynomial mapping of degree d. Its Jacobian matrix

246

(D : 2)
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has constant determinant 6 and trace f'(Zk)' Similarly we can solve for
(Zk-l, Zk) as a holomorphic function F- 1(Zk , Zk+l) with Jacobian deter
minant 6-1 . This shows that the Henoti map F is a degree d polynomial
automorphism of C2 .

In spite of their lack of critical points, these Henon maps have highly
nontrivial dynamics. For example, the number of fixed points of the iterate
F ok , counted with multiplicity, is equal to dk , and hence grows exponen
tially with k. (See Friedland and Milnor [1989].) In contrast with the
L-dimensional case, a polynomial automorphism of ([2 of large degree may
well have infinitely many attracting periodic orbits. This was proved by
Buzzard [1997], making use of ideas introduced by Newhouse [1974] and
Forneess and Gavosto [1992].

There are three different versions of the filled Julia set for a Henon
map-we can look either at the set of points K+ with bounded forward
orbit, the set of points K- with bounded backward orbit, or the compact
set K == K+ n K- where the interesting dynamics takes place. Just as
in J-dimensional holomorphic dynamics, potential theoretic methods playa
very important role, but in the Henon case there are two different Green's
functions: Each point (zo, ZI) E C2 is associated with a bi-infinite sequence
... , Z-I, ZO, ZI, Z2, ... of complex numbers, and we can pass to the limit

G±(zo, ZI) == lim (log+lzkl)/d1kl
k~±oo

as the index k tends either to +00 or to -00. Each of these two func
tions is continuous, plurisubharmonic (that is, subharmonic on each complex
line), and vanishes only on the corresponding set K±.

For further information on polynomial automorphisms, see, for example,
Hubbard [1986], Bedford [1990], Bedford and Smillie [1991-2002], Forneess
and Sibony [1992a], Bedford, Lyubich, and Smillie [1993], and Hubbard and
Oberste-Vorth [1995].

Fatou-Bieberbach Domains. A fundamental principle in one-dimen
sional holomorphic dynamics is that every attracting basin must contain
a critical point, but this breaks down for maps of ([2. Given complex
constants 8 =F 0 and p., let F be the Henon map of determinant 8 which
is associated with the quadratic function f(z) == z2 + J-lz via equation
(D : 2). Then F has a fixed point at (0,0), and the eigenvalues Al and
A2 of the associated Jacobian matrix satisfy

and

Evidently, by the appropriate choice of J-l and 8, we can realize any desired
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nonzero Al and A2. In particular, if we choose tt and 8 so that both Al
and A2 lie in the open disk IAjI < 1, then the origin will be an attracting
fixed point.

Thus we have constructed a nonlinear polynomial map with an
attracting fixed point whose basin contains no critical point.

This attracting basin has another exotic property. To simplify the discus
sion, let me assume that Al 1= A2, so that we can diagonalize the Jacobian
matrix by a linear change of coordinates. We will need the following.

Lemma D.I. Consider any holomorphic transformation in two
complex variables with a fixed point at the origin. If the eigen
values Al and A2 of the derivative map at the origin satisfy

1 > IAII ~ IA21 > IAil with Al 1= A2, (D : 3)

then F is conjugate, under a local holomorphic change of coor
dinates, to the linear map L(u, v) == (AIU, A2V).

Proof. After a linear change of coordinates, we may assume that
F(x,y) is equal to (AIX, A2Y) + (higher order terms). We must show that
there exists a (nonlinear) change of coordinates (x, y) ~ (u,v) == ¢(x, y) ,
defined and holomorphic throughout a neighborhood of the origin, so that
¢oFo¢-1 == L. As in the proof of the Koenigs Theorem 8.2, we first choose
a constant c so that 1 > c > IAII ~ IA21 > c2

. To any orbit

(xo, YO) !t (Xl, Yl) !t ···
near the origin, we associate the sequence of points

(un, vn) == L-n(xn, Yn) == (xn/ AI, Yn/ A2)

and show, using Taylor's Theorem, that it converges geometrically to the
required limit ¢(xo, yo), with successive differences bounded by a constant
times (c2/ A2)». Details will be left to the reader. D

Remarks. Some such restriction on the eigenvalues is essential. As an
example, for the map

F(x, y) == (AX, A2y + x2
) ,

with eigenvalues A and A2 , there is no such local holomorphic change of
coordinates. (See Problem D-1. For a much more precise statement as to
when linearization is possible, compare Zehnder [1977].)

Now consider a Henon map F : C2 ~ ce2 with a fixed point at
the origin with eigenvalues satisfying the inequalities (D : 3). Let B be
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the attracting basin of the origin. We claim that ¢ extends to a global

diffeomorphism ~: B~ C2 . For any (x, y) E B, let

~(x, y) = L-n 0 ¢ 0 pon(x, y),

taking n to be large. In fact, if n is sufficiently large, then pn(x, y) is
close to the origin, so that this expression is defined. It is independent of
the particular choice of n since ¢ 0 P = L 0 ¢. Similarly,

~-l(u, v) = F?" 0 ¢-l 0 Lon(u,v)

is well defined for large n. This shows that ~ is a holomorphic diffeomor
phism from B onto C2 .

Note that this basin B is not the entire space C2 . For example, if IZII
is sufficiently large compared with Izol, and if

F F F
(zo, Zl) ~ (Zl' Z2) ~ (Z2, Z3) ~ · · · ,

then it is not difficult to check that Izll < \Z2\ < \Z3\ < ·· ., so that (zo, Zl)
is not in B.

Thus we have constructed a proper open subset B c C2 which is
biholomorphic (that is, analytically diffeomorphic) to all of c2 .

Again, such a phenomenon can never occur in one complex variable. Open
sets B with this property are called Fatou-Bieberbach domains. Such exam
ples were first constructed by Bieberbach [1933]. (Fatou had much earlier
described a many-to-one map from C2 onto a proper subset of itself.)

Maps of p2. Now consider a holomorphic map P from the complex
projective plane p2 = p2(C) to itself. Just as in the case of pl(C) I"'..J C, it
is not difficult to check that every such P is a rational map. That is, using
the notation (x,y,z) ~ (x: y: z) for the projection from C3 " {(O,O,O)}
to p2, we can write

F(x: y: z) = (Jo(x,y,z): h(x,y,z) : !2(x,y,z)), (D : 4)

where the fj are homogeneous polynomial functions, all of the same degree
d, with no common factor. In fact the fj must satisfy the stronger condi
tion of having no common zeros in C3 " {(O, 0, O)}. Here d is called the
algebraic degree of P. Note, however, that the topological degree of such an
everywhere defined holomorphic map of p2 is equal to d2 . For example, a
generic point of ]p2 has d2 distinct preimages.

Unlike the case of maps of C2 , where there may be a total lack of
critical points, here we have an overabundance. In fact if d 2: 2, then there
is always an entire algebraic curve of critical points, that is, points at which
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F is not locally one-to-one. As in the I-dimensional case, every attracting
basin must intersect this critical locus. (See Veda [1994].)

Just as in the case of Henon maps, such holomorphic maps of p2 may
well have infinitely many attracting periodic orbits. This was proved by
Gavosto [1998], based on earlier work by Mora and Viana [1993], Forneess
and Gavosto [1992], and Newhouse [1974].

Fatou Components. The Fatou set of a map of pn is defined much
as in the J-dimcnsional case. One can attempt to classify the possible Fatou
components. However, unlike the J-dimeneional case (§16 and Appendix
F), it is not known whether there may be wandering Fatou components.
For the study of invariant Fatou components U = F(U), see, for example,
Forneess and Sibony [1995b] or Forneess [1996]. As examples of invariant
Fatou components in p2, we have the following construction due to Veda.

Lemma D.2. Let UI and U2 be disjoint f -invariant Fatou
components for some rational map f of pI rv e. Then there
is a holomorphic map F : p2 -4 p2 of the same degree with
an invariant Fatou component U which is biholomorphic to the
product UI x U2, and such that F restricted to U is holomor
phically conjugate to f x f restricted to UI x U2.

As a typical example, if UI is a Herman ring and U2 is the immediate
basin for an attracting fixed point p , then U is the immediate basin for
an "attracting Herman ring" which is biholomorphic to UI x {p}.

Proof. Let t be the involution t(p, q) = (q, p), which interchanges
the two factors of pI x pl. Then the quotient space (pI x pI) / t can be
identified with p2. In fact, to any point (a : b : c) E p2 there corre
sponds a homogeneous polynomial equation ax2+ bxy + cy2 with two not
necessarily distinct roots (x: y) E pl. This yields the required one-to-one
correspondence between points of p2 and unordered pairs in pl. Similarly,
the self-map f x f of pI x pI corresponds to a self-map F = (f x f)/ c
of (pI x pI) / t rv p2. Further details will be left to the reader. D

The Green's Function. Potential theoretic methods are important
also in the study of holomorphic maps F : pn -4 pn. However, the
associated Green's function is defined, not on the space pn itself, but
rather on Cn +I . By definition, F lifts to a homogeneous polynomial map
p :Cn + I

-4 Cn + I , and we can set

G(ZQ, ... , zn) = lim (log+ II pok ( ZQ, ... , zn)II) /dk
.

k~oo

An open subset U c pn is contained in the Fatou set of F if and only
if the Green's function is pluriharmonic (that is, locally the real part of a
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holomorphic function) throughout the associated open set [j C Cn+1 " {O}.
See Hubbard and Papadopol [1994], as well as Veda [1994].

For further information about holomorphic maps of projective space,
see, for example, Forneess and Sibony [1992b, 1994, 1995b, 1998], Forneess
[1996], Smillie [1997], Veda [1998], Sibony [1999/2003], as well as Morosawa,
Nishimura, Taninguchi and Veda [2000].

Rational Maps and Points of Indeterminacy. To fix our ideas, I
will consider only the 2-dimensional case. The preceding discussion is based
on the assumption that F(x: y : z) is defined for every point (x: y : z)
of JP>2. But if we start with an arbitrary rational function, defined as in
(D : 4), where the fj are homogeneous polynomials of the same degree
with no common factor, then there may well be points of indeterminacy
(x : y : z) E JP>2 for which the equations

fo(x, y, z) == fl (x, y, z) == f2(X, y, z) == 0

have a simultaneous nontrivial solution. In this case, the function
F(x : y : z) is not everywhere defined, and the situation is quite differ
ent. (See, for example, Fornress and Sibony [1995a].) I will use the notation

F : JP>2 ---7 JP>2,

where the dotted arrow indicates that the map may not be everywhere
defined.

As an example, every degree d polynomial automorphism F of C2

extends easily to a rational map P : JP>2 ---7 JP>2 with algebraic degree d,
but there are always points of indeterminacy when d ~ 2. In fact, a generic
point of C2 has only one preimage, instead of d2 preimages, as it would
have for an everywhere defined holomorphic map of JP>2. Note that the
inverse automorphism extends similarly to a map p-1 : JP>2 ---7 JP>2 and that
the composition of P and p-1 is the identity wherever it is defined. Such
a rational map with rational inverse is said to be birational. A birational
map of degree d ~ 2 necessarily has points of indeterminacy. For further
information, see, for example, Forneess and Sibony [1995a] or Forneess [1996].

Attractors. Let f : X --t X be a continuous self-map of a locally
compact space, and let N c X be a nonempty compact proper subset of
X with the property that f(N) is contained in the interior of N. It then
follows that the intersection A == nk fOk (N) is a compact f -invariant set,
A == f(A). Such an A will be called a trapped attracting set, with N as a
trapping neighborhood. If A contains a dense orbit, then it will be called a
trapped attractor.
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This definition is particularly robust: If we replace f by some nearby
map g, then there will be a corresponding attracting set for 9 which is
contained in a small neighborhood of A.

In the case of a holomorphic map of a Riemann surface, it is not hard
to see that a trapped attractor is necessarily a finite periodic orbit. The
same statement is true for holomorphic maps of en. (Compare Problem
D-3.) However, for holomorphic maps of p2, more interesting examples
can occur. (Compare Jonsson and Weickert [2000], Forneess and Weickert
[1999], Forneess and Sibony [2001].)

For some purposes it is useful to broaden the definition so as to include
less robust forms of attraction. As one example, the "attracting Herman
ring" constructed in Lemma D.2 is certainly attracting in a quite strong
sense: It attracts all orbits in the neighborhood U locally uniformly. How
ever, it is not a trapped attractor. In fact, it will disappear under an
arbitrarily small perturbation of f. The corresponding statement for an
attracting Siegel disk is even easier to check, since an indifferent fixed point
becomes repelling under arbitrarily small perturbations.

The following more general definition will allow this example, as well as
other much stranger ones.

Definition. Let f : M ~ M be a continuous self-map of a smooth
manifold, and let A = f(A) be a compact invariant set. Define the attract
ing basin B(A) to be the set of all points p E M such that the distance
of fOk (p) from A tends to zero as k ~ 00. The set A will be called
a measure theoretic attracting set if its basin B(A) has positive measure.
(Compare Milnor [1985].) Again it will be called an attractor if it also con
tains a dense orbit. Here both distance and measure can be defined in terms
of some Riemannian metric on M, but the definition does not depend on
the particular choice of metric.

With this definition, the possibilities become much more wild. For ex
ample, according to Bonifant, Dabija, and Milnor [in preparation], a holo
morphic map of p2 can have intermingled basins. (Compare Alexander,
Kan, Yorke, and You [1992].) More precisely:

There exists a family of degree 4 holomorphic maps of p2 with
one attracting fixed point and two smooth measure theoretic at
tractors Al and A 2 , where the three attracting basins are so
thoroughly intermingled that any open neighborhood of any point
of the Julia set intersects each of the three basins in a set of
strictly positive measure.
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Concluding Problems

Problem D-1. A nonlinearizable germ. Let

F(x, y) == (AX, A2y + x2
) with A i- 0, 1.

Show that there is only one smooth F -invariant curve through the origin,
namely X == o. (Any smooth curve can be described locally by setting
one of the coordinates equal to a power series in the other, for example
y = ax + bx2 + · · .. Assume F -invariance and compare coefficients.) By
way of contrast, for the associated linear map L(x, y) = (Ax, A2y) note
that there are infinitely many F -invariant curves y = cx 2 . Conclude that
F is not locally holomorphically conjugate to a linear map.

Problem D-2. Caratheodory distance. Let M be a complex
manifold which can be embedded as a bounded subset of some en. Define
the Csretheodory distance, 0::; d(p, q) = dM(p, q) ::; 00, between two points
of M to be the supremum, over all holomorphic maps f: M -1' l[)), of the
Poincare distance between f(p) and f(q). (1) Show that d(p, q) < 00

if and only p and q belong to the same connected component of M.
(2) Show that the triangle inequality is satisfied and that

dN(g(P), g(q)) < dM(P, q),

where 9 can be any holomorphic map from M to N. (3) If M is
embedded in N with compact closure, show that there is a constant c < 1
so that

for all p, qE M.

Problem D-3. No nontrivial trapped attractors in en. If A is a
trapped attractor for a holomorphic map F : en -1' en ,find bounded neigh
borhoods U and V with F(U) eVe V cU. Using the Caratheodory
distance, conclude that

du(F(p), F(q)) ::S cdu(p,q)

for some uniform constant c < 1, and use this to prove that A must be an
attracting periodic orbit.

(Remark: Similarly, any trapped attractor which is contained in the
Fatou set for a holomorphic map of JP>n must be a periodic orbit. In fact,
according to Forneess and Weickert [1999], any trapped attractor which is
infinite must contain a nonconstant holomorphic image of e. But according
to Ueda [1994] each component of the Fatou set is Kobayashi hyperbolic,
and hence cannot contain such an image.)



Appendix E. Branched Coverings and Orbifolds

This will be an outline of definitions and results due to Thurston. (See
Douady and Hubbard [1993].) If

f(z) = Wo + c(z - zo)n + (higher terms),

with n 2: 1 and c =f 0, recall that the integer n = n(zo) is called the local
degree of f at the point zo. Thus n(zo) 2: 2 if Zo is a critical point, and
n(zo) = 1 otherwise. We will use ramified point as a synonym for critical
value. Thus if f(zo) = Wo as above with local degree n 2: 2, then Wo is
a ramified point.

A holomorphic map p : 8' -t 8 between Riemann surfaces is called a
covering map if each point of 8 has a connected neighborhood U which
is evenly covered, in that each connected component of p-l(U) C 8' maps
onto U by a conformal isomorphism. A map p : 8' -t 8 is proper if the
inverse image p-l(K) of any compact subset of 8 is a compact subset of
8'. Note that every proper map is finite-to-one and has a well-defined finite
degree d 2: 1. Such a map may also be called a d-fold branched covering.
On the other hand, a covering map may well be infinite-to-one. Combining
these two concepts, we obtain the following more general concept.

Definition. A holomorphic map p : 8' -t 8 between Riemann surfaces
will be called a branched covering map if every point of 8 has a connected
neighborhood U such that each connected component of p-l(U) maps
onto U by a proper map.

Such a branched covering is said to be regular (or normal) if there exists
a group r of conformal automorphisms of 8', so that two points Zl and
Z2 of 8' have the same image in 8 if and only if there is a group element ')I

with ')I(Zl) = Z2. In this case we can identify 8 with the quotient manifold
8'Ir. In fact it is not difficult to check that the conformal structure of such
a quotient manifold is uniquely determined. This r is called the group of
deck transformations of the covering.

Regular branched covering maps have several special properties. For
example, each ramified point is isolated, so that the set of all ramified points
is a discrete subset of 8. Furthermore, the local degree n(z) depends only
on the target point f(z), that is, n(zl) = n(z2) whenever f(Zl) = f(Z2)'
Thus we can define the ramification function u : 8 -t {I, 2, 3, ...} by
setting v(w) equal to the common value of n(z) for all points z in the
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preimage f- 1 (W ). By definition, u(w) 2: 2 if W is a ramified point, and
v(w) == 1 otherwise.

Definition. A pair (S, v) consisting of a Riemann surface S and a
ramification function u : S --+ {I, 2, 3, ...} which takes the value v(w) == 1
except on a discrete closed subset will be called a Riemann surface orbifold. *

Definition. A branched covering p : S' --+ S will be called the universal
covering for the Riemann surface orbifold (S, v) if S' is simply connected,
and if the local degree at every point z E S' is equal to v(p(z)) .

Theorem E.l. With the following exceptions, every Riemann
surface orbifold (S, v) has a universal covering By
which is necessarily a regular branched covering, and which is
unique up to conformal isomorphism over S. The only excep
tions are given by:

(1) a surface S ~ e with just one ramified point, or

(2) a surface S ~ t with two ramified points for which
v(WI) =1= v(W2) .

In these exceptional cases, no such universal covering exists.

Compare Problems E-3 and E-4. We will use the notation By --+ (S , v)
for this universal branched covering. The associated group r of deck trans
formations is called the fundamental group 1fl (S, v) of the orbifold.

By definition, the Euler characteristic of an orbifold (S, v) is the rational
number

x(S, v) = X(S) + L (v(~j) -1),

to be summed over all ramified points, where x(S) is the usual Euler
characteristic of S. Intuitively speaking, each ramified point Wj makes
a contribution of +1 to the usual Euler characteristic x(S), but a smaller
contribution of l/v(wj) to the orbifold Euler characteristic. Thus

x(S) - r < X(S, v) :::; X(S) - r/2

where r is the number of ramified points and where X(S) :::; 2. As an
example, if x(S, v) 2: 0, with at least one ramified point, then it follows
that X(S) > 0, so the base surface S can only be JI)), C, or t, up to
isomorphism. Compare Remark E.6.

"Thurston's general concept of orbifold involves a structure which is locally modeled

on the quotient of a coordinate space by a finite group. However, in the Riemann surface

case only cyclic groups can occur, and this much simpler definition can be used.
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If there are infinitely many ramified points, note that we must set
X(8, v) = -00. Similarly, if 8 is a connected surface which is not of
finite type, then X(8, v) = X(8) = -00 by definition.

If 8' and 8 are provided with ramification functions j..l and v , re
spectively, then a branched covering map f : 8' ~ 8 is said to yield an
orbifold covering map (8', j..l) ~ (8 , v) if the identity

n(z)j..l(z) = v(f(z))

is satisfied for all z E 8', where n(z) is the local degree. Evidently a
composition of two orbifold covering maps is again an orbifold covering
map. As an example, the universal covering map 8v ~ (8, v), where
s; is provided with the trivial ramification function vI, is always an
orbifold covering map.

Lemma E.2. f: (8', j..l) ~ (8, v) is a covering map between
orbifolds if and only if it lifts to a conformal isomorphism from
the universal covering B~ onto Bv . If f is a covering in this
sense and has finite degree d , then the Riemann-Hurwitz For
mula (Theorem 7.2) takes the form

x(8', j..l) = x(8, v)d.

In particular, if the universal covering of (8, v) is a covering
of finite degree d, then X(3v ) = X(8, v)d.

The fundamental group and the Euler characteristic are related to each
other as follows. Here we assume that there is at least one ramified point.

Lemma E.3. Let (8, v) be any Riemann surface orbifold which
possesses a universal covering. Then:
X(8, v) > 0 if and only if the fundamental group 1rl (8, v) is

finite, necessarily of order 2/X(8,v), with 3v '" c.
X(8, v) = 0 if and only if the fundamental group contains either

Z or Z E9 Z as a subgroup of finite index.
X(8, v) < 0 if and only if the fundamental group contains a

nonabelian free product Z * Z, and hence does not contain
any abelian subgroup of finite index.

The Euler characteristic and the geometry of s; are related as follows.

Lemma E.4. If 8 is a compact Riemann surface, then the Eu
ler characteristic X(8, v) is positive, negative, or zero according
to whether the universal covering 3v is conformally spherical,
hyperbolic, or Euclidean.
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Remark. This lemma is closely related to the Gauss-Bonnet Theorem,

JJK dA = 271" X(S, z/),

which holds for any orbifold metric (§19) which is complete with finite area,
and which is sufficiently well behaved near infinity in the noncompact case.
Here K is the Gaussian curvature of (8, v) and dA is its area element.

Example E.5. If 8 == C with four ramified points of index 1/(Wj) == 2,
then the torus T described in §7 (Example 3) provides a regular twofold
branched covering. Its universal covering T rv C can be identified with the
universal covering of (C, 1/). In this case, X(C, v) == o.

Remark E.6. The relatively few cases in which X(8, 1/) ~ 0 can be
listed as follows. Note that a surface with X(8) > 0 can only be a sphere,
plane, or disk; while a surface with X(8) == 0 must be a punctured plane,
punctured disk, annulus, or torus. The notation (1/(WI), ... , 1/(ui; )) will
be used for the list of ramification indices at all ramified points, for example
with 1/(WI) :s; · · · :s; 1/(W r ) .

If X(C, v) > 0 with r > 0, then the ramification indices must be
either (n,n) or (2,2,n) for some n ~ 2, or (2,3,3), (2,3,4), or (2,3,5).
These five possibilities correspond to the five types of finite rotation groups
of the 2-sphere, namely to the cyclic, dihedral, tetrahedral, octahedral, and
icosahedral groups, respectively. (Compare Milnor [1975, p. 179].)

If X(C, 1/) == 0, then the ramification indices must be either (2,4,4),
(2,3,6), (3,3,3), or (2,2,2,2). These correspond to the automorphism
groups of the tilings of C by squares, equilateral triangles, alternately col
ored equilateral triangles, and parallelograms, respectively. (For a more
precise description, see Milnor [2004b].) In the parallelogram case, note
that there is actually a one-complex-parameter family of distinct possible
shapes, corresponding to the cross-ratio of the four ramified points.

Similarly, if X(C, v) or X(IIJ), 1/) is strictly positive, then we must have
r ~ 1, while if X(C, v) or X(IIJ), 1/) is zero, then we must have r == 2 with
ramification indices (2,2). This is the complete list.

Concluding Problems

Problem E-1. The complex plane with 2 ramified points. (1) If
8 == C with ramification function satisfying 1/(1) == 1/(-1) == 2 and with no
other ramified points, show that the map z ~ cos(21fz) provides a universal
covering C -t (C, 1/). (2) Show that the Euler characteristic X(C, 1/) is
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zero, and the fundamental group 1rl (S, v) consists of all transformations
of the form "y: Z ~ n ± z with n E Z.

Problem E-2. C with 3 ramified points. For S = C with three
ramified points v (0) = v (1) == v ((0) = 2, show that the rational map
11"(z) = -4z2/(z2 - 1)2 provides a universal covering t ~ (C, v). Show
that X(C, v) == 1/2, that the degree is equal to X(C)/X(C, v) = 4, and
that the fundamental group consists of all transformations "y: z ~ ±z±l .

Problem E-3. Bad orbifolds. For C with one ramified point, or
with two ramified points with different ramification indices, show that there
can be no universal covering surface. (For example, use Lemma E.2.)

Problem E-4. Existence of universal coverings. For an arbitrary
Riemann surface orbifold (S, v) (other than those in Problem E-3), con
struct a universal covering in several steps, as follows.

Case 1. Suppose that S is the plane ce or the disk JI)). Let XeS be
the set of ramified points. Choosing some base point Zo E S" X , note that
the fundamental group 1rl(S"X, zo) is a free group with one generator ex
for each x EX, represented by a loop encircling x. Let N C 1r (S <, X, zo)
be the normal subgroup generated by the powers f(x)v(x) , and let S' be
the covering space of S" X with fundamental group 11"(S') == N. If lI))E(X)

is a small disk around x, show that the preimage of lI))E (x) <, {x} in S' is
a union of disjoint punctured disks. Filling in all of these puncture points,
show that we obtain the required universal covering.

Case 2. If S is Euclidean or hyperbolic, show that by first passing to
the universal covering of S, we are reduced to Case 1.

Case 3. On the other hand, if S == C with at most three ramification
points, show that the universal covering space can be constructed as in
Remark E.6 (unless excluded by Problem E-3). The same is true if there
are four ramification points, all with ramification index 2.

Case 4. S = C with four or more ramification points. For any three
point subset Xo eX, or for any four point set of type {2, 2, 2, 2}, we see
by Case 3 that there exists a simply connected orbifold covering (S', v')
which is ramified only over Xo. Here each of the points of X" Xo will
be covered by many ramified points in S'. In most cases, we can choose
Xo so that S' is Euclidean or hyperbolic, and are therefore reduced to
Case 2. However, in a few exceptional cases an extra step is needed. For
example, if the ramification indices are {2, 2,2, 3} then we can first pass
to the fourfold covering, ramifying only over the first three points. Then
S' will have ramification indices {3, 3, 3, 3, 3}, and a further covering will
reduce to the Euclidean case. The other exceptional cases are similar.



Appendix F. No Wandering Fatou Components

This appendix will outline a proof of the following. (Compare §16.)

Theorem F.! (Sullivan Nonwandering Theorem). Every
Fatou component of a rational map is eventually periodic.

The intuitive idea of the proof is the following. Let U be any Fatou
component for i , that is, any connected component of c , J(f). Suppose
that we try to change the conformal structure on U. If j is to preserve this
new conformal structure, then we must also change the conformal structure
everywhere throughout the grand orbit of U in a compatible manner. If
j(U) = U, then the condition that j preserves this structure imposes very
strong restrictions. Similarly, if U is periodic or even eventually periodic,
then there are very strong restrictions. However, if U were a wandering
component, that is, if the successive forward images

U, j(U), j02(U), j 03(U), ...

were pairwise disjoint, then we could change the conformal structure within
U in an arbitrary manner and then propagate this change throughout the
entire grand orbit of U. As Sullivan realized, this would be too much of a
good thing. He showed that it would yield an infinite-dimensional space of
essentially different rational maps of the same degree. But this is patently
impossible, since a rational map of given degree is completely determined
by a finite number of complex parameters.

There are two key difficulties in carrying out this argument. The first is
that conformal structures constructed in this way are usually discontinuous
at every limit point of the grand orbit of U, so that it is not easy to make
sense of them. However, this problem had been dealt with earlier in the
pioneering work of Morrey [1938] and Ahlfors and Bers [1960]. The second
difficulty that Sullivan faced was the need for some effective way of showing
that he really did get too many distinct rational maps in this way, and not
just many different ways of constructing the same rational maps. I will
describe a way of dealing with this second problem by means of cross-ratios.

The Beltrami Equation. Before beginning this argument, we must
explain the concept of a measurable conformal structure on an open set
U C C. Intuitively, a conformal structure at a point z E U can be pre
scribed by choosing some ellipse centered at the origin in the tangent space
TzU rv C. We are to think of this ellipse as a "circle" in the new conformal
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structure. In more technical language, a conformal structure at the point
Z E C is determined by a complex dilatation M(z) E IIJ). First consider the
case where M(Z) is constant. Then the function h(z) = z + Z M satisfies
the Beltrami differential equation

8~ = J-l(z) 8h (F : 1)
8z 8z

(named for Eugenio Beltrami, 1835-1900). Here the derivatives 8/&z and
8/8z are to be defined by the formula.

8 1(8 .8) 8 1(8 .8)
&z ="2 8x + z8y' 8Z ="2 8x - z8y 1

where z = x + iy. (As an illustration, note that f (z) satisfies the Cauchy
Riemann equation 8f /&z = 0 if and only if it is holomorphic, and that
8f /8z is then the usual holomorphic derivative.)

If h satisfies (F : 1) with constant M E IIJ), then a round circle Ih I =
constant in the h-plane corresponds to an ellipse Iz + zMI = constant in
the z-plane, with direction of the major axis controlled by the argument of
M and with eccentricity controlled by IMI. If IMI = r < 1, then the ratio of
major axis to minor axis is equal to (1 +r)/(l- r), which tends to infinity
as r ---+ 1.

More generally, if the function M(Z) is real analytic, then Gauss, in his
construction of "isothermal coordinates," showed that an equation equiva
lent to (F : 1) always has local solutions. Morrey extended this to the case
where M(Z) is measurable, with

IM(z)1 < constant < 1 (F : 2)

almost everywhere, constructing a solution z r---t h(z) which maps a region
in the z plane homeomorphically onto a region in the h plane. Fur
thermore, if hI and h2 are two distinct solutions, he showed that the
composition h2 0 hI 1 is holomorphic.

Here some explanation is needed, since we are considering a differential
equation involving nondifferentiable functions. For any open set U C C let
£1(U) be the vector space consisting of all measurable functions ¢: U ---+ C
with

Jfu I¢(x + iy)1 dx dy < 00

(where we identify two functions which agree almost everywhere). We will
also need the vector space of test functions on U, consisting of all Coo
functions T: U ---+ C which vanish outside of some compact subset of U.
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Definition. A continuous function h: U ~ <C has distributional deriva
tives in L 1 if there are complex valued functions hz and hz defined almost
everywhere in U and belonging to L1(U) so that

Jb(hz(Z)T(Z) + h(z)8Tj8z)dxdy = a (F: 3)

for every such test function T, with an analogous equation for hz . (Note
that we can change hz and hz on a set of Lebesgue measure zero without
affecting (F : 3).) The Beltrami equation for h now requires that

hz(z) == J-L(z) hz(z)

for almost every z E U. This makes sense, since the pointwise product of
an L1 function and a bounded measurable function is again in L1 . By
definition, any continuous one-to-one solution h is called a quasiconformal
mapping on U, with complex dilatation J-L.

More generally, we can consider such a measurable conformal structure
on a Riemann surface 8. However, it is no longer described by a complex
valued function, but rather by a section of a real analytic II}-bundle which
is canonically associated with 8. Given a local coordinate z on an open
set U, we can still describe the conformal structure on U by a dilatation
function J-L: U ~ II}, but on the overlap between two local coordinates z
and z' a brief computation shows that the equation

,( ') _ () 0z' / oZ'J-LZ -J.LZ--oZ oz
must be satisfied in order to make sense of this structure globally. * Note
that 1J.L'(z') I == 1J.L(z) \, so that condition (F : 2) is independent of the choice
of coordinate system. If this conformal structure is measurable and satisfies
(F : 2) everywhere, then the local solutions h form the atlas of local con
formal coordinates for a new Riemann surface 8J-L which is topologically
identical to 8, but conformally (and even differentiably) quite different. In
the special case where 8 is the Riemann sphere, it follows from the Uni
formization Theorem that 8J-L is conformally equivalent to the Riemann
sphere. In particular, there is a unique conformal isomorphism h: 8 ~ 8J-L
which fixes the points 0, 1, and 00. If we remember that 8J-L is identical to

*In more geometric language, a Beltrami differential at a point x of a Riemann surface

can be described as an additive homomorphism from the tangent space Tx to itself which

is antilinear, J-Lx(At) == ~ J-Lx(t) , and which multiplies the length of any vector t E Tx by

a constant IJ-Lxl < 1. In particular, if S is an open subset of C so that Tc ~ C, then

J-Lx will have the form J-Lx(t) == J-Lt with IJ-Lxl == IJ-LI < 1.
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s == C as a topological space, then we can also describe h == hJ.L as a quasi
conformal homeomorphism from C to itself (or briefly a qc-homeomorphism)
with complex dilatation J-l(z).

We can also study the dependence of hJ.L on the dilatation u, For
each fixed Zo, Ahlfors and Bers [1960] showed that the correspondence
J-l t---t hJ.L(zo) defines a differentiable function from the appropriate space of
dilation functions to the Riemann sphere. For further information, see, for
example, Ahlfors [1987], Carleson and Gamelin [1993], Lehto [1987], Lehto
and Virtanen [1973], or Douady and Buff [2000].

Some Conformal Structures on the Unit Disk. In order to carry
out Sullivan's proof, we must construct a large family of essentially distinct
conformal structures on the open disk lI». This can be done as follows. Fix
three base points on the unit circle alI», for example ± 1 and i. Let G be
the group of all Coo diffeomorphisms of alI» which fix these three points.
I will use the notation E(t) == e21ri t for the standard diffeomorphism from
]R/Z onto all)). Writing each group element as

9 : E(t) t---t E(t + v(t)),

we can identify G with the convex set consisting of all Coo functions
v : ]R/Z ---+ ]R which vanish at three specified points, and such that the
correspondence t t---t t+v(t) has derivative 1+v'(t) > 0 everywhere. This
group G has been constructed so that no 9 other than the identity map
can be extended to a conformal automorphism of the closed disk ll)). To see
this, note that for each nonidentity 9 E G we can find four distinct points
of all)) which map to four points with different cross-ratio, which would
be impossible under a conformal automorphism. On the other hand, each
9 E G extends to a diffeomorphism 9 of ll)), as follows. If TJ : [0,1] ---+ [0,1]
is some smooth monotone function with

TJ[2/3,1] == 1,TJ[0,1/3] == 0,

then 9 extends to the diffeomorphism

g(r E(t)) = r E(t + 1](r)v(t)). (F 4)

Evidently this extension depends smoothly on g.

Wandering Components. Suppose that some rational function f
has a wandering Fatou component U. Replacing U by some iterated for
ward image if necessary, we may assume that there are no critical points in
the forward images fon (U) .

Lemma F.2 (Baker). If no forward image t'" (U), n 2: 0,
contains a critical point, then U must be simply connected.
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Proof. Since no Un = fon(u) contains a critical point, it follows that
each Un maps onto Un+l by a covering map. In particular, it follows that
each fundamental group WI (Un) maps injectively into 7fl (Un+l ) .

After conjugating by a Mobius automorphism of t, we may assume
that the point at infinity is in U, so that all other Fatou components lie in
the bounded region c , U c <C. Let Lo be an arbitrary simple closed curve
contained in U. Since U is contained in the Fatou set, the collection of
iterates fon restricted to U forms a normal family. The area of fon(u)
must clearly tend to zero as n --+ 00, and it follows that any convergent
sequence of iterates must converge locally uniformly to a constant map.
Therefore the diameter of the compact set Ln = fon(Lo) must converge to
zero as n --+ 00. Let K n be the union of Ln and all bounded components
of its complement. Then the diameter of Kn also tends to zero as n --+ 00.

It follows that K n must map into K n+l for large n. For otherwise, if some
point of Kn " Ln mapped outside of Kn+l , then the image f(Kn" Ln),
being an open set for which the boundary is contained in Ln+1 , would have
to cover the entire complement of Kn+l . But this is impossible when Kn
and Kn+l are sufficiently small. It follows that Kn is contained in the
Fatou set when n is large, and hence is contained in Un. But Ln is clearly
contractible within Kn, and hence within Un. Since 7fl (U) injects into
WI (Un), this proves that U is simply connected, as required. 0

Proof of Theorem F.!. The proof of Sullivan's Theorem begins as
follows. Choose some conformal isomorphism ¢ from U to the unit disk IIJ).

With 9 as in (F : 4), we can pull back the conformal structure of IIJ) under
the composition 90 ¢ and then use f to transport this conformal structure
over the entire grand orbit of U. (There may be isolated points in this
grand orbit which are precritical. The induced conformal structure is not
defined at such points, but this will not matter.) For points which are not
in the grand orbit of U, we simply use the usual conformal structure. Thus
we have described a measurable conformal structure almost everywhere on
t. The condition IMI ~ constant < 1 is easily verified. Integrating the
resulting Beltrami equation, this yields a family of qc-homeomorphisms kg,
normalized so as to fix three points of the Riemann sphere, and a family of
maps fg so that the following diagram is commutative,

IIJ) J!- U c t L t
19 1 kgIu 1 kg 1 kg

]jJ) ~ Ug c t .ls; t,
where horizontal arrows represent holomorphic maps and vertical arrows
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represent quasiconformal maps. Here Ug is defined to be the image of
U under hg , and the maps on the bottom row are defined in such a way
that the diagram is commutative. Since the conformal structures on C
were constructed so as to be invariant under I, it follows that each fg is
holomorphic, and hence is a rational map of the same degree d.

We must show that the rational map fg depends smoothly on g. Note
that a rational map p(z)/ q(z) of degree d is uniquely determined by its
values on 2d + 1 distinct points, for a second degree d map P(z)/Q(z)
takes the same value as p(z)/ q(z) at Zi if and only if the polynomial
p(z)Q(z) - P(z)q(z) vanishes at Zi. Furthermore, if such a polynomial
equation of degree 2d has 2d + 1 distinct solutions, then it must be iden
tically zero. In fact the coefficients of p(z) and q(z), suitably normalized,
can be obtained by solving linear equation, and hence depend smoothly on
the given data. Now consider the points hg(j) for 1 ~ j ~ 2d + 1. Since
fg maps each such point to hg(f(j)), and since both hg(j) and hg(f(j))
depend smoothly on g, it follows that fg depends smoothly on g.

Let Ratd be the (2d+ 1)dimensional manifold consisting of all rational
maps of degree d. Thus we have a smooth mapping 9 ~ fg from the
infinite dimensional space G to the finite dimensional manifold Ratd. It is
then not hard to construct a smooth nonconstant path in G which maps to
a point in Ratd. To avoid working with infinitely many dimensions, we can
first choose some (2d+ 2) -dimensional submanifold Moe G. Choose some
point go E Mo where the rank of the first derivative of the correspondence
9 ~ fg from Mo to the space Ratd of rational maps takes its maximal
value r ~ 2d + 1. Then a neighborhood N of go maps smoothly onto
an r-dimensional submanifold M; C Ratd. Taking the preimage in N
of a regular value in Ml' we obtain a submanifold M2 c N of dimension
2d+ 2 - r ~ 1, with the property that the corresponding maps fg are all the
same. Any nonconstant path t ~ g(t) in M2 will then have the required
property of mapping to a point in Ratd.

Now consider the one-parameter family of qc-homeomorphisms h~ =

hg(t) 0 h;(1) which conjugate Ig(o) to Ig(t). Since Ig(t) = Ig(o) , this means
that each h~ must commute with fg(o). It follows that each h~ must restrict
to the identity map on the Julia set J(fg(o)) , since the periodic points of
fg(o) cannot move under a deformation which commutes with it.

This leads to a contradiction as follows. Suppose first, to simplify the
discussion, that U is bounded by a Jordan curve. For every four points
of au we can define the cross-ratio relative to U by choosing a conformal
isomorphism U ---t II)), extending continuously to the boundary (see Theo
rem 17.16), and then taking the usual cross-ratio in IIJ>. But if g(t) =1= g(O)
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then we can choose four points of the unit circle whose cross-ratio definitely
changes under the composition g(t) 0 g(O)-l. Hence h~ cannot fix the corre
sponding four points of aug(O) ' contradicting our previous statement. This
proves Theorem F.I under the hypothesis that au is a Jordan curve.

If au is not a Jordan curve, then we must elaborate this argument using
ideas from §I7. Recall that the Ceretheodory compactification f; consists of
U together with a circle of ideal points which are called prime ends. These
are constructed using only the topology of the pair (U, au). Recall also
that any Riemann map U --t IIJ) extends to a homeomorphism [; --t IIJ).

Thus, if we are given four distinct prime ends in a[;, it follows that the
cross-ratio of the corresponding points in aIIJ) is well defined, independent
of the particular choice of Riemann map. To complete the proof, we will
need the following supplementary statement.

Lemma F .3. If an orientation-preserving homeomorphism h
from the pair (U, aU) to itself restricts to the identity map on
au, then h maps each prime end of (U, au) to itself.

(The example of the complex conjugation map on the pair (C, [0,1])
shows that the orientation condition is necessary.) To prove Lemma F.3,
recall from §17 that a prime end is determined by a fundamental chain {Aj}
of transverse arcs, with associated neighborhoods N(A1) ~ N(A2) ~ .. '. If
the corresponding neighborhoods h(N(Aj)) were disjoint from the N(Aj) ,
then each N(Aj) Uh(N(Aj)) would be a region bounded by a Jordan curve.
The homeomorphism h must preserve orientation on this region, yet reverse
orientation on its boundary, which is impossible. D

Using this result, the proof of Theorem F.I goes through just as in the
Jordan curve case. D



Appendix G. Parameter Spaces

A very important part of complex dynamics, which has barely been men
tioned in these notes, is the study of parametrized families of mappings.* As
an example, consider the family of all quadratic polynomial maps. A priori,
a quadratic polynomial is specified by three complex parameters; however
any such polynomial can be put into the unique normal form

f (z) == z2 + c (G : 1)

by an affine change of coordinates. (A closely related t normal form is

w ~ Aw(l - w) (G : 2)

with a preferred fixed point of multiplier A at the origin.) Using such a nor
mal form, we can make a computer picture in the parameter space consisting
of all complex constants c or A. Each pixel in such a picture, correspond
ing to a small square in the parameter space, is to be assigned some color,
perhaps only black or white, which depends on the dynamics of the corre
sponding quadratic map. (See Branner [1989] for further information.)

The first crude pictures of this type were made by Brooks and Matelski
[1981], as part of a study of Kleinian groups. They used the normal form
(G : 1) and introduced the open set consisting of all points of the c-plane
for which the corresponding quadratic map has an attracting periodic orbit
in the finite plane. I will use the notation H for this set, since its points
represent hyperbolic maps. At about the same time, Hubbard (unpublished)
made much better pictures of a quite different parameter space arising from
Newton's method for cubic equations. Two years later Mandelbrot [1980],
perhaps inspired by Hubbard, made corresponding pictures for quadratic
polynomials, using the normal form (G : 2), which is essentially the same
as that of Figure 29 (p. 145), and also using a variant of (G : 1). In order
to avoid confusion, let me translate all of Mandelbrot's definitions to the
normal form (G : 1). He introduced two different sets, which I will call
M and M'. (Mandelbrot did not give these sets different names, since
he believed that they were identical.) By definition, a parameter value c
belongs to M' if the corresponding filled Julia set contains an interior point,
and belongs to M if its filled Julia set contains the critical point z == O.

*Compare Figures 29, 30, 49 on pages 145, 151, 267.

t These are conjugate under the change of coordinates z == -AW + A/2 provided that

A i= 0, with 4c == A(2 - A).

266
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Figure 49. The Mandelbrot set M. The boundary (or bifurcation
locus) is shown in black, and the interior, which is conjecturally the
same as the locus of hyperbolic maps in M, is shown in grey.

(According to Theorem 9.5, this is equivalent to requiring that the Julia
set be connected.) The Brooks-Matelski set 'H. satisfies H C M' eM.
Mandelbrot made somewhat better computer pictures, which seemed to
show a number of isolated "islands." Therefore, he conjectured that M' [or
M] has many distinct connected components. (The editors of the journal
thought that his islands were specks of dirt and carefully removed them
from the pictures.) Mandelbrot also described a smaller set Mil C M'
which he believed to be the largest connected component of M'. This
set Mil consists of a central cardioid with some boundary points included,
together with countably many smaller nearly-round (satellite) disks which
are attached inductively in an explicitly described pattern.

Although Mandelbrot's statements in this first paper were not com
pletely right, hedeserves a great deal of credit for being the first to point out
the extremely complicated geometry associated with the parameter space for
quadratic maps. His major achievement has been to demonstrate to a very
wide audience that such complicated "fractal" objects play an important
role in a number of mathematical sciences.



268 APPENDIX G

The first real mathematical breakthrough came with Douady and Hub
bard [1982]. They introduced the name Mandelbrot set for the compact set
M described above, and provided a firm foundation for its mathematical
study, proving, for example, that M is connected with connected comple
ment. (Meanwhile, Mandelbrot had decided empirically that his isolated
islands were actually connected to the mainland by very thin filaments.)
Already in this first paper, Douady and Hubbard showed that each hyper
bolic component of the interior of M can be canonically parametrized,
and showed that the boundary BM can be profitably studied by following
external rays.

It may be of interest to compare the three sets HeM' c M in param
eter space. They are certainly different since H is open, M is compact,
and M' is neither. In fact, M' consists of H together with a very sparse
set of boundary points, namely those for which the corresponding map has
either a parabolic orbit or a Siegel disk. Quite likely, there is no difference
between these three sets as far as computer graphics are concerned, since it
is widely conjectured that the hyperbolic set H is equal to the interior of
M and that M is equal to the closure of H. (Douady and Hubbard have
shown that these conjectures are true if the set M is locally connected.
The work of Yoccoz lends support to the belief that M may indeed be
locally connected. Compare Hubbard [1993].)

As far as practical computing is concerned, it should be noted that we
can test whether a given point c belongs to M by following the orbit
of zero under z ~ z2 + c to see whether it remains bounded or diverges
rapidly to infinity. Similarly, we can test whether c E H by seeing whether
the critical orbit converges to a finite periodic attractor (compare Theorem
8.6). However, such tests can never prove conclusively that a point lies
in M" H since there is no effective bound for the number of iterations
which may be needed. For example, as noted in Remark 8.8, the point
c == -1.5 certainly belongs to M and conjecturally belongs to M" H ;
but there is no known way to verify such a statement. Furthermore, it is
particularly difficult to decide whether a given point of M corresponds
to a polynomial with a Siegel disk or Cremer point. For a more detailed
discussion of computational difficulties, see Appendix H.

Another important development came with the work of Mane, Sad, and
Sullivan [1983], and independently Lyubich [1983a], showing that for any
holomorphically parametrized family of rational maps there is a dense open
subset for which the topological structure of the Julia set J(f) remains
stable under deformation of f. (Compare the discussion of Theorem 19.1.)

The study of parameter space for higher degree polynomials began some
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five years later with the work of Branner and Hubbard [1988, 1992]. Using
the normal form

with the two critical points at z = ±a, they proved that the cubic con
nectedness locus, consisting of all parameter pairs (a, b) for which J(f) is
connected, is a cellularset. (Compare Problem 9-e.) In particular, this set is
compact and connected. The corresponding result for polynomials of higher
degree has been obtained by Lavaurs (unpublished). Further information
about polynomial parameter spaces is given in Milnor [1992a, 1992b].

Parameter spaces for rational maps have been studied, for example, by
Rees [1990,1992, 1995], Milnor [1993, 2000c], Epstein [2000], and DeMarco
[2003, 2004]. The situation is more awkward than for polynomials, since
there is no obvious preferred normal form for rational maps. The space
Ratd consisting of all rational maps of degree d is a well behaved complex
manifold. In the degree 2 case, the moduli space, consisting of quadratic
rational maps up to holomorphic conjugation, is also a smooth manifold,
canonically diffeomorphic to <e2 . (Milnor [1993].) However, for degrees
d > 2 the corresponding moduli space has singularities (Problem G-3).

Concluding Problems

Problem G-1. Polynomial moduli space. (1) Show that every
polynomial map of degree d 2: 2 is conjugate, under an affine change of
coordinates, to one in the "Fatou normal form"

f(z) = zd + ad_2zd-2+ ···+ alz + ao.

(2) Let P(d) rv <ed- 1 be the space of all such maps. Show that the cyclic
group Cd-l of (d-1)st roots of unity acts on P(d) by linear conjugation,
replacing f(z) by f(wz)/w, and show that the quotient P(d)/Cd-l can be
identified with the moduli space of degree d polynomials up to affine con
jugation. If d 2: 4, this moduli space is not a manifold. As an example, for
d = 4, let U be a small neighborhood of fo(z) = z4 in moduli space.
(3) Show that u" {fa} does not have the mod 3 homology of a 5
dimensional sphere, and conclude that this moduli space is not a manifold.

Problem G-2. Quadratic rational maps. Let A, J-L, u be the mul
tipliers at the three fixed points of a quadratic rational map f, taking
A = J-L = 1 in the case of a double fixed point or A = J-L = u = 1 in the case
of a triple fixed point. (1) Show that the holomorphic conjugacy class of f
is uniquely determined by the unordered triple {A, J-L, v}, or equivalently
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by the three elementary symmetric functions

a1 == A + /1 + v , a2 == A/1 + AV + /1V , a3 == A/1V.

(Compare Problem 12-b for the case where there are at least two distinct
fixed points.) (2) Show that these invariants are subject only to the relation
given by the rational fixed point formula (Theorem 12.4), or equivalently to
the relation

a3 == a1 - 2.

Conclude that the moduli space of holomorphic conjugacy classes can be
identified with the coordinate space C2 , using a1 and a2 as coordinates.
(Compare Milnor [1993].) (3) Show however that it is not always possible
to choose a smooth two-parameter family of maps which map bijectively
onto a given region in moduli space. (In other words, this moduli space
has an essential orbifold structure.) For example, consider a map of the
form f J-L (z) == (z + z-l )/ /1. Since f J-L is an odd function, it has a symmetry
z r--+ -z which interchanges the two finite fixed points. We can embed fJ-L
into a two-parameter family of maps fJ-L(z) + c. However, the map which
assigns the conjugacy class of fJ-L + c to each pair (/1, c) in parameter
space has local degree 2, since fJ-L + c is linearly conjugate to fJ-L - c.

Problem G-3. Cubic rational maps. Consider a cubic rational map
of the form

3
fo(z) = z + J.lOZ,

voz2 + 1

with fixed points of multiplier /10 and Vo at zero and infinity. Show that
the moduli space of conjugacy classes of cubic rational maps is singular near
the class of fo. In fact, for generic choice of /10 and vo, show that any
nearby cubic map has a normal form

z3 + EZ
2 + /1

f(z) -
- vz2+bz+1

with /1~ /10 and v ~ Vo which is unique up to the involution

(E,6) r--+ (-E, -6).

Show that the quotient under this involution is not a manifold.
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In order to make a computer picture of some complicated compact subset
of C, for example a Julia set or filled Julia set, we must compute a matrix
of small integers, where the (i, j) th entry describes the color (perhaps only
black or white) which is assigned to the (i,j)th "pixel" on the computer
screen. Each pixel represents a small square in the complex plane, and
the color which is assigned must tell us something about the relationship
between this square and the specified subset.

One method which works for arbitrary rational maps involves iterating
the inverse map r:' many times, starting at a repelling point, taking all
possible branches, and plotting all of the resulting points; that is, coloring
the pixel which contains each such point. (Compare Corollary 4.13.) This
method is especially convenient in the degree 2 case since there are fewer
inverse branches to follow, and since it is easy to solve quadratic equations.
This method yields a good picture of what we might call the "outer" parts
of the Julia set, but shows very little detail in the "inner" parts. * In the
polynomial case, if we think of the electrostatic field produced by an electric
charge on J(f), this method will emphasize only the highly charged parts
of the Julia set, or equivalently the points where most external rays land.

In the polynomial case, a slower but much better procedure for plotting
the filled Julia set involves iterating the map f for some large number of
times (perhaps 50 to 50,000), starting at the midpoint of each pixel. If the
orbit escapes from a large disk after n iterations, then the corresponding
pixel is assigned a color which depends on n. This method can be refined by
computing not only the value of the nth iterate of f but also the absolute
value of its derivative. Compare the discussion below. Similar remarks
apply to the Mandelbrot set M, as defined by Douady and Hubbard. (See
Appendix G.) In this case one takes the quadratic map corresponding to
the midpoint of the square and follows the orbit of its critical point.

Limitations. In order to understand some of the limitations of this
method, consider the situation near a fixed point Zo = f(zo) in the Julia set.
First suppose that Zo is repelling, for example, with multiplier satisfying
I'xi ~ 2. If we start at a point z at distance 1/1000 from Zo, then the

"In the limit, the points which are plotted are evenly distributed with respect to the

measure of maximal entropy which was described by Lyubich [1983b], or by Freire, Lopes,

and Mane [1983] together with Mane [1983].
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distance from Zo will roughly double with each iteration. Hence, after
perhaps ten iterations the image of z will move substantially away from
zo. The result will be a computer picture which is quite sharp and accurate
near zo. (See for example Figure 12, p. 87).

Now suppose that we try to construct a picture for z ~ z + z4 by the
same method. Suppose that we start with a point z == E > 0, with orbit
escaping monotonely to infinity. Taking E == 1/1000 and examining the
proof of Lemma 10.1, we see that the associated coordinate w.::.:. -1/3z3

is equal to -1/3E3 ~ -3.3 X 108 . Since w increases by approximately
+1 under each iteration, we would have to follow such an orbit for more
than 300,000,000 iterations in order to escape from a small neighborhood
of z == 0. The result, if we used fewer iterations, would be a false picture
which shows the E-neighborhood of the origin to be in the filled Julia set.

This difficulty was eliminated in Figures 19 and 21 (pp. 106, 109) by
a special computer program which extrapolated iterates of f near the
parabolic point in order to make a more accurate picture. Similarly, Fig
ures 26, 28, and 32 (pp. 127, 132, 164) were made with a special-purpose
program. But in general, no such convenient trick is known. For the fixed
points of Cremer type, the situation seems particularly bad. As far as I
know, no useful picture of the Julia set near such a point has ever been
produced, either by computer or by theory.

Distance estimates. Many Julia sets are made up of very fine fila
ments. For such sets, it is essential to make some kind of distance estimate
in order to obtain a sharp picture. In particular, if the filled Julia set has
measure zero, then all of the center points of our pixels will quite likely
correspond to escaping orbits. But a good distance estimate can tell us
that our pixel intersects the set J(f), even though its center point is out
side. Distance estimates are also important when plotting the Mandelbrot
set M, which contains not only large regions but also very fine filaments.
Indeed, it was precisely the difficulty of seeing such filaments which led to
Mandelbrot's initial belief that M has many components.

Here is an example of how first derivatives can be used to make distance
estimates. (Compare Fisher [1988], Milnor [1989, Lemma 5.6], or Peitgen
[1988].) Let f : e --t e be a rational map with a superattractive fixed
point of local degree n at the origin. Assume that the basin of attraction
U for this fixed point is connected, simply connected, and contains no other
critical point. Then the Bottcher coordinate of §9 can be defined throughout
U and yields a conformal isomorphism ¢: U --t II)) with ¢(f(z)) == ¢(z)n.
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Define the Green's function G: U" {O} -t lR by

G(z) = -log 1¢(z)1 > o.
(Compare §§9 and 18.) Let G' denote the gradient vector of G. Then:

(1) the function G and the norm IIG'II = 1¢'(z)/¢(z)1 can be
effectively computed for z E U, provided that the orbit of z
comes close to zero within a reasonable number of iterations.

(2) The distance of z from the boundary of U can be computed,
up to a factor of 2, from a knowledge of G and IIG'II.

In fact, for any orbit Zo ~ Zl ~ · .. in U, it is easy to check that

G(zo) = - lim log IZkllnk.
k---+oo

Since the convergence is locally uniform, we can also write

IIG'(zo)11 = lim Idzkldzol/(nklzkl).
k---+oo

In both cases, the successive terms can easily be computed inductively, and
we obtain good approximations by iterating until IZkl is small. However,
if many iterations do not yield any small Zk, then we do not obtain any
definite information (though we can set G = 0 in the hope that Zo tJ- U).

The distance between z and C"U can now be estimated quite precisely
as follows. Setting ¢(z) = w, a brief computation shows that the Poincare
metric on U can be written as

21dwi 21¢'(z)dzl IIG'(z)dzll
1-lw12 1 -1¢(z)1 2 sinhG(z) .

The following is an immediate consequence of Corollary A.8 to the Quarter
Theorem.

Corollary H.!. With U and G as above, if U C C, then the
distance between a point z E U" {O} and the complement of U
is equal to sinh(G)/IIG'11 up to a factor of2.

If z is very close to au, then G is small and this distance estimate is very
close to the ratio G/IIG'II (equal to the step size which would be prescribed
if we tried to solve the equation G(z) = 0 by Newton's method).

Now consider a polynomial map with connected Julia set. Conjugating
by the inversion map z ~ II z, we reduce to the case above and conclude
easily that the distance from z to the filled Julia set K(f) is asymptotically
equal to a corresponding ratio G/IIG'II, up to a factor of 2, as G -t 0, with
G as in Definition 9.6. If the orbit of z escapes to infinity expeditiously,
this yields good distance estimates. However, suppose we have iterated
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1000 or 100,000 times and the orbit stays persistently bounded. Perhaps
this means that z is in the filled Julia set or extremely close to it. But it
could be that z is quite far from the filled Julia set, but is separated from
infinity within C" K(f) by an extremely narrow neck. If the orbit does not
escape within a reasonable number of iterates, then we do not have enough
information to make any sharp estimate.

Effective Computability. Recent work of Braverman and Yampolsky
shows that there exist polynomial Julia sets which in principle can never
be effectively computed. The precise statements are somewhat subtle and
need explanation.

Following Turing [1936-37], a real or complex number z is called com
putable if there is a finite algorithm (formally implemented as a Turing
Machine) which, given some integer n > ° as input, will compute some
2-n -approximation to z by a finite number of discrete steps. But what
should we mean by "computability" for a set of real or complex numbers,
for example, a Julia set? We want a formal theory which supports our em
pirical experience that some Julia sets are easy to compute and some are
very hard.

It would not be reasonable to ask for a finite Turing Machine which can
plot the set with arbitrary specified accuracy, since there are uncountably
many well-behaved Julia sets but only countably many Turing Machines.
What we need is a relative formulation of the problem, in terms of a finite
machine or algorithm which can plot the set to any specified accuracy, pro
vided that it is given the coefficients to whatever accuracy may be required.
By definition, a theoretical device which can input the coefficients to any
required finite accuracy is called an oracle; and a modified Turing Machine
which can accept such oracle input is called an Oracle Turing Machine. The
Turing Machine part of such an Oracle Turing Machine is physically re
alizable, except for the requirement of unlimited memory; but, except in
countably many cases, the oracle part is not physically realizable. (How
ever, such an "impossible" oracle could consist of something as simple as an
infinite sequence of digits such that our Oracle Turing Machine is allowed
to read any finite initial segment.)

We also need to ask what it means to plot a set to some specified accu
racy. Here the concept of Hausdorff distance is the key. If X and Yare
nonvacuous compact subsets of C, then the Hausdorff distance d(X, Y) is
defined to be the smallest number r ~ ° such that each of these two sets
is contained in the closed neighborhood consisting of all points at distance
::; r from the other.
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Combining these two ideas, we define a compact set, depending on
finitely many parameters, to be computable* if there exists an Oracle Tur
ing Machine, which given a positive integer n as input and given an oracle
which can compute the parameters to any specified accuracy, produces a
finite description of an explicit compact set which has Hausdorff distance
at most 2-n from the required set. For example, this new set might be a
finite union of pixels in some sufficiently fine square grid.

Theorem H.2 (Braverman [2004] and Rettinger [2004]).
If f is any hyperbolic rational function, then there exists an Or
acle Turing Machine which computes J(f) with accuracy 2-n

in a number of steps bounded by a polynomial function of n.

This is extended to maps with parabolic fixed points in Braverman [2005].
Another result covers much harder cases, but with no time estimate:

Theorem H.3 (Binder, Braverman, and Yampolsky
[2005]). If a polynomial f has filled Julia set with no inte
rior, then there exists an Oracle Turing Machine which computes
J(f) == K(f) .

In particular, this proves the existence of polynomial Julia sets with
Cremer point which are computable (although the time needed to produce a
useful picture might well be measured in geological ages). Here is an intuitive
proof of Theorem H.3: For any rational function f with repelling fixed point
p , the finite sets An == f-n {p} form a family Ao CAl C A2 C··· of
subsets, which converge to J in the Hausdorff metric by Corollary 4.13. In
the polynomial case, if Bo is a closed disk large enough so that f-l(Bo) C
Bc; then the compact sets B n == f-n(Bo) form a decreasing sequence
Bo =:) B, =:) B2 · .. with intersection K. Therefore, {Bn} converges to K
in the Hausdorff metric. Now if J == K, it follows that d(An , Bn ) tends
to zero as n --t 00. Choosing n with d(An , Bn ) < E, it follows that both
An and B n are E-aproximations to the required set J == K. (To make
this discussion into an actual proof, we would have to provide algorithms for

*In the case of bounded open sets, a very different (measure theoretic) definition of

computability has been given by Chou and Ko [1995]. The best known concept of com

putability for closed sets, due to Blum, Shub, and Smale [1989], is not suitable for our

purpose, since even Julia sets which are easy to plot in practice are usually uncom

putable in their setup. They posit a (physically impossible) machine which can carry out

arithmetic operations and comparisons with precise, infinite precision real numbers, but

require this machine to decide in finitely many steps whether or not some specified point

belongs to the set. As an illustrative example, the graph of the function y = sin(x) is

uncomputable according to their definition.
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computing these sets An and En to any specified accuracy by an Oracle
Turing Machine.) There is a similar intuitive proof of Theorem H.2.

We might hope to construct a single Oracle Turing Machine which could
compute any Julia set to any degree of accuracy, but this is too much to
ask for. It is not hard to see that such a machine could never work for
maps fa at which the correspondence f r-+ J(f) is discontinuous. As one
example, this correspondence is never continuous at a polynomial fa which
has a Siegel disk centered at the origin. For the origin is well separated
from J(fo) , but polynomials arbitrarily close to fa have the origin as a
repelling point, with 0 E J(f). We could try to get around this difficulty,
by allowing different algorithms (or different Oracle Turing Machines) for
different rational maps, but in some cases no such machine exists.

Theorem H.4 (Braverman and Yampolsky [2004]). There
exist polynomials of the form ft (z) == z2 + e27fi t z whose Julia
set cannot be computed by any Oracle Turing Machine.

The proof uses delicate estimates due to Buff and Cheritat [2003] to
show that lR/Z is not a countable union of sets on which the correspondence
t r-+ J(ft) is continuous.
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