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The Eightfold Way
MSRI Publications
Volume 35, 1998

MSRI and the Klein Quartic

On November 14, 1993, a marble and serpentine sculpture was unveiled at
the Mathematical Sciences Research Institute in Berkeley, an event that marked
one of the ways in which MSRI has been reaching out beyond its traditional
role. The work had been commissioned from the famous mathematical sculp-
tor Helaman Ferguson, thanks to a generous donation from Mitsubishi Electric
Research Laboratories (MERL) made for the purpose. This sculpture, and the
mathematical object that lies behind it, are the subject of this book.

Felix Klein discovered in 1878 that a certain surface, whose equation (in com-
plex projective coordinates) he gave very simply as x3y + y3z + z3x = 0, has a
number of remarkable properties, including an incredible 336-fold symmetry. He
arrived at it as a quotient of the upper complex half-plane by a modular group —
the group of fractional linear transformations whose coefficients are integers and
that reduce to the identity modulo 7. Since then, the same structure has come
up in different guises in many areas of mathematics.

Ferguson’s sculpture, The Eightfold Way, is a distillation of the beauty and
remarkable properties of the Klein quartic. (See Plate 1 following page 150.)
At the base is a two-color stone mosaic, representing the uniformization of the
surface: a regular hyperbolic tesselation shown in the Poincaré model. Rising out
of the central tile, a seven-sided black column cups the artist’s Carrara marble
rendition of the surface, which highlights its tetrahedral symmetry. The name
The Eightfold Way is explained by the ridges and grooves that crisscross the
otherwise smooth hand-polished surface: they represent the same tesselation,
after the surface has folded over itself. If you run your finger along these curves,
alternating left and right turns at each corner, you always come back to the
beginning after eight turns. In the words of Claire Ferguson, the overall effect
is that of “. . . a symphony of elegant counterpoint — as if Gothic tracery and
Alhambra tilings were united in one work.”

* * *

This book was a long time in the making, and I owe a debt of gratitude to all
the contributors, both for their writing and for their good-humored cooperation
during the often hectic process of proof review. I particularly want to thank
Hermann Karcher and Matthias Weber, who contributed very early, for their
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x MSRI AND THE KLEIN QUARTIC

patience; Helaman and Claire Ferguson, for supplying slides and for not biting
my head off when I proceeded to lose them; Murray Macbeath, for responding
promptly to a late request for a contribution; Jeremy Gray, for allowing me to
reprint his Intelligencer article and for invaluable advice on the Klein translation;
Noam Elkies and Allan Adler, for their thoroughness; and Bill Thurston, for
putting all of this into motion. Thanks also to Lauren Cowles and Catherine
Felgar, respectively Mathematics Editor and Production Editor at Cambridge
University Press, for getting the book out in record time.

Silvio Levy
Berkeley, summer and fall 1998
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The Eightfold Way:
A Mathematical Sculpture by Helaman Ferguson

WILLIAM P. THURSTON

This introduction to The Eightfold Way and the Klein quartic was written
for the sculpture’s inauguration. On that occasion it was distributed, to-
gether with the illustration on Plate 2, to a public that included not only
mathematicians but many friends of MSRI and other people with an in-
terest in mathematics. Thurston was the Director of MSRI from 1992 to
1997.

Mathematics is full of amazing beauty, yet the beauty of mathematics is far
removed from most people’s everyday experience. The Mathematical Sciences
Research Institute is committed to the search for ways to convey the beauty and
spirit of mathematics beyond the circles of professional mathematicians.

As a step in this effort, MSRI (pronounced “Emissary”) has installed a first
mathematical sculpture, The Eightfold Way, by Helaman Ferguson. The sculp-
ture represents a beautiful mathematical construction that has been studied by
mathematicians for more than a century, from many points of view: geometry,
symmetry, group theory, algebraic geometry, topology, number theory, complex
analysis. The surface depicted by the sculpture was discovered, along with many
of its amazing properties, by the German mathematician Felix Klein in 1879, and
is often referred to as the Klein quartic or the Klein curve in his honor.

The abstract surface is impossible to render exactly in three-dimensional
space, so the sculpture should be thought of as a kind of topological sketch.
Ridges and valleys carved into the white marble surface
divide it into 24 regions. Each region has 7 sides, and
represents the ideal of a regular heptagon (7-gon). The
24 heptagons fit together in triples at 56 vertices. It is
the pattern of the division of the surface into heptagons
that carries the essence of the mathematics. The Klein
quartic thus is an extension of the concept of a regular
polyhedron, of which the dodecahedron, the cube and
the tetrahedron are examples: Dodecahedron

1



2 WILLIAM P. THURSTON

Cube Tetrahedron

Even though the heptagons on the physical surface are not regular, the pattern
of heptagons on the surface is completely symmetric — in fact, the pattern is just
as symmetric as the pattern of pentagons on a dodecahedron. One way to get a
sense of the symmetry is to place a finger on any edge. Trace out along the edge
to the next intersection, and turn left. Now proceed to the next intersection
and turn right. Continue in this way, making a total of 8 turns, LRLRLRLR. If
you do this carefully, with concentration and contortion, you arrive back where
you started. It doesn’t matter where you start or in which direction you go: in
8 alternating turns, you always arrive back at the beginning. (Question: what
happens when you do this on a tetrahedron, cube, or dodecahedron?)

In the pattern of heptagons on the surface, and of the 24 heptagons is equiv-
alent to any other heptagon. Furthermore, if any heptagon is rotated by 1

7th
of a revolution, it still fits into the pattern in an identical way. This makes
24× 7 = 168 ways that the pattern of heptagons on the surface can be mapped
to itself. Mathematically, the pattern has order 168. When a heptagon is re-
flected along any of its altitudes, it still fits into the pattern in an identical way,
making a total of 336-fold symmetry when the mirror-image transformations are
allowed.

The circular base area of the sculpture is also tiled by heptagonal tiles, in a reg-
ular geometric pattern that resembles a honeycomb. The sides of the heptagons
are arcs of circles; when these arcs are continued, they meet the boundary at a
90◦ angle. This circular base area is a map of the hyperbolic or non-Euclidean
plane. In hyperbolic geometry, it is possible to construct regular heptagons
whose angles are exactly 120◦; these heptagons fit together to tile the hyperbolic
plane. The physical map of the hyperbolic plane is distorted, but in hyperbolic
geometry itself all the heptagons have an identical size and shape.

The heptagonal tiling of the base and the heptagonal tiling of the surface are
closely related. The 7-sided column that supports the sculpture starts off this
relationship: it sweeps up from the central heptagon in the hyperbolic plane to
one of the 24 heptagons on the surface. Imagine continuing this relationship.
The 7 heptagons adjacent to the foot of the column sweep up and stretch to
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cover the 7 heptagons that border the top of the column, and so forth. The
base area stretches out and wraps around the surface to completely encompass
it; it continues stretching and wrapping around and around, infinitely often.

Plate 2 following page 150 shows the heptagonal hyperbolic honeycomb with
a pattern superimposed to indicate what happens when it wraps around the
surface. The infinite hyperbolic honeycomb is divided into 3 kinds of groups
of 8 cells each, where each group is composed of a heptagon together with its 7
neighbors. There are red rings surrounding one person, green groups surrounding
another person, and white groups with letters.

When the honeycomb is wrapped around the surface, equivalent groups wrap
up to the same place on the surface. In other words, the pattern superimposed on
the surface would have only one green group, one red group, and one white group,
making 24 heptagons in all. You can check this out by testing the LRLRLRLR
rule on the hyperbolic honeycomb. For instance, if you start on an edge that
points in toward the central white area and has a red group on its left and a
green group on its right, and proceed LRLRLRLR, you will arrive at another
edge with red on its right and green on its left. If the initial edge pointed toward
and “a” (say), the final edge also points toward an “a”.

It is interesting to watch what happens when you rotate the pattern by a
1
7 revolution about the central tile: red groups go to red groups, green groups
go to green groups and white groups go to white groups. The person in the
center of a green group rotates by 2

7 revolution, and the person in the center of
a red group rotates by 4

7 revolution. The interpretation on the surface is that
the 24 cells are grouped into 8 affinity groups of 3 each. The symmetries of the
surface always take affinity groups to affinity groups. This is analogous to the
dodecahedron, whose twelve pentagonal faces are divided into 6 affinity groups
of 2 each, consisting of pairs of opposite faces.

The name “Klein quartic” or “Klein curve” refers to an algebraic description
of the ideal surface that the sculpture represents, determined by the equation
x3y + y3 + x = 0. (This equation is called a quartic or 4th-degree equation
because the highest term x3y has 3 x’s and 1 y, making degree 4 in all.) The
solutions to this equation in the (x, y)-plane form the curve shown at the top of
the next page. [A more symmetric view is presented in Figure 10 on page 326.
–Ed.]

But when x and y are allowed to be complex numbers, there are many more so-
lutions; in fact, the set of solutions forms a 2-dimensional surface in 4-dimensional
space. The symmetry of the surface is reflected algebraically by the phenome-
non that there are many possible substitutions that keep the equation the same.
For instance, if you replace x by Y/X and y by 1/X, the equation becomes
Y 3/X4 + 1/X3 + Y/X = 0; if you multiply both sides by X4 to clear denom-
inators, you get the original equation. There are 168 essentially different alge-
braic “substitutions” that preserve the equation, one for each of the orientation-
preserving symmetries of the surface. (Coordinates can be chosen so that the
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−4 −2 0 2 4

−4

−2

0

2

4

x3y + y3 + x = 0

center of the central tile of the hyperbolic honeycomb maps to the solution (0, 0)
to the equation, and a vertical line through that point maps to the curve graphed
above. The substitution just described takes the integral sign to the person in a
red ring, the person in a red ring to the person in a green ring, and the person
in the green ring back to the integral sign.) Most of the substitutions are more
complicated, involving complex algebraic numbers, and we won’t describe them.

Topologically, the Klein curve is called a surface of genus 3 or a 3-holed torus.
Why 3? Here is a standard picture of a 3-holed torus:

In topology, two figures are equivalent if one can be deformed into the other. So
we can rearrange the holes (stretching but not tearing or gluing) however we like
without changing the topology, for instance into



INAUGURATION HANDOUT 5

(to reveal a kind of 3-fold symmetry that was not evident before), and further
into

which looks like the frame of a tetrahedron as seen from above. This is the
approximate form of the sculpture, and it displays the maximal amount of the
symmetry of the ideal surface that can be made directly visible in space.

The heptagonal hyperbolic honeycomb has an interesting relationship to the
Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .,

in which each number, starting with the third, is the sum of the preceding
two. Imagine growing the hyperbolic honeycomb like a crystal, starting with the
central white group of 8 heptagons as a seed. At each unit of time, adjoin a
heptagon wherever there is a concave angle — that is, adjoin all the heptagons
that touch at least two of the heptagons already present. At the first step, you
will add 7 heptagons. Second, you will add the 14 green heptagons that fill out
the next complete ring. On the third step, you add 21 heptagons, consisting of
14 red and 7 white heptagons (the centers of green groups). The sequence, if we
include the ring of 7 white heptagons in the initial seed, goes

7, 7, 14, 21, 35, 56, 91, 147, 238, 385, 623, . . ..

Each term is the sum of the preceding two: this sequence is 7 times the Fibonacci
sequence!

The number of tiles grows very rapidly as you add additional layers. That is
why the tiles around the edges must get quite small in the map of the hyperbolic
plane: there are so many of them that otherwise they wouldn’t fit. The base of
the sculpture includes tiles corresponding to the first 7 terms of the sequence,
making 231 tiles in all (or 232 if you include the spot where the column fits).
The cover diagram shows the tiles for two additional terms plus a few scattered
heptagons, making over 617.

Instructions for how to glue the 24 heptagons of the surface together can be
constructed as follows. Label the 24 heptagons with different labels, say the
letters a through x. Arrange these letters, together with a sharp sign (#), in a
grid pattern in the plane that repeats very 7 units across, every 7 units up, and
is symmetric about each #. All the information is contained in a 7 × 7 table.
Notice that the 7× 7 table is filled out by the # together with 2 occurrences of
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each of the 24 letters:

# a b c c b a # a b c c b a #

d e f g h i j d e f g h i j d
k l m n o p q k l m n o p q k

r s t u v w x r s t u v w x r

r x w v u t s r x w v u t s r

k q p o n m l k q p o n m l k

d j i h g f e d j i h g f e d

# a b c c b a # a b c c b a #

d e f g h i j d e f g h i j d

k l m n o p q k l m n o p q k

r s t u v w x r s t u v w x r

r x w v u t s r x w v u t s r

k q p o n m l k q p o n m l k

d j i h g f e d j i h g f e d

# a b c c b a # a b c c b a #

d e f g h i j d e f g h i j d

k l m n o p q k l m n o p q k

r s t u v w x r s t u v w x r

r x w v u t s r x w v u t s r

k q p o n m l k q p o n m l k

d j i h g f e d j i h g f e d

# a b c c b a # a b c c b a #

To determine what heptagons to glue to a given heptagon (call it z), find
the letter of the heptagon in the table. It’s always possible to construct a line
segment that connects some # to z without going through any intermediate
letters. Draw a line parallel to #z that is as close as possible to the right while still
going through letters in the table. The letters along this line are the heptagons
adjacent to z, in counterclockwise order. For example, the a heptagon is glued
to the 7 heptagons in the second row of the table: defghij. The e heptagon is
glued to adltvnf. The neighbors of t are slightly harder to determine: t is 2
units to the left and 3 units up from a #, so starting with an l, which is 2 units
to the left and 2 units up, one can repeatedly go 2 over and 3 up, reading off
loirbve.

Try labeling the blank heptagonal honeycomb on the next page, using this
rule.

The spirit of mathematics and the essence of its beauty is remarkably fragile,
because mathematics is about ideas and about thought. Mathematics takes
place in the mind, and no two minds are the same. After many years of study
and work, a mathematician may stumble on a vast and beautiful vista that
unifies and simplifies many things that once appeared disparate and complicated.
Mathematicians can share a beautiful mathematical vista with one another, but
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there is no camera that can easily capture an image of such a vista to convey it
in full to people who have not trudged along many of the same trails.

We have only touched on a small part of the mathematical vista associated
with this sculpture, but we hope that you can get form it some glimpse of the
unity, the beauty, and the spirit of mathematics.

William P. Thurston

University of California Davis

Department of Mathematics

565 Kerr Hall

Davis, CA 95616

United States

wpt@math.ucdavis.edu





The Eightfold Way
MSRI Publications
Volume 35, 1998

The Geometry of Klein’s Riemann Surface

HERMANN KARCHER AND MATTHIAS WEBER

Abstract. Starting from the hyperbolic definition of Klein’s surface we
prove platonicity, derive the two classical equations W 7 = Z(Z − 1)2 be-
tween meromorphic functions and x3y+y3z+z3x = 0 between holomorphic
forms, describe a pair of pants decomposition in terms of which the auto-
morphisms can be seen, find a basis for the holomorphic forms for which all
periods (hence the Jacobian) can be computed, and from which the lattice
of rhombic tori can be determined which are covered by Klein’s surface.

1. Introduction

In autumn 1993, in front of the MSRI in Berkeley, a marble sculpture by Hela-
man Ferguson called The Eightfold Way was revealed. This sculpture shows a
compact Riemann surface of genus 3 with tetrahedral symmetry and with a
tessellation by 24 distorted heptagons. The base of the sculpture is a disc tes-
sellated by hyperbolic 120◦-heptagons, thus suggesting that one should imagine
that the surface is “really” tessellated by these regular hyperbolic polygons. In
the celebration speech Bill Thurston explained how to see the surface as a hy-
perbolic analogue of the Platonic solids: Its symmetry group is so large that
any symmetry of each of the 24 regular heptagons extends to a symmetry of
the whole surface — a fact that can be checked “by hand” in front of the model:
Extend any symmetry to the neighboring heptagons, continue along arbitrary
paths and find that the continuation is independent of the chosen path. The
hyperbolic description was already given by Felix Klein after whom the surface
is named. The large number of symmetries — we just mentioned a group of order
24 · 7 = 168 — later turned out to be maximal: Hurwitz [1893] showed that a
compact Riemann surface of genus g ≥ 2 has at most 84(g − 1) automorphisms
and the same number of antiautomorphisms. The next surface where Hurwitz’s
bound is sharp is treated in [1965]; see also [Lehner and Newman 1967; Kulkarni
1982], as well as Macbeath’s article in this volume.

Karcher was partially supported by MSRI and SFB256, and Weber through a one year grant
of the DFG.
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10 HERMANN KARCHER AND MATTHIAS WEBER

The sculpture introduced Klein’s surface to many non-experts. Of course the
question came up how the hyperbolic definition of the surface (as illustrated by
the sculpture) could be related to the rather different algebraic descriptions. For
example, the equation

W 7 = Z(Z − 1)2

relates two meromorphic functions on the surface, and

x3y + y3z + z3x = 0

relates three holomorphic 1-forms. The answer to this question is known in
general: The uniformization theorem implies that every Riemann surface of genus
g ≥ 2 has a hyperbolic metric, that is, a metric of constant curvature −1, and the
existence of sufficiently many meromorphic functions implies that every compact
Riemann surface has an algebraic description. But it is very rare that one can
pass explicitly from one description to the other.

There were other natural questions. In the hyperbolic picture one sees cyclic
automorphism groups of order 2, 3, and 7 — what are the quotient surfaces?
Topologically, this can easily be answered with the Euler number of a tessellated
surface, χ = F − E + V , if one takes a tessellation that passes to the quotient.
Moreover, we will identify the quotient map under the order 7 subgroup with
the meromorphic function Z in the first equation. By contrast, we do not know
a group theoretic definition of the other function, W ; it is constructed in the
hyperbolic picture with the help of the Riemann mapping theorem. — The quo-
tient surfaces by the other groups above, those of order 2 and 3, are always tori.
This has another known consequence: Klein’s surface does not doubly cover the
sphere, it is not “hyperelliptic” — but it also leads to more questions: What
tori appear as quotients? The differential of a holomorphic map to a torus is a
holomorphic 1-form whose period integrals (along arbitrary closed curves on the
surface) are the lattice of the torus. So again, the question is highly transcen-
dental in general and explicit answers are rare.

Here the answer is possible, since we can identify Klein’s surface in yet an-
other representation of compact Riemann surfaces. Consider the Riemann sphere
endowed with a flat metric with cone singularities. Riemann surfaces can be de-
scribed as coverings over such a sphere that are suitably branched over the cone
singularities. In this situation one has a developing map from the Riemann
surface to the complex plane. Its differential is a holomorphic 1-form on the
universal cover whose zeros are at the cone singularities. With a good choice of
the flat metric this 1-form actually descends to the compact Riemann surface!
(Already this step rarely succeeds.) In the special case of Klein’s surface we find
with the help of the 7-fold covering mentioned above three different such rep-
resentations. This gives a basis of the holomorphic 1-forms— in fact the forms
x, y, z of the second equation above— for which the periods can be computed via
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the Euclidean geometry of the flat metrics. At this point the Jacobian of the sur-
face is determined. We proceed to find linear combinations of the basis 1-forms
so that their periods are a lattice in C. This shows that the Jacobian is the
product of three times the same rhombic torus with diagonal ratio

√
7 : 1. This

torus has “complex multiplication”, namely we can map its lattice to an index
2 sublattice by multiplication with

(
1 +
√
−7
)
/2. This leads to recognizing the

lattice as the ring of integers in the quadratic number field Q
(√
−7
)

and to see
that this torus is defined over Q.

We learnt from [Rodŕıguez and González-Aguilera 1994] that the hyperbolic
description of the Fermat quartic,

x4 + y4 + z4 = 0,

is surprisingly similar to Klein’s surface. In fact, each Fermat surface is platon-
ically tessellated by π/k-triangles; the area of these tiles is π(k − 3)/k, which
is always larger than the area π/7 of the 2π/7-triangles, which are 56 platonic
tiles for Klein’s surface. Also, Jacobians and, for k = 4, quotient tori can be
computed with the methods outlined above. We included this only because we
found a comparison instructive. The result is less exciting because the questions
above can be answered for the Fermat case in each description separately.

Acknowledgment. This work started from discussions about the Ferguson
sculpture while the authors enjoyed the hospitality of the MSRI. Conversations
with W. Thurston and M. Wolf were then particularly helpful. Later a large
number of colleagues helped us with comments, questions and advice.

This paper is organized as follows:

Section 2: Summarizes a few facts from the group theoretic treatment of pla-
tonic surfaces.

Section 3: Treats two genus 2 platonic surfaces. Together they show many
phenomena that we will also encounter with Klein’s surface, but they are
much simpler. We hope this will help the reader to see more quickly where
we are heading in the discussion of Klein’s surface.

Section 4: Deduces Klein’s surface from assumptions that require less than its
full symmetry, derives the above equations and proves platonicity.

Section 5: Describes a pairs of pants decomposition that emphasizes the sym-
metries of one S4 subgroup of the automorphism group. These pants also
allow to list the conjugacy classes of all automorphisms.

Section 6: Discusses and compares the Fermat surfaces, in particular the quar-
tic.

Section 7: Introduces flat cone metrics. In terms of these we construct holo-
morphic forms with computable periods, determine the Jacobians of the dis-
cussed examples and find explicit maps to tori. We prove that all quotient
tori of Klein’s surface are the same rhombic torus with diagonal ratio

√
7 : 1.
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2. Triangle Groups and Platonic Surfaces

Platonically tessellated Riemann surfaces and the structure of triangle groups
are closely related. To give some background information we summarize the
following known facts.

A symmetry of a Riemann surface is an isometry with respect to the hyperbolic
metric on it. An automorphism is an orientation-preserving symmetry. This is
the same as a conformal automorphism. Thus we do not mean that a symmetry
has to be the symmetry of some embedding (like the sculpture) or immersion of
the surface [Schulte and Wills 1985].

A tessellation of a Riemann surface is platonic if the symmetry group acts
transitively on flags of faces, edges and vertices. Such a tessellation is also called
a regular map [Coxeter and Moser 1957]. Finally, a Riemann surface is called
platonic if it has some platonic tessellation.

Suppose now that we have a Riemann surface M2 that is platonically tessel-
lated by regular k-gons with angle 2π/l. The stabilizer of one polygon in the
symmetry group of the surface then contains at least the dihedral group of the
polygon. Consequently there is a subgroup of the symmetry group that has as
a fundamental domain a hyperbolic triangle with angles π/2, π/k, π/l. We will
call such triangles from now on (2, k, l)-triangles. Observe that the order of this
group is

order = hyperbolic area(M2)
/

area(2, k, l)-triangle

= −2π · χ(M2)
/(π

2
− π

k
− π

l

)
,

and half as many automorphisms are orientation-preserving. The smallest pos-
sible areas of such triangles are

area(2, 3, 7) = π/42 , area(2, 3, 8) = π/24 , area(2, 4, 5) = π/20 .

Now consider the group generated by the reflections in the edges of a (2, k, l)-
triangle in the hyperbolic plane; this group is called a triangle group. It acts
simply transitively on the set of triangles. The covering map from H2 to M2

maps triangles to triangles; the preimage of each triangle defines the classes of
equivalent triangles inH2. The deck group ofM2 acts simply transitively on each
equivalence class and, because we assumed M2 to be platonically tessellated, it
is also true that the (anti-)automorphism group of M2 acts simply transitively
on the set of equivalence classes. This shows that the deck group of the surface
is a (fixed point free) normal subgroup of the triangle group.

Vice versa, given a fixed point free normal subgroup N of a (2, k, l)-triangle
group G, then we define a Riemann surface M2 as the quotient of H2 by N .
This surface is tessellated by the (2, k, l)-triangles and the factor group G/N

acts simply transitively on these triangles. In H2 the (2, k, l)-triangles of course
fit together to a pair of dual platonic tessellations, one by k-gons with angle 2π/l,
the other by l-gons with angle 2π/k. Both tessellations descend to tessellations
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of the quotient surface (namely: Consider the projection of the polygon centers
in H2 to the surface, we recover a polygon tessellation of the surface as the
Dirichlet cells around the projected set of centers). They are still platonic.

It is therefore in an obvious way equivalent to consider compact platonically
tessellated Riemann surfaces or finite index normal subgroups of triangle groups.
(We may even allow (2, k, ∞)-triangles, noncompact finite area triangles with
one 0-angle.) See [Bujalance and Singerman 1985; Singerman 1995].

Meromorphic functions and forms are now accessible from this group theo-
retic approach as automorphic functions and forms on the hyperbolic plane with
respect to the deck group of the surface. With the group-theoretical approach
one does not always find the simplest equations [Streit 1996]. By contrast, in our
discussion of Klein’s surface we will construct on it simple functions and forms
for which we do not know a group theoretic definition. We use the following two
methods:

Meromorphic functions: We map one tile of the tessellated Riemann surface
to a suitable spherical domain with the Riemann mapping theorem; we extend
this map by reflection across the boundary and finally check that the extension
is compatible with the identifications.

Holomorphic 1-forms: We take exterior derivatives of developing maps of
flat cone metrics and check by holonomy considerations whether they are well
defined on the surface.

3. Two Platonic Surfaces of Genus Two

We explain with the simplest hyperbolic examples how symmetries can be
used to derive algebraic equations.

3.1. The π/5-case. Let’s try to construct a genus 2 surface M2 that is platon-
ically tessellated by F equilateral π/5-triangles. Such a triangulation must have
E = 3

2 · F edges and V = 3
10 · F vertices, since 10 triangles meet at a vertex.

Euler’s formula then gives

χ(M2) = −2 = F ·
(

1− 3
2

+
3
10

)
, F = 10, V = 3 .

Equivalently, we could have used the Gauß-Bonnet formula

−2π · χ(M2) = area(M2) = F · area(triangle) = F · 2π
5
.

These ten triangles fit around one vertex to form a 2π/5-decagon, which is al-
ready a fundamental domain for the surface we want to construct. What remains
to be done is to give suitable identifications. We consider only identifications that
satisfy necessary conditions for platonic tessellations. For example, we want the
2π/5-rotations around the center of the decagon to extend to symmetries of the
surface. This implies that the identification of one pair of edges determines all
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the others. Since the angles at five decagon vertices sum up to 2π the edge
identifications have to identify every second vertex. This leaves only two possi-
bilities, which will turn out to define the same surface: Identify edge 1 to edge 6
or to edge 4. Both cases are promising, because further necessary conditions for
platonicity are satisfied.

Synthetic arguments in Euclidean and hyperbolic geometry are very much
the same: One can compose two reflections in orthogonal lines to obtain a 180◦

rotation; one can join the centers of two 180◦ rotations by a geodesic and take it
and a perpendicular geodesic through either center as such reflection lines; this
shows that the composition of two involutions “translates” the geodesic through
their centers. In the hyperbolic case this is the only invariant geodesic, it is also
called axis of the translation.

Platonicity implies that the midpoints of edges are centers of 180◦-rotations.
On a compact platonic surface one can therefore extend any geodesic connection
of midpoints of edges by applying involutions until one gets a closed geodesic.
(Note that these extensions meet the edges, at the involution centers, always
with the same angle and there are only finitely many edges.) This means that
we always find translations in the deck group that are generated by involutions.
Therefore, if we want to construct a platonic surface, then it is a good sign if
already the identification translations are products of involutions. This is true for
both identification candidates above: For the identification of the opposite edges
(say) 1 and 6 take as centers the midpoint of the decagon and the midpoint
of edge 6; the translation that identifies edges 1 and 4 is the product of the
involutions around the marked midpoints of the radial triangle edges 1 and 3.
See Figure 1 for the axes of these translations.

We are now going to construct meromorphic functions on M2 since this leads
to an algebraic definition of the surface. Namely, if two functions have either
no common branch points or else at common branch points relatively prime
branching orders then they provide near any point holomorphic coordinates —
that is, an atlas for the surface. To turn this into a definition one needs to
specify the change-of-coordinates and the classical procedure is to do this by
giving an algebraic relation between the two functions. Therefore, to describe
a specific hyperbolic surface algebraically means that one has to construct two
meromorphic functions that one understands so well that one can deduce their
algebraic relation. There is no general procedure to achieve this. In highly
symmetric situations one can divide by a sufficiently large symmetry group and
check whether the quotient Riemann surface is a sphere. Any identification of
this quotient sphere with C ∪ {∞} turns the quotient map into a meromorphic
function. This method is sufficient for the following genus 2 examples. Another
way to construct meromorphic functions is to use the Riemann mapping theorem
together with the reflection principle to produce first maps from a fundamental
domain of an appropriate group action on the surface to some domain on the
sphere and extend this by reflection to a map from the whole surface to the
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Figure 1. Decagon composed of ten equilateral hyperbolic π
5

-triangles.

sphere. This method will be of importance for Klein’s surface, and we will
explain it with the simpler functions on the genus 2 surfaces.

To define the first function, look at the order 5 rotation group around the
center of the decagon. This group respects the identification and therefore acts
on the surface by isometries. It has 3 fixed points, namely the center of the
decagon and the two identified sets of vertices. Using Euler’s formula we see that
the quotient surface is a sphere: Take any triangulation of M2 that is invariant
under the rotation group. Then the quotient surface is also triangulated and
denoting by f the number of fixed points of the rotations on M2, we compute
its Euler number

1
5

(
(V − f) − E + F

)
+ f = 1

5
(−2− f) + f ∈ {0, 2},

which reproves f = 3 and shows that χ = 2 for the quotient.
This function can also be understood via a Riemann mapping problem: Imag-

ine that the ten triangles are alternatingly colored black and white, “Riemann
map” a white triangle to the upper half plane, “Möbius normalize” so that the
vertices go to 0, 1, ∞, and extend analytically by reflection in the radial bound-
aries to a map from the decagon to a fivefold covering of the sphere, branched
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w

0

Figure 2. Mapping a hyperbolic π
5

-triangle to a spherical 2π
5

-sector.

over ∞ and with slits from 0 to 1 on each sheet. Finally identify the edges of
the slits in the same way as the preimage edges of the decagon. Therefore we
can either see the quotient sphere as isometric to the double of a hyperbolic
2π/5-triangle, which gives a singular hyperbolic metric on the sphere, or we can
see M2 as a fivefold covering of the Riemann sphere, branched over 0, 1, ∞. In
any case we have obtained — for both identification patterns — a meromorphic
function z on M2 that sends the three vertices of the triangulation as fivefold
branch points to 0, 1, ∞.

For a second function, we can consider the quotient of M2 by any involution
to obtain

1
2 ((V − f) − E + F ) + f = 1

2 (−2− f) + f ∈ {0, 2} ;

hence f = 2 or f = 6. In both of our cases take as the involution one of those
that were used to define the identifications and observe that we have f = 6 (for
the first identification we have as fixed points the midpoint of the decagon and
the identified midpoints of opposite edges) so that the quotient by this involution
again is a sphere. We normalize this meromorphic quotient function w on M2 up
to scaling by sending the midpoint of the decagon to∞ and the two other vertices
of the triangulation to 0 (and similarly for the other identification pattern).

Since reflection in the radial triangle edges passes to the quotient we can also
understand the function w as mapping each triangle to a spherical 2π/5-sector
that is bounded by great circle arcs from 0 to ∞ and has a straight slit in the
direction of the angle bisector, as in Figure 2. By scaling we may take the slit
to have arbitrary length.

Simply by comparing the divisors of z and w we see that w5 and z(z− 1) are
proportional functions and (after scaling w) we obtain

w5 = z(z − 1),

which is a defining equation for M2, the same for both identification patterns.
We will now be disappointed and find that the triangle tessellation is not

platonic. One way to see this is to check that the involutions around midpoints
of edges that were not used to define the identifications are not compatible with
them. A more algebraic way is to produce too many holomorphic 1-forms by
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considering the following divisor table, where we define y = z/(z − 1):

vertices V1 V2 V3

z 05 15 ∞5

w 0 0 ∞2

y 05 ∞5 15

dy/y ∞ ∞ 04

w · (dy/y) ? ? 02

w2 · (dy/y) 0 0 ?

Now suppose that M2 were platonically tessellated. Then the 120◦-rotation of
one triangle would extend to a symmetry of the whole surface. This implies that
we could cyclically permute the divisor of the holomorphic 1-form w2 · dy/y to
get divisors of other forms. The quotient of two of these would be a meromorphic
function with only one simple pole, a contradiction.

Fortunately, we have not lost completely since we can platonically tessellate
M2 with two π/5-pentagons by joining even numbered neighboring vertices of
the decagon, dashed in Figure 1. This is not quite as good as hoped for, but also
on Klein’s surface we will find platonic and other non-platonic tessellations by
regular polygons.

3.2. The π/4-case. Next we will construct a more symmetric platonic genus 2
surface; its automorphism group has order 48, the maximum for genus 2 [Burn-
side 1911]. The quotient sphere is the double of the hyperbolic (2, 3, 8)-triangle—
which is less than twice as big as the doubled (2, 3, 7)-triangle in Klein’s case.
We want the surface to be platonically tessellated by equilateral π/4-triangles.
Since eight such triangles fit around one vertex we have

χ(M2) = −2 = F ·
(
1− 3

2 + 3
8

)
, F = 16, V = 6 .

The eight triangles around one center vertex form a small π/2-octagon. The
remaining 8 triangles can be placed along the edges. No other pattern would
be possible for a platonic surface, because the 45◦-rotation around the center
vertex extends to a symmetry of the surface. Hence we expect as a fundamental
domain of our surface a big regular π/4-octagon (Figure 3).

Again we try the identification of opposite edges by hyperbolic translations,
this time no other candidate is possible by platonicity. As before, these transla-
tions are compositions of two 180◦-rotations (around the midpoint of a boundary
edge and around the center of the octagon, both of which are triangle vertices).
Moreover, all vertices (angle 2π/8) of the big octagon are identified to one vertex
to give a smooth hyperbolic genus 2 surface M2. The 180◦-rotation around the
midpoint of the octagon is an involution of M2 whose fixed points are the 6
vertices of the 16 π/4-triangles. The projection z to the quotient goes again to
a sphere. One easily checks that this involution commutes with all reflections
in the triangle edges so that these reflections and their fixed points pass to the
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Figure 3. Hyperbolic π
4

-octagon with 16 equilateral triangles.

quotient. Hence the hyperbolic quotient metric on the sphere is necessarily given
by the octahedral tessellation by hyperbolic π/4-triangles. We can assume that
the octahedron has its vertices in 0,±1,±i and ∞.

As before, this quotient map can also be defined independently: first Riemann-
map a hyperbolic π/4-triangle to a spherical π/2-triangle, then extend analyti-
cally by reflection in the edges and check compatibility with the identifications.

Since M2 is only a double covering over the sphere with known branch values,
we have the following equation for this Riemann surface:

w2 = z · z − 1
z + 1

· z − i
z + i

.

We still have to prove platonicity. Since all the reflections in symmetry lines
of the octagon are clearly compatible with the identifications we only have to
check that the involution around the midpoint of one radial triangle edge is also
compatible. This can be seen by checking in the tessellated hyperbolic plane
that any two vertices that are two triangle edges apart are equivalent under the
identifications. It can also be seen on the doubly covered octahedral tessellation
of the sphere by introducing three branch cuts and checking that 180◦-rotation
around the midpoint of an octahedron edge on one sheet extends to a symmetry
of the double cover. One observes that this involution has only two fixed points
since at the antipodal point of the sphere the sheets are interchanged; the quo-
tient map therefore only goes to a torus. Since this involution commutes with a
reflection of M2 the quotient torus has also such a symmetry, called a complex
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conjugation; the fixed point set of this torus reflection has two components —
that is, the torus is rectangular. In the case of Klein’s surface all the involutions
will give quotient maps to rhombic tori.

With platonicity established we can interpret the function w above as the
quotient map under the rotations of order 3 around the center of one triangle.
These rotations can be seen on the octahedral sphere as follows: Consider a
120◦-rotation of the octahedron around the centers of two opposite triangles.
This map lifts to an isometry of M2 with the desired property. It has four fixed
points over the two fixed points of the rotation of the octahedron.

Clearly, a fundamental domain for the group of all automorphisms now is one
third of one π/4-triangle, i.e., two (2, 3, 8)-triangles, each of area π/24. This
gives for the order of the automorphism group −2πχ/(2π/24) = 48. Why is
this the maximal order for genus 2? A proof of Hurwitz’ theorem begins by
dividing a Riemann surface of genus ≥ 2, endowed with its hyperbolic metric,
by the full group of automorphisms. These are also hyperbolic isometries. The
quotient is a Riemann surface with larger Euler number and a hyperbolic met-
ric with π/ki cone singularities. The automorphism group is maximal (for the
considered genus) if the hyperbolic area of the quotient surface is minimal. The
two smallest quotients are the doubles of the hyperbolic (2, 3, 7)- and (2, 3, 8)-
triangles. Therefore we have to show that (2, 3, 7) does not occur for genus 2.
But already a cyclic group of prime order p ≥ 7 is impossible for genus 2, since,
from the Euler number of the quotient, the possibilities for the number f of fixed
points of this group are given by

1
p
·
(
(V − f) − E + F

)
+ f = −1

p
(2 + f) + f ∈ {0, 2},

or

f ∈
{ 2
p−1

, 2 +
4

p−1

}
⊂ Z , with p ∈ {2, 3, 5} .

4. The Hyperbolic Description of Klein’s Surface

Klein’s surface is more complicated than our examples of genus 2, and the
construction will take some time. Moreover, since we cannot construct some fa-
mous surface without using some knowledge about it, we do not even have a well
defined problem yet. One could start with the 24 tiles of the platonic tessellation
by 120◦-heptagons mentioned in the introduction. We found it interesting that
Klein’s surface is already determined by much less than its full symmetry, and
by asking less we are rather naturally led to a fourteengon as a fundamental
domain together with the correct identifications. The heptagons then fit into
this fundamental domain in a way that can be described easily and platonicity
follows with short arguments.

In analogy to the first genus 2 example we will look for a genus 3 surface
tessellated by (rather big) π/7-triangles such that reflections in the edges extend
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to antiautomorphisms of the surface. There are only two such Riemann surfaces
and both have a cyclic group of order 7 as automorphisms. But only one of
the two has the 120◦ rotations around triangle centers as automorphisms. We
construct one function by exploiting the order 7 rotation group and we find a
second function with the Riemann mapping theorem. For both surfaces we derive
an algebraic equation. For Klein’s identification pattern we prove platonicity and
finally complete the picture by a pairs of pants decomposition in terms of which
all the remaining symmetries, in particular the symmetry subgroups, have simple
descriptions.

4.1. Consequences of Euler’s formula and of platonicity. First, for a
given tessellation by 2π/3-heptagons we obtain from Euler’s formula the numbers
F of faces, V = 7

3 · F of vertices and E = 7
2 · F of edges:

χ(M2) = −4 = F · (1 − 7
2 + 7

3 ) =⇒ F = 24, V = 56, E = 84 .

In the dual tessellation by 2π
7 -triangles the numbers F and V are interchanged.

These numbers are too large to easily talk about individual tiles. By contrast, a
tessellation by big π/7-triangles (of area 4π/7 each) needs F = 14 of them to have
the required total area 8π for a hyperbolic genus 3 surface; such a tessellation
has E = 21 edges and V = 3 vertices.

Next consider a cyclic rotation group of prime order p on a surface of genus 3
with f fixed points. The Euler number for the quotient surface is given by

1
p

(
(V − f) −E + F

)
+ f =

1
p

(−4 − f) + f ∈ {−2, 0, 2},

or

f ∈
{
−2 +

2
p−1

,
4

p−1
, 2 +

6
p−1

}
∩ Z.

Therefore p = 7 is the maximal prime order, f = 3 in that case and the quotient
is a sphere. A genus 3 surface with an order 7 cyclic group of automorphisms
therefore has a natural quotient map to the sphere. To view this map as a specific
meromorphic function we identify the quotient sphere with C ∪{∞} by sending
the three fixed points to 0, 1,∞.

Furthermore, an involution (p = 2) must have f = 0, 4, or 8 fixed points. To
discuss these possibilities further, note that an involution of a platonic tessel-
lation by 2π/3-heptagons cannot have its fixed points at vertices or centers of
faces of the tessellation. Thus the fixed points are at edge midpoints. In such
a case f must divide the number E of edges, therefore f = 8 cannot occur for
an involution of our heptagon tessellation with E=84 edges — which shows in
particular that the quotient is never a sphere, which is to say, Klein’s surface is
not hyperelliptic. We will see later that all involutions give quotient tori, f = 0
does not occur.
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Platonicity further implies that we have a rotation group of order p = 3 around
each of the heptagon vertices; we just computed its number f of fixed points:

f
∣∣
p=3
∈ {2, 5} .

Here f = 5 is excluded because it does not divide V = 56. So we have f = 2
and the quotient is a torus.

4.2. A fundamental domain from big triangles. Because of the desired
cyclic symmetry group of order 7 we arrange the 14 big triangles around one
center vertex to form a 2π/7-fourteengon (Figure 4) and we see that all the odd
and all the even vertices have to be identified to give a smooth hyperbolic surface.
This leaves three possibilities: identify edge 1 to edge 4, 6 or 8. The last case
has the 180◦-rotation around the center as an involution with f = 8 fixed points
(namely the center and the pairwise identified midpoints of fourteengon edges);
that is, the quotient is a sphere. So this example is a hyperelliptic surface. As
in the π/5-case we have found two quotient functions and their divisors give the
equation

w7 = z(z − 1) .

white

black

3

2

3

2

Figure 4. Hyperbolic fourteengon made from equilateral π7 -triangles, with trans-
lation axes.
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Identification of edge 1 to 4 leads to the same hyperelliptic surface and therefore
leaves the identification of edge 1 to edge 6 as the only candidate for some platonic
surface, which we will prove to be Klein’s surface. Note that this identification
of the fourteengon edges is the hyperbolic description of the surface given in
Klein’s work; see the lithographic plate in [Klein 1879]. We concentrate on this
case now and reveal further symmetries.

If one wants to check whether some expected symmetry is compatible with
the identifications then the just given rule has the disadvantage that, for using
it, one needs a rather large piece of the tessellation in the hyperbolic plane. We
begin with a more convenient reformulation. Color the fourteen big triangles
alternatingly black and white. Each black edge (of the fourteengon) is identified
with the white edge that is counterclockwise 5 steps ahead (or the white edges
with the black ones 9 steps ahead). We call the fourteengon center vertex 1,
the left endpoint of a black edge vertex 2 and its right endpoint vertex 3. The
identification rule can be restated as follows: Under the identification translation
of a black edge to a white one, vertex 2 (as seen from vertex 1) is rotated by
2 · 2π/7 around the center and the triangle adjacent to this black edge is, at
vertex 2, rotated by 1 · 2π/7; similarly, vertex 3 is rotated by 3 · 2π/7 around
the center and the same triangle adjacent to this black edge is rotated around
vertex 3 by −1 · 2π/7. This can be expressed in a simpler way if one observes

2 · {1, 2, 4} = {2, 4, 1} (mod 7), 4 · {1, 2, 4} = {4, 1, 2} (mod 7).

The identification rule now is: Rotation around vertex 1 by 1 · 2π/7 is rotation
at vertex 2 by 4 · 2π/7 and at vertex 3 by 2 · 2π/7. The high symmetry of
Klein’s surface is apparent in the fact that this rule remains the same (mod 7) if
we cyclically permute the vertices. — We remark that our description of Klein’s
surface in terms of flat cone metrics on a thrice punctured sphere will start from
here.

To apply the new rule we consider a tessellation of the hyperbolic plane by the
black and white π/7-triangles. Mark the equivalence classes of triangles from 1
to 14 and the vertices from 1 to 3, and observe that the identification rule allows
us to pick an arbitrary triangle from each equivalence class and still know how
to identify. The 120◦ rotation around any triangle center cyclically permutes the
(equivalence classes of) vertices, but we saw that the identification rule is not
affected by this change. Similarly, reflection in a triangle edge interchanges the
black and white triangles and thereby the cyclic orientation of their vertices, but
again, this does not change the identification rule. These reflections generate
the order 7 rotational symmetry and therefore pass to the quotient sphere. This
means that we can again understand the quotient map (under this symmetry
group) via a Riemann mapping problem: Map a black triangle to the upper
half plane, normalize so that the vertices 3, 2, 1 go to 0, 1, ∞ and extend by
reflection.
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v1

v2 v3

w

0

Figure 5. Equilateral hyperbolic π
7

-triangle mapped to a spherical slit domain.

4.3. A second function and equations. We define a second function with
the Riemann mapping theorem. Map one of the black triangles to a spherical
domain that is bounded by two great circles from 0 to∞ with angle 3 ·π/7 at∞
and has a great circle slit from 0 dividing the angle at 0 as 2 : 1, counterclockwise
the bigger angle first. (The length of the slit can be changed by scaling this map.)

This map can be extended analytically by reflection in the edges (around∞)
to cover the sphere three times. The slits in these three sheets are such that
always in two sheets there are slits above each other, and these are not above
a slit in the third sheet. This forced identification of the slits is compatible
with the identifications of the edges of the fourteengon since the rotation angles
{4, 1, 2} · 2π/7 counterclockwise at the vertices of a black triangle are the same
as the rotation angles {−3, 1, 2} · 2π/7 at the vertices of the spherical domain.
We compare the divisors of this function w and the above quotient function z

and find that the functions w7 and z(z − 1)2 are proportional. We can scale w
to give us one of the known equations,

w7 = z(z − 1)2 .

We do not know a group theoretic definition of the function w. Also, observe
that the derivation did not use that this surface is platonic. Next we derive from
this equation the even more famous quartic equation. It exhibits not only the
order 7 symmetry (which was built in by construction) but gives another proof
of the order 3 symmetry (independent of the above one). Consider this divisor
table:

vertices V3 V2 V1

z 07 17 ∞7

w 0 02 ∞3

v = w2/(z − 1) 02 ∞3 0
u = (z − 1)/w3 ∞3 0 02

ξ = v dz/z 0 03 ?

ω = u dz/(1− z) 03 ? 0
η = u dz/(z(z − 1)) ? 0 03

u z 04 0 ∞5r
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First, if we define

x := (1− z)/w2 = −v−1, y := −(1− z)/w3 = +u

then the first equation implies the quartic equation

x3 y + y3 + x = 0 .

Of course, the substitution can be inverted: w = −x/y, z = 1 − x3/y2. Sec-
ondly we see from the divisor table that the functions x, y are quotients of
holomorphic 1-forms, namely

x = ξ/ω, y = η/ω.

This observation gives an additional interpretation to the equation in its homo-
geneous form

ξ3η + η3ω + ω3ξ = 0

as an equation between explicitly known holomorphic 1-forms. The projective
embedding defined by this equation is called the canonical curve.

We see an order 3 symmetry as the permutation of the coordinates and an
order 7 symmetry by multiplying ξ, η, ω with powers of a seventh root of unity,
namely ζ1, ζ4, ζ2.

The existence of the function u, v, w with single poles of order 3 < g+ 1, and
u · z of single pole of order 5, prove that V1, V2, V3 are Weierstraß points with
non-gap sequence (3, 5, 6) and hence of weight 1. After platonicity is proved, we
know that all the heptagon centers are such Weierstraß points. These are all
since g3 − g = 24 is the total weight.

4.4. The heptagon tessellation. We now add the heptagon tessellation to
the previous picture. This will allow to prove platonicity with rather little effort.
Notice that from now on the emphasis is on the involutions of the surface, they
were not visible so far.

One 2π/3-heptagon can be tessellated by fourteen (2, 3, 7)-triangles that fit
together around its center. The big π/7-triangle has 24 times the area of one
(2, 3, 7)-triangle. We now explain how to tessellate one (called “the first”) of
the black big triangles by 24 of the small (2, 3, 7)-triangles; compare Figure 6.
Take half a heptagon (tessellated by seven of the small triangles) to the left of
its diameter, with the vertex 1 at the upper end and half an edge from vertex 4
to the lower end of the diameter; now reflect the lowest (2, 3, 7)-triangle in the
half edge to give us eight small triangles that already tessellate one third of the
big triangle. (The lowest vertex will be the center of the fourteengon.) 120◦-
rotations around heptagon vertex 2 complete the desired tessellation of the big
triangle. Now extend by reflections to Klein’s tessellation of the hyperbolic plane
by (2, 3, 7)-triangles and notice that these can be grouped either to a tessellation
by heptagons or by big triangles, the vertices of the latter being centers of certain
heptagons.
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Figure 6. The tessellations by π
7

-triangles and π
3

-heptagons fit together.

Next we recover the above identification of the fourteengon edges as seen with
the heptagons. The outer edge of the just tessellated big triangle joins counter-
clockwise fourteengon vertices, which we number 1 and 2. Connect midpoints of
adjacent edges of the heptagon around the center of the fourteengon and extend
these geodesics until they hit the fourteengon boundary. Notice that they are
precisely eight such segments long. In other words, the eight segment transla-
tions along these geodesics give Klein’s identification of the fourteengon edges!
Notice also that the edges of the black triangles are indeed identified 5 steps
forward (9 steps for the white ones). It is justified to quote Klein’s lithographic
plate again [Klein 1879].

We have now tessellated the above Riemann surface by 24 regular heptagons.
Each vertex of the big triangle is the center of one heptagon and around each
of these is a ring of seven heptagons. The identification translations are com-
positions of involutions (in the hyperbolic plane) around midpoints of heptagon
edges that are four segments along a zigzag (called the Petrie polygon) apart —
another indication that we have a platonic surface (Figure 7).

What remains to be checked? We know that the identification translations
generate the deck group of a Riemann surface that also has the described order 3
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Figure 7. An eight-step geodesic crosses heptagon edge midpoints.

and order 7 rotational symmetries and the reflections in big triangle edges. Our
Riemann surface will be platonic if all the eight segment geodesics that connect
midpoints of heptagon edges in the hyperbolic plane connect equivalent points
under the deck group, a new condition only for those that were not used to
define the identifications. It is sufficient to check this for all the eight segment
geodesics that meet the fourteengon fundamental domain. (If one discusses only
candidates for identification generators and does not know a fundamental do-
main then at this point much more work is required.) Modulo reflections in
symmetry lines through the center there are only four different eight segment
geodesics that meet the fundamental domain. With the 120◦-rotations these
can be rotated into ones that were used to define the identifications! Now the
hyperbolic description is complete enough to see platonicity, because the 180◦-
rotations around midpoints of heptagon edges in the hyperbolic plane always
send equivalent points to equivalent ones.

How about other closed geodesics? If one connects the midpoints of second
nearest heptagon edges and extends by applying 180◦-rotations around the end-
points then these geodesics close after six such steps. Similarly, if one connects
the midpoints of third nearest edges then these close again after eight steps.
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Finally, also the symmetry lines close up: Let M be the midpoint of an edge,
extend the edge across the neighboring heptagon, cross another heptagon, pass
along another edge and cross a third heptagon to the midpoint M ′ of the oppo-
site edge; M and M ′ are antipodal points of a closed geodesic (which is fixed
under a reflection symmetry of the surface). All these geodesics are longer than
the eight step ones used above and we did not see a fundamental domain that
shows that one can take translations along them as generators of the deck group.

Finally, the heptagons also provide the connection with number theory: Punc-
ture the surface in all the heptagon centers and choose a new complete hyperbolic
metric by tessellating each punctured heptagon by seven (3, 3,∞)-triangles. In
the upper half plane model one such triangle is the well known fundamental do-
main for SL2(Z) and seven of them around the cusp at ∞ give the translation
by 7 as one of the identification elements. This already connects Klein’s surface
with the congruence subgroup mod 7. In fact, Γ(7) is the normal subgroup of
the triangle group SL2(Z) (see Section 2) that is the deck group of this repre-
sentation of Klein’s surface. It is in this form that the surface first appears in
[Klein 1879]; see [Rauch and Lewittes 1970; Gray 1982].

5. Oblique Pants and Isometry Subgroups

Pairs of pants decompositions are frequently used tools in the hyperbolic ge-
ometry of Riemann surfaces. One pair of pants is a Riemann surface of genus
0 bounded by three simply closed geodesics; it is further cut by shortest con-
nections between the closed geodesics into two congruent right-angled hexagons.
One builds Riemann surfaces by identifying pants along geodesics of the same
length; the Fenchel–Nielsen coordinates are the lengths of these closed geodesics
plus twist parameters since one can rotate the two pants against each other be-
fore the identification. If the hexagon vertices of neighboring pants coincide, the
twist is 0◦ (or 180◦). Riemann surfaces have so many different pairs of pants
decompositions that we need to say what we want to achieve for Klein’s sur-
face. The main motivation is to quickly understand symmetry subgroups that
contain (many) involutions. The big triangle tessellation is not preserved under
any involution and the heptagon tessellation has too many pieces. We find pairs
of pants that are bounded by eight segment geodesics (the ones used in the pre-
vious section) in such a way that the twelve common vertices of the eight pant
hexagons are fixed points of involutions. We will describe all types of symmetry
subgroups with orders prime to seven in terms of this one pant decomposition.
Our pant hexagons are not right angled but they have zero twist parameters.
We have only found right angled pants with nonzero twists, therefore the oblique
hexagons seem rather natural — to give a simpler example: one can subdivide
parallelogram tori into rectangles, but only with a “twist”; that is, certain ver-
tices lie on edges of other rectangles.
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Our first goal is to develop a feeling for the shape of the surface — “versinn-
lichen” in Klein’s words. Therefore we begin by giving a 1-parameter family
of genus 3 surfaces, embedded in R3 with tetrahedral symmetry and with the
full permutation group S4 contained in the automorphism group. In this case
one can visualize the rectangular quotient tori; this may help to appreciate the
obliqueness of Klein’s surface, which has no rectangular quotient tori.

Take a tetrahedral tessellation of the unit sphere and take a tube around its
edge graph such that the tube not only respects the tetrahedral symmetry in R3

but also the conformal inversion in the unit sphere. Cut the legs between vertices
by symmetry planes. This gives congruent pants, each with a 120◦ symmetry.
The sphere cuts the pants into right-angled hexagons. One can interchange any
two pants while mapping the others to themselves with a conformal map of R3

as follows: Invert in the unit sphere and then reflect in the plane of any of the
great circle arcs of the tetrahedral graph with which we started.

An order 3 rotation subgroup commutes with the reflections in symmetry
planes that contain the rotation axis, modulo this rotation group. The reflections
pass to one reflection of the quotient torus, which clearly has two fixed point
components. This makes the quotient torus rectangular. The 180◦-rotations
also commute with certain reflectional symmetries; they also descend with two
fixed point components to the quotient torus.

In a last step we can ignore the embedding in R3 and identify the pants, using
the same twist along all six closed geodesics. This will keep S4 as a subgroup
of automorphisms, but the complex conjugation on the quotient tori is generally
lost. One of these surfaces is Klein’s, another one is the Fermat quartic, see
Section 6. For these special surfaces the quotient tori have again reflectional
symmetries, but these are more difficult to imagine.

5.1. Pants for Klein’s surface. Now we describe pants for Klein’s surface
in terms of the heptagon tessellation; see Figure 8. Because of the previous
description we look for pants with a 120◦ symmetry. Select P, Q as fixed points
of an order 3 rotation group. P, Q are opposite vertices of any pair of heptagons
with a common edge e. We call e a symmetry line “between” P and Q; the edges
“through” P or Q are not symmetry lines of the pants. Apply the rotations
around P, Q to our first pair of heptagons. We obtain the three heptagons
adjacent to P and the three adjacent to Q. Together they have the correct area
for one pair of pants, and they are identified to a pair of pants along the three
symmetry edges “between” P and Q, but the three pant boundaries are not
yet closed geodesics, they are zig-zag boundaries made of eight heptagon edges.
Next, extend the three edges from P slightly beyond the neighboring vertices
until they orthogonally meet three of the closed eight segment geodesics. Observe
that these three geodesics are also met orthogonally by the extension of the three
symmetry edges between the heptagons around P and the heptagons around Q.
This means that these three eight step closed geodesics cut a pair of pants out of
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P Qe

Figure 8. One pair of pants in the fourteengon fundamental domain.

the surface, which can be viewed as a smoothed version of the six heptagons. And
the symmetry lines between P,Q cut these pants into two right-angled hexagons.
(Precisely these pants have to be used in the initial description of an embedded
surface. Since the hexagons of neighboring pants do not have common vertices
we need a twist by one eighth of the total length of the boundary.)

Observe that reflection in the edges through P passes to a reflection of the
quotient torus, quotient under the rotation group around P . This torus is made
out of one pair of pants with two holes identified, the third hole is closed by one
third of a pant, which is cut and identified along edges through P, Q. One can
check that the fixed point set in the quotient has only one component so that
the torus is rhombic. We find in Section 7 that its diagonals have a length ratio√

7 : 1.
Finally, we have to get the neighboring three pants, preferably with the help

of an involution. Therefore we locate the fixed points of one involution: If one
rotates around the midpoint M of any heptagon edge, then the two eight step
geodesics through M are reversed so that their antipodal points N,N have also
to be fixed points. Through both points there are again two eight step closed
geodesics that get reversed; since the total number of fixed points is already
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M

M ′

M ′

N

N

Figure 9. Eight big hexagons give four oblique pants and another fundamental
domain.

known to be 4, these last two closed geodesics must meet in their common
antipodal point M ′.

We can use this intersection pattern of quadruples of eight step geodesics to
get a pairs of pants decomposition without twist. First change the right angled
hexagons to oblique ones: Instead of cutting the first pants into hexagons by the
three symmetry edges between P and Q we use eight step geodesics through the
midpoints of these edges, see Figure 9; at the first edge we have two choices,
the other two are determined by the 120◦ symmetry. Observe that the sum of
adjacent hexagon angles remains = π and that the hexagon vertices are moved
to involution centers! The edge lengths of the hexagons are now one quarter
and one half, respectively, of our closed eight step geodesics. (Interpret the
present description on the compact surface, but use a drawing in H2, Figure 9,
to represent it.) The six vertices of the two hexagons of one pair of pants are
three pairs of antipodal points on the three boundary geodesics — each of which
consists of two long hexagon edges. Therefore each boundary geodesic can be
rotated by 180◦ around the hexagon vertices on it and this moves the first pair
of pants to three other pants, on the other side of each boundary geodesic.
Note that the short edges that cut the first pair of pants into hexagons extend
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and also cut the neighboring pants into hexagons, i.e., these oblique pants fit
together without twist and their hexagon vertices are involution centers. — We
remark that the two conformal parameters of the family initially described in
this section are in the present hyperbolic picture the ratio of adjacent hexagon
angles and the ratio of adjacent edge lengths (recall the 120◦ symmetry of each
hexagon).

So far the description emphasized an order 3 symmetry. We modify the de-
scription to emphasize a less obvious cyclic symmetry group of order 4; see Figure
9 above. Start with one of the closed geodesics, divided by involution centers
Mi into four short hexagon edges (there are two possibilities for this subdivision,
choose one). Through each of the four Mi choose the other closed geodesic, each
divided by its antipodal point M i into two long hexagon edges. (In the drawing
in H2 each M i is seen twice, each pair is connected by an eight step identifica-
tion geodesic.) Through each of these four antipodes M i we have again a unique
other closed geodesic, but these are now pairwise the same ones — because we
described above how four of them join the four fixed points of an involution.
These last two geodesics therefore consist of the remaining short edges (sixteen
in the H2-drawing) of our eight pant hexagons, so that we now have reached
all the vertices. It remains to close the hexagons with long edges that fill up
two more closed geodesics. We think of the hexagons as black and white, in a
checkerboard fashion. Since there are 84 ·2/8 = 21 such closed geodesics we have
21·2/3 = 14 of these pant decompositions. Platonicity implies that the automor-
phism group is transitive on the set of 21 closed geodesics so that the isotropy
group of each has order eight. We want to show that one such isotropy group
leaves only one geodesic invariant. (Recall that the order 7 isotropy group of
one heptagon has three invariant heptagons.) We can only propose proofs where
the reader has to check how the eight step geodesics pass through a tessellation,
by either pant hexagons or the earlier big triangles. Consider a tessellation by
the big π/7-triangles that is kept invariant by a group of order 21, the order 7
rotations around the three common vertices and the fourteen order 3 rotations
around the centers of the white big triangles (with the other fixed point of each
rotation in the “opposite” black triangle). We claim that this group acts simply
transitively on the 21 eight step closed geodesics. One can see this by following
the geodesics that meet one of these triangles into the neighboring ones. Modulo
its ±120◦-rotations one white triangle is only met by three different kinds of
eight step geodesics; already in one of the neighboring white triangles can one
see that they are in fact all equivalent under this group.

5.2. Conjugacy classes and isometries. As a reward for this effort we
can now describe all the isometries and also the subgroups of the automorphism
group.

List of the conjugacy classes of the 168 orientation-preserving isometries. We
have already characterized the isometries by sets that are left invariant; we only
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have to count that all 168 isometries have been found. Platonicity shows that
all the isometries with the same characterization are in one conjugacy class.

Order 1: The class of the identity contains 1 element.
Order 2: The class of the involutions consists of 21 elements since each invo-

lution has four of the 84 edge midpoints as fixed points.
Order 3: The class of order three rotations has 56 elements since each of these

rotations has two vertices as fixed points, and by interchanging the two fixed
points with an involution one can conjugate one rotation and its inverse.

Order 7: There are two classes of order 7 rotations, each with 24 elements.
Namely, with order 3 rotations can we cyclicly permute the three fixed points
of one order 7 rotation and this conjugates the order 7 rotation with its second
and fourth power; this gives two classes of three elements for each triple of
fixed points, but each of the 24 heptagon centers can be mapped to every
other one because of platonicity. The two classes of 24 elements are distinct,
since only antiautomorphisms interchange black and white triangles.

Order 4: The class of order four translations of one eight step geodesic has 42
elements since each of the 21 closed geodesics has two such fixed point free
translations and each translation is in the isotropy group of only one closed
geodesic.

Altogether we have listed 168 isometries. So there are no isometries that we
have not characterized, in particular no fixed point free involutions, and thus no
genus 2 quotients of Klein’s surface. The list also shows that the automorphism
group is simple: Any normal subgroup has to consist of a union of full conjugacy
classes, always including {id}; but its order has to divide 168, which is clearly
impossible with the numbers from our list.

List of subgroups, assuming one fixed pairs of pants decomposition.

Order 2: Rotation around the midpoint of a short edge interchanges the adja-
cent black and white hexagons; every white hexagon has a black image. There
are 21 of these subgroups.

Order 3: Cyclic rotation of one pair of pants into itself; cyclic permutation of
the other pants. There are 28 of these subgroups.

Order 6: The two symmetries just given combine to the full isotropy group of
one pair of pants. The decomposition into hexagons by short edges is not
determined. There are 28 of these subgroups.

Order 4: From the construction of the pants we know the cyclic group gener-
ated by two step translations of a closed geodesic made of short edges. The
uncolored tiling is preserved. There are 21 of these subgroups.

Order 4: The 180◦-rotations around the twelve vertices of our pant hexagons
form a Klein Four-group that preserves the colored tiling. There are 14 of
these subgroups.
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Order 8: Extend the cyclic translation subgroup of order 4 by the 180◦ rotation
around the midpoint of one of the translated short edges. This is the isotropy
group of an eight step closed geodesic. There are 21 of these subgroups.

Order 12: The full invariance group of the colored tessellation contains in ad-
dition to the above Klein group the order 3 rotations of each of the pants.
There are 14 of these subgroups.

Order 24: All the above combine to the full invariance group of the uncolored
tiling, abstractly this is the permutation group S4. There are 14 of these
subgroups.

Order 7: We know this as the invariance group of one heptagon. There are 8
of these subgroups.

Order 21: The invariance group of the tiling by 14 big triangles; no black and
white triangles are interchanged; the isotropy of one triangle has order 3.
There are 8 of these subgroups.

Order 14: Would contain an order 7 subgroup and an involution, hence at least
7 involutions and more order 7 rotations — too many.

Order 84: Would be a normal subgroup, which we excluded already.

For the remaining divisors of 168, namely 28, 42, 56, we have not found such
a simple connection to the geometry. It is known that such subgroups do not
occur, because an order 7 rotation and an involution generate the whole group.

6. Fermat Surfaces xk + yk + zk = 0 Are Platonic

We add this section because, from the hyperbolic point of view, the Fermat
quartic x4 + y4 + z4 = 0 turns out to be surprisingly similar to Klein’s sur-
face. It has a platonic tessellation by twelve 2π/3-octagons— one obtains the
identification translations in the hyperbolic plane (which is tessellated by these
octagons) if one joins two neighboring midpoints of edges and extends this ge-
odesic to six such segments (see Figure 10 on page 35). Finally there is also a
decomposition into congruent and 120◦-symmetric pairs of pants that can be cut
into oblique hexagons whose twelve common vertices are centers of involutions;
this makes the Fermat quartic also a member of the 2-parameter family with at
least S4-symmetry, which we described in Section 5. Actually, all Fermat curves
xk + yk + zk = 0 can be described uniformly with their platonic tessellations.
The hyperbolic picture is closer to this equation than in Klein’s case, because
the equation shows all the automorphisms immediately: One can independently
multiply x and y by k-th roots of unity to obtain order k cyclic subgroups; cyclic
permutation of the variables gives an order 3 rotation. In fact, any permutation
of the variables gives an automorphism — including involutions, which were so
hidden for Klein’s surface. Also one can either derive from the equation the
hyperbolic description or vice versa.

We start with a tessellated hyperbolic surface, point out obvious functions that
have no common branch points and satisfy the Fermat equation: The rotations
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of order 3 and of order k point to a tessellation by π/k-triangles. To get their
number we compute the Euler characteristic: The meromorphic function f :=
x/z has k-fold zeros where the values of the function g := y/z are k-th roots of
−1; the k simple poles of both functions agree. The differential df has therefore
k · (k − 1) zeros and 2k poles, which gives χ = −k2 + 3k. Our expected triangle
tessellation therefore has F = 2k2 faces, E = 3k2 edges and V = 3k vertices and
the dual tessellation consists of 3k regular 2k-gons with angle 2π/3. First we
consider all tessellations in the hyperbolic plane. 2k of the triangles fit together
around one vertex to form a regular 2k-gon with angle 2π/k. Into this we inscribe
two regular k-gons with angle π/k by joining neighboring even-numbered and
odd-numbered vertices, respectively. (Note that edges of these two polygons are
symmetry lines of the triangle tessellation, the intersection of the two k-gons
therefore is a regular 2k-gon with angle 2π/3.) We extend one of these inscribed
k-gons (called red) to a tessellation of the hyperbolic plane and color its tiles
in checkerboard fashion red and green; the other inscribed k-gon, called blue,
we extend to a blue/yellow checkerboard tessellation. Note that the midpoints
of the red and the blue k-gons agree; the vertices of the red/green ones are the
midpoints of the yellow ones and vice versa, the vertices of the blue/yellow ones
are the midpoints of the green ones. Now we define with the Riemann mapping
theorem two functions on the hyperbolic plane, which we will recognize as the
functions f, g above. Any checkerboard tessellation of the hyperbolic plane
having an even number of regular polygons meeting at each vertex can be used
in the same way: Map one tile to one hemisphere; we can keep its symmetry
by first mapping a fundamental triangle (of the tiles symmetry group) to the
corresponding sector of the hemisphere and then extend by reflection around the
midpoint of the tile; finally extend by reflection in the edges of the tiles to the
hyperbolic plane. We apply this by mapping a yellow and a green tile to the unit
disc, normalizing so that the vertices go to k-th roots of−1. The functions, which
we now call f and g, then have simple poles at the common centers of the red
and blue polygons, respectively, and each has simple zeros at the other midpoints
of its tiles, i.e., at the k-fold branch points of the other function whose branch
values are k-th roots of −1. This gives the inhomogeneous Fermat equation

fk + gk + 1 = 0.

If we now identify points in the hyperbolic plane that are not separated by this
pair of functions, then we are given a surface together with two tessellations by 2k
regular k-gons; the vertices of both of them define a tessellation by 2k2 equilateral
π/k-triangles. As a platonic tessellation the automorphism group would have
to have order 6k2, but we already exhibited that many automorphisms of the
Fermat equation — so this proves platonicity of the triangle tessellation and its
dual, and then also of the tessellations by the k-gons. In particular this includes
platonic tessellations with π/5- and π/7-triangles that we failed to obtain in
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the earlier attempts. Note also that k = 3 gives the triangle tessellation of the
hexagonal torus.

We add some more details to the quartic, k = 4 (Figure 10). The k-gon
tessellation consists of eight π/4-squares; they fit together around one vertex
and give as fundamental domain a sixteengon with vertex angles alternately
π/4 and 2π/4 (and the vertices are identified to three points). There is only
one possible edge identification pattern: If one wants the platonic symmetries
around the center and notes the different angles at the vertices then the edge
from a π/4-vertex clockwise to a 2π/4-vertex can only be identified with the edges
numbered 6 (translation axes in Figure 10) or 14 (clockwise). But the identifying
translations are too short in the second case: The axis from edge 1 to edge 14
is two π/4-triangle edges long, which is only one half of a (vertex-)diameter
of the sixteengon, a contradiction to platonicity. Now look at the dual of the
triangle tessellation, by twelve 2π/3-octagons (of which the figure shows nine)
and note that we obtain the determined edge identification as composition of two
involutions: Join two neighboring midpoints of edges of the central octagon and
extend this (dithered) geodesic until it meets the boundary of the sixteengon
fundamental domain. It is then six segments long; that is, the identification
translation along this geodesic translates by a distance of six segments. Hence

P

Q

Figure 10. Fundamental domain for the Fermat quartic, with translation axes.
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this translation can be written as a composition of two involutions whose centers
are three segments apart, as claimed. This completes the hyperbolic description
of the Fermat quartic with tiles and identifications.

We remark that the quotient by the 180◦-rotation around the center is easy to
see in both pictures: The fixed points are the four vertices of one tessellation by
eight π/4-squares, the quotient therefore is the square torus tessellated by four
squares; algebraically we have to identify points (f, g) ∼ (−f, g), i.e., we get the
torus x2 + y4 + 1 = 0. Because of the order three symmetry we have three such
quotient maps. An 180◦-rotation around the midpoint of an octagon edge has
also four fixed points so that the quotient is also a torus, a rectangular torus,
because one reflection descends to the quotient with two fixed point components;
for more information one has to compute. One may count that there are no other
involutions, which proves that the Fermat quartic has no degree two projection
to the sphere and therefore is not hyperelliptic; it also says that there are no
fixed point free involutions; that is, our second genus 2 surface in Section 3.2,
the one tessellated by the same π/4-triangles, is not a quotient of the Fermat
quartic.

Finally we describe a pairs of pants decomposition such that the pant hexagons
have involution centers as vertices. Number the vertices of the central 2π/3-
octagon of the fundamental domain. Choose vertex 6 as center of an order 3
rotation; the midpoint of the last edge (between vertex 8 and 1) is also midpoint
between the two fixed points of this rotation; extend the octagon diameter from
vertex 1 to 5 to a closed geodesic (a diameter of the fundamental domain) and
rotate it by ±2π/3 around the chosen vertex 6; these three closed geodesics cut
out of the surface a pair of pants tessellated by six half-octagons. Now we cut
it into two hexagons: Join the midpoints of those two octagons, which have the
mentioned edge from vertex 8 to 1 in common, across this edge; then also rotate
this connection by ±2π/3 to obtain the desired hexagons. Finally obtain the
neighboring pairs of pants by the involutions in the hexagon vertices — one does
have to check that they do not overlap, but this is easy since the closed geodesics
that we used to cut the pants into hexagons again traverse all four pairs of pants
along short hexagon edges. The description of the symmetry subgroups is now
very similar to the case of Klein’s surface and will be omitted.

7. Cone Metrics and Maps to Tori

As we have seen above, certain quotients of Klein’s surface are rhombic tori
and we would like to know more about them. While we don’t have any arguments
using hyperbolic geometry to obtain this information, there is a surprisingly
simple way using flat geometry. The idea is as follows: Suppose we have a
holomorphic map from M2 to some torus. Its exterior derivative will be a well
defined holomorphic 1-form on M2 with the special property that all its periods
lie in a lattice in C. Vice versa, the integral of such a 1-form will define a map
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to a torus whose lattice is spanned by the periods of the 1-form. There are two
problems with this method:

It is rarely the case that one can write down holomorphic 1-forms for a Rie-
mann surface. An exception are the hyperelliptic surfaces in their normal form
y2 = P (x) where one can multiply the meromorphic form dx by rational func-
tions in x and y to obtain a basis of holomorphic forms. But even if one can
find holomorphic 1-forms then it is most unlikely that one can integrate them to
compute their periods.

Flat geometry helps to overcome both problems simultaneously: Any holo-
morphic 1-form ω determines a flat metric on the surface that is singular in the
zeroes of ω and that has trivial linear holonomy (parallel translation around any
closed curve is the identity). This flat metric can be given by taking |ω| as its
line element. Another way to describe it is as follows: Integrate ω to obtain a
locally defined map from the surface to C. Use this map to pull back the metric
from C to the surface. A neighborhood around a zero of order k of ω is isometric
to a euclidean cone with cone angle 2π(k + 1), as can be seen in a local coordi-
nate. And vice versa, specifying a flat cone metric without linear holonomy will
always define a surface together with a holomorphic 1-form. The periods of this
1-form are just the translational part of the affine holonomy of the flat metric,
which can be read off by developing the flat metric. Hence we have a method to
construct Riemann surfaces with one holomorphic 1-form and full control over
the periods. Usually one does not know whether two surfaces constructed by two
different flat metrics coincide. The reason why we succeed with Klein’s surface
is that, surprisingly, we can apply the construction in three different ways so
that we can produce three different 1-forms. This means that we have to show
that three different cone metrics define the same conformal structure, which is
difficult in general. But Klein’s surface can be nicely described as a branched
covering over the sphere with only three branch points, see Section 4.2, which al-
lows to reduce this problem to the fact that there is only one conformal structure
on the 3-punctured sphere.

For convenience, we introduce [a, b, c]-triangles, which are by definition eu-
clidean triangles with angles

aπ

a+ b+ c
,

bπ

a+ b+ c
,

cπ

a+ b+ c
.

7.1. Again a definition of Klein’s surface. Let S = CP 1 − {P1, P2, P3} be
a three punctured sphere. We construct a branched 7-fold covering over S that
has branching order 7 at each Pi as follows: Choose another point P0 in S and
non-intersecting slits from P0 to the punctures. Cut S along these slits, call the
slit sphere S′ and the edges at the slit from P0 to Pi denote by ai and a′i. Now
take 7 copies of S′ and glue edge aj in copy number i to edge a′j in copy number
i+ dj (mod 7), where

d1 = 1, d2 = 2, d3 = 4.
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This defines a connected compact Riemann surface M2 with a holomorphic
branched covering map π : M2 → S. We call the branch points on M2 also
P1, P2, P3. Viewing the sphere as the union of two triangles with vertices
Pi, M2 becomes then the union of fourteen triangles and Euler’s formula gives
χ(M2) = −4, g = 3. Equivalently, we could have used the Riemann–Hurwitz
formula.

This description coincides with the one given in 4.2 — we have only switched
from the identification of edges to slits for convenience. The reader can check
again that the order 3 automorphism φ of the sphere that permutes the Pi lifts
to M2.

Observe that this description comes with a deck transformation of order 7.

7.2. Construction of holomorphic 1-forms. Now we want to construct
holomorphic 1-forms on M2. Consider a euclidean triangle with angles αi · π/7
at the vertices Pi, for i = 1, 2, 3. Take the double to get a flat metric on the 3-
punctured sphere, which also defines a conformal structure on the whole sphere.
Because there is only one such structure, we can identify any doubled triangle
with S and pull back the flat metric to M2. In this metric a neighborhood of the
branch points Pi on M2 is isometric to a euclidean cone with cone angle αi · 2π.

Remark that if we would take instead of the euclidean triangle a hyperbolic
2π/7-triangle, this would give a hyperbolic metric without singular points — the
same one that we know already.

After selecting a base point and a base direction on the universal cover M̂2

of M2 − {P1, P2, P3}, consider the developing map

dev : M̂2 → C

of this flat metric. Let γ be a deck transformation of M̂2. Then dev(z) and
dev(γz) differ by an isometry of C and α(z) and α(γz) with α = d dev differ
by a rotation. We want the holomorphic 1-form α to descend to M2 and we
therefore want all these rotations to be the identity. This is equivalent to having
trivial linear holonomy of the flat cone metric on M2. We call triangles such
that the cone metric on M2 above has this property admissible.

Because a triangle has a simpler geometry than a cone metric on M , we will
do the holonomy computation on S and therefore need to be able to recognize
closed curves on S that lift to closed curves on M2:

Let c be a closed curve on S and Aj = #(c, aj) = algebraic intersection
number of c with the slit aj. Let c̃ be any lift of c to M2. Then c̃ is closed in
M2 if and only if A1d1 +A2d2 +A3d3 ≡ 0 (mod 7), because by crossing the slit
aj we change from copy i to copy i+ dj, the contributions from all crossed slits
add up and we want to arrive in the same copy as we started.

To compute the linear holonomy of the curve c we modify it at every inter-
section with a slit as follows: Instead of crossing the slit aj, we prefer to walk
around the point Pj. The new curve will never cross a slit and therefore be ho-
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Figure 11. The flat fourteengon fundamental domain represents the surface
together with a holomorphic 1-form.

motopically trivial, hence without linear holonomy. But each time we modified
the curve c at the slit aj , we changed the linear holonomy by a rotation by the
cone angle αj · 2π/7. This sums up to

hol(c) = rotation by (A1α1 +A2α2 + A3α3) · 2π
7
.

Therefore, the linear holonomy of each closed curve in M2 is trivial if and only
if whenever A1d1 + A2d2 + A3d3 ≡ 0 (mod 7), then A1α1 + A2α2 + A3α3 ≡ 0
(mod 7). This is here the case for

(αi) = (1, 2, 4), (2, 4, 1), (4, 1, 2).

These are all the same triangles with differently labeled vertices. Corresponding
to these three possibilities of choosing cone metrics we obtain three different
holomorphic 1-forms ωi on M2.

All this is illustrated in Figure 11, which shows the fourteengon fundamental
domain of Figure 4 where each π/7-triangle is replaced by an admissible eu-
clidean triangle. That this metric gives rise to a holomorphic 1-form is instantly
visible because the identifications of edges are achieved by euclidean parallel
translations.

Observe that the scaling of an ωi is well defined as soon as we have chosen a
fixed triangle, but up to now there is no natural way and no necessity to do this.

As mentioned above, a cone angle 2πk of a cone metric causes a zero of order
k−1 of the 1-form defined by the derivative of the developing map. So we obtain
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for the divisors of the ωi on M2 the expressions

(ω1) = P2 + 3P3 ,

(ω2) = P1 + 3P2 ,

(ω3) = P3 + 3P1 .

This allows us to derive the equation for Klein’s surface in a different way than
in the hyperbolic discussion, because there the holomorphic 1-forms were only
obtained after we had the first equation:

Set f = ω1/ω3 and g = ω2/ω3. We have

(f) = −3P1 + P2 + 2P3 ,

(g) = −2P1 + 3P2 − P3 ,

(g3f) = −9P1 + 10P2 − P3 ,

(f3) = −9P1 + 3P2 + 6P3 ,

(fg2) = −7P1 + 7P2 .

Assuming that P1 is mapped to ∞, P2 to 0 and P3 to −1 by π (see Section 7.1),
so that (π) = −7P1 + 7P2 we see from the above table that (after scaling fg2)
fg2 and π coincide. Therefore fg2 + 1 has a zero of order 7 and g3f + g a zero
of order 6 in P3. From the divisor table we see that there is only one pole of
order 9 at P1 which is completely compensated by the zeros at P2 and P3; hence
(g3f + g) = −9P1 + 3P2 + 6P3, and after a second normalization we have

f3 + g3f + g ≡ 0 =⇒
(
ω1

ω3

)3

+
(
ω2

ω3

)3ω1

ω3
+
ω2

ω3
= 0,

so that the 1-forms themselves — suitably scaled — satisfy one equation for the
Klein surface:

ω1ω
3
2 + ω2ω

3
3 + ω3ω

3
1 = 0 .

Note that the other equation can be written as

π(π − 1)2 = f7

by comparing divisors and scaling f .

7.3. Finding maps to tori. Now we want to find maps from M2 to tori. First
we determine the Jacobian. As explained above, we have to look for holomorphic
1-forms whose periods span a lattice in C. Because M2 is of genus 3, any
holomorphic 1-form is a linear combination of the three forms ωi above. We start
by computing their periods. Because we have everything reduced to triangles,
this is an exercise in euclidean geometry.

Consider an admissible triangle with angles αi ·π/7 in Pi and take the double.
Choose the base point P0 very close to P1 and consider loops c1, c2 at P0: c1 is
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P0

c1

c2

Figure 12. The integration paths.

a loop around P1 and c2 a loop around P2, both with winding number 1. Every
closed loop in S will be homotopic to a product of these two loops. Consider

ηk = ck1c2c
5−k
1 , for k = 1, . . . , 6.

These curves will have closed lifts to M2 and it is easy to see that they furnish us
with a homology base of M2, for example as follows: Take the cone metric with
α1 = 1 and repeatedly reflect the [1, 2, 4]-triangle to arrange all the fourteen
copies around P1. Since a lift of c1 is a 2π/7-arc around the center one can see
that the η0, . . . , η6, are homotopic to the eight step closed geodesics that we used
to identify edges of our fourteengon.

To compute their affine holonomy with respect to a cone metric on M2, we
can as well work on S. Recall how the development is constructed in this simple
case: Follow the path starting at P0 until it meets the boundary of the triangle
(which is thought of as the upper hemisphere). Continue in the reflected triangle
the portion of the path on the other hemisphere until it hits a triangle boundary
again. Keep continuing until the endpoint of the path in S is reached and we
have constructed the developped path in C. This shows that dev(c1) consists of a
rotation by α1 · 2π/7 and a translational part that can be made arbitrarily small
since the holonomy is independent of how close we chose P1 to P0 . On the other
hand, dev(c2) consists (again up to an arbitrarily small error) of a translation
by twice the height of the triangle with vertex P1 followed by a rotation of angle
α2 · 2π/7. Since the last rotations do not change the endpoint of the developped
path we obtain

dev(ηk) = ζk·α1 · h1 with ζ = e2πi/7

and h1 denotes the length of the height. Because we are still free to scale the
triangles independently, we do this in a way that the periods look as simple
as possible, namely we scale the height h1 to length 1. So the triangles under
consideration will have different size, but we obtain the periods as∫

ηk

ω1 = ζk ,

∫
ηk

ω2 = ζ2k ,

∫
ηk

ω3 = ζ4k .

This gives a base for the lattice of the Jacobian of M2.
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As explained above, we now want to find linear combinations

ω = a1ω1 + a2ω2 + a3ω3

such that the periods of ω span a lattice in C. Remark that if this is the case for
some ai, it will also be true for ζdiai. This has its geometric reason in the fact
that the covering transformation of order 7 acts on the ωi by multiplication with
ζdi . The corresponding maps to tori differ therefore only by an automorphism.
We guess the first example of such a map to a torus:

The first map to a torus. Take a1 = a2 = a3 = 1. Here ω = ω1 + ω2 + ω3 and
the periods ek :=

∫
ηk
ω lie in the lattice spanned by

v1 = e1 = e2 = e4 = ζ1 + ζ2 + ζ4 and v2 = e3 = e5 = e6 = ζ3 + ζ5 + ζ6 .

Observe that∣∣ζ1 + ζ2 + ζ4
∣∣2 =

∣∣ζ3 + ζ5 + ζ6
∣∣2 = (ζ1 + ζ2 + ζ4) · (ζ6 + ζ5 + ζ3) = 2 ;

hence ∣∣ζ1 + ζ2 + ζ4 − ζ3 − ζ5 − ζ6
∣∣2 = 7, ζ1 + ζ2 + ζ4 =

−1 +
√
−7

2
,

so that we obtain a map ψ :=
∫
ω onto a rhombic torus T with edge length

√
2

and diagonal lengths
√

7 and 1. The lattice points are the ring of integers in the
quadratic number field Q

(√
−7
)
. This implies that the torus has complex mul-

tiplication: Multiplication by any integer in Q
(√
−7
)

maps the lattice into itself
and therefore induces a covering of the torus over itself, in particular coverings
of degree 2 and 7.

The standard basis for this lattice Γ is {1, τ}, where τ is defined as 1
2

(
−1 +√

−7
)
. The Weierstraß ℘-function for Γ is a degree 4 function for the index 2

sublattice τ · Γ and ℘(z/τ)/τ2 is the Weierstraß ℘-function for τ · Γ. Starting
from these two functions one can derive the following equation for the torus,
which is defined over Q:

q′
2 = 7q3 − 5q − 2 .

Remember that we are hunting for the quotient tori of Klein’s surface by the
automorphism groups of order 2 and 3. Because we have scaled the triangles
that define the ωi to different size, it is unlikely that their sum will give us a
1-form invariant under the order 3 rotation. But we might have with ψ a degree 2
quotient map. To decide this, we compute the degree of ψ. With respect to the
basis ηk of H1(M2,Z) and the basis v1, v2 of H1(T,Z), we have the matrix
representation

ψ∗ =
(

1 1 0 1 0 0
0 0 1 0 1 1

)
.
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To switch to cohomology, we need the intersection matrix I for our homology
basis and its inverse, which represents the cup product with respect to the dual
basis. The first can be read off from Figure 4:

I =



0 −1 −1 0 0 1
1 0 −1 −1 0 0
1 1 0 −1 −1 0
0 +1 1 0 −1 −1
0 0 +1 +1 0 −1
−1 0 0 +1 1 0

 , I−1 =



0 0 1 −1 1 0
0 0 1 0 0 1
−1 −1 0 −1 0 −1

1 0 1 0 1 1
−1 0 0 −1 0 0

0 −1 1 −1 0 0

 .

Denoting the dual basis of ηk by βk and that of vi by γi, we compute

degψ = deg ψ ·
∫
T
γ1 ∧ γ2 =

∫
M2

ψ∗γ1 ∧ ψ∗γ2

=
∫
M2

(β1 + β2 + β4) ∧ (β3 + β5 + β6)

= 1 + 1 + 0 + 1 + 0 + 1 + 1 + 1 + 1 = 7 .

This is certainly a surprise, because we couldn’t find any degree seven map to a
torus in the hyperbolic setting. This means especially that ψ is not a quotient
map.

The second map to a torus. As already mentioned, the above ω is not invariant
under the triangle rotation automorphism φ of order 3, because we have normal-
ized the ωi using triangles of different size. By taking one fixed triangle size for
all 1-forms, that is, by only permuting the labels of the vertices, we will obtain
differently scaled 1-forms ω̃i, which now do have the invariance property

φ∗ω̃i = ω̃i+1 .

This means that ∫
ηk

ω̃i = ζkdi
∫
η0

ω̃i

with ∫
η0

ω̃i = ~hi ,

where ~hi ∈ C is the height based at Pi in one fixed triangle P1P2P3 with the
angles βi := αiπ/7 at Pi, for αi ∈ {1, 2, 4}. Denote by hi the norm of ~hi. Then
compute

~h2 = e−iβ3
h2

h1

~h1,
h2

h1
=

sinβ1

sinβ2
,

so that
~h2 = ei(π−β3) sinβ1

sinβ2

~h1 , ~h3 = ei(π−β1) sinβ2

sinβ3

~h2 .
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Now introduce temporarily ξ = e2πi/14 = −ζ4 and β = β1. Write ≈ for
equality up to a non-zero factor independent of k. Then∫

ηk

ω̃1 + ω̃2 + ω̃3 = ζk~h1 + ζ2k~h2 + ζ4k ~h3

=
(
ζk − ζ2ke−iβ3

sinβ1

sinβ2
+ ζ4ke−i(β1+β3) sinβ1

sinβ3

)
~h1

=
(
ζk − ζ2kξ−4 sinβ

sin 2β
+ ζ4kξ−5 sinβ

sin 4β

)
~h1

≈ 1
ξ − ξ−1

ξ2k − 1
ξ2 − ξ−2

ξ4k−4 +
1

ξ4 − ξ−4
ξ8k−5

≈ ζk

ζ − 1
+
ζ2k+2

ζ2 − 1
+
ζ4k−1

ζ4 − 1

≈ ζk

ζ − 1
+

ζ2k

1− ζ5
+

ζ4k

ζ5 − ζ .

Denote this last expression for the period over ηk by ek. One easily computes

e2 = 0 ,

e0 = −e4 = e1 − e3 ,

e5 = −e0 − e1 ,

e6 = e5 + 3e0 ,

so that
ṽ1 := −e3 = 1 + ζ2 − ζ3 − ζ4 ,

ṽ2 := e1 = −1 + ζ3 + ζ4 − ζ5

constitute a basis for the lattice spanned by all periods ek. So this time we
obtain a map ψ̃ to a torus as the quotient map X → X/(φ). Using the above
mapping degree argument, one finds indeed that deg ψ̃ = 3.

Remarkably, the quotients of the period vectors of the two tori agree:

v1 · ṽ2 = 2(ζ5 − ζ2) = v2 · ṽ1,

so that ψ̃ is a different map to the same torus T.

The thrid map to a torus. Finally, we know two ways to find a degree 2 map
to a torus. The first is to guess. This works as follows: Any holomorphic map
ψ : M2 → T 2 will induce a complex linear map JacM2 → Jac T 2 = T 2 and
therefore a direct factor of JacM2. After having found two such factors, there
has to be a third so that the Jacobian of M2 is up to a covering the complex
product of three 1-dimensional tori. To find the third factor one just has to
compute the kernel of the two linear maps that are the projections of JacM2

to the tori already found and write down a projection onto this kernel. So the
recipe is: Take the cross product of the 1-forms that define the maps to the two
tori with respect to the basis ωi.
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For instance, we can take for the first torus the linear combination ω1+ω2+ω3

and for the second ζω1+ζ2ω2+ζ4ω3, which is obtained from the first by applying
an order 7 rotation. Hence also (ζ4 − ζ2)ω1 + (ζ − ζ4)ω2 + (ζ2 − ζ)ω3 integrates
to a map to a torus, we compute the period integrals to

e0 = e1 = 0 ,

−e2 = e4 =
√
−7 ,

e3 = 3− ζ3 − ζ5 − ζ6 =
7 +
√
−7

2
,

e5 = −3 + ζ + ζ2 + ζ4 = −e3 + e4 .

Taking v1 = e4 and v2 = e3 we get a basis for our familiar torus T, and the
computation of the mapping degree yields 2. Being a twofold covering, this map
must be the quotient map of an involution.

The other way to find such a torus is analogous to the approach for the second
torus: We just have to find a 1-form invariant under an involution. But while
the order 3 rotations were apparent from the construction of the surface, this
is not the case for the involutions, and we don’t know a geometric method to
derive the operation of an involution on the ωi by euclidean or hyperbolic means.
On the other hand, this operation already occurs in [Klein 1879] who used an
algebraic-geometric description of his surface to obtain this map asA

B

C

 7−→ 1√
−7

−ζ
2 + ζ5 ζ3 − ζ4 −ζ + ζ6

ζ3 − ζ4 −ζ + ζ6 −ζ2 + ζ5

−ζ + ζ6 −ζ2 + ζ5 ζ3 − ζ4


A

B

C

 ,

where A3B+B3C+C3A = 0. This information can be used to obtain the above
and other invariant 1-forms— one has only to be aware of the fact that one has
to take the scaled 1-forms ω̃i, which satisfy ω̃1ω̃

3
2 + ω̃2ω̃

3
3 + ω̃3ω̃

3
1 = 0.

7.4. Further computations for our examples. It is possible to compute
the Jacobians of all the hyperbolic examples we have given in the preceding
sections using cone metrics. This is quite straightforward. For instance, for
the genus 2 surface constructed from hyperbolic π/5-triangles one uses as the
conformal definition a 5-fold covering over the 3-punctured sphere analogous to
step 1 above. Here one has to take d1 = 1, d2 = 1 and d3 = 3. Using the same
reasoning as in Section 7.2, one finds that admissible triangles for this covering
are [1, 1, 3]- or [2, 2, 1]-triangles. This gives holomorphic 1-forms with divisors
2P3 and P1 + P2, which can be used to derive an equation for the surface:

Introduce w := ω2/ω1 and denote the covering projection by z, normalized so
that P1, P2, P3 are mapped to 0, 1, ∞. After scaling w we obtain the equation
from Section 3.1, w5 = z(z − 1). The same computation as in 7.3 gives for the
Jacobian of the surface the following basis matrix of the lattice(

1 ζ ζ2 ζ3

1 ζ3 ζ ζ4

)
where ζ = e2πi/5.



46 HERMANN KARCHER AND MATTHIAS WEBER

The other genus 2-example is slightly more complicated. It is described as a
double covering M2 over a sphere punctured at octahedron vertices. So, instead
of starting with the 3-punctured sphere as above we now have to start with a
6-punctured sphere. Here we can clearly see the limitations of our method: It is
rarely the case that two different cone metrics on a 6-punctured sphere define the
same conformal structure. However the octahedron itself is symmetric enough so
that we can achieve this: Represent the conformal structure of the octahedron
by the Riemann sphere with punctures at the images of the octahedron vertices
under stereographic projection, that is at the fourth roots of unity, at 0 and
at ∞. Then the map z 7→ z4 defines a branched covering over the 3-punctured
sphere S, which we can handle. This means that any doubled triangle metric on S
when lifted to the octahedron defines the same conformal structure. The metrics
we obtain in this way can be described geometrically as follows: Instead of
constructing the octahedron from equilateral triangles, it is allowed to construct
it from isosceles triangles (bases along the equator). It is even allowed to take
two different heights over the same base for the upper and the lower hemisphere.
For instance, we can choose the triangles in such a way that the cone angles on
the octahedron are π in ∞, 3π in 0 and also π at the roots of unity by taking
four [2, 3, 3]-triangles and four [6, 1, 1]-triangles.

This cone metric on the octahedron is now admissible in the sense of Section
5.1: its lift to the double cover M2 has no linear holonomy! This is an immediate
consequence of these three facts:

– each branch point has order 2,
– each cone angle is an odd multiple of π,
– a closed curve on S has a closed lift to M2 if and only if it crosses an even

number of slits.

If we denote the branch points over 0 and ∞ by P+ and P−, respectively, we
have found a holomorphic 1-form ω1 with divisor 2P+. By interchanging the
angles given to 0 and ∞, we obtain a 1-form ω2 with divisor 2P−.

These two 1-forms are not sufficient to produce an equation for the surface.
But this will be possible by using another meromorphic 1-form, also constructed
using cone metrics: Represent the conformal structure of the octahedron just by
the flat euclidean plane, where all cone points save∞ have cone angle 2π and∞
has −2π. The lift of this metric to M2 (recall that all vertices are simple branch
points) defines a meromorphic 1-form ω3 with divisor−3P−+P+ +P1+P2 +P3+
P4 where Pi denote the preimages of the roots of unity. Introduce the function
v = ω3/ω2 and denote the covering projection from M2 to the octahedron by z.
Comparing divisors and scaling v now gives the equation

v2 = z(z4 − 1)

which is equivalent to the one in Section 3.2, put w = v/((z + 1)(z + i)).
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Now we compute a basis for the lattice of the Jacobian of M2. As a homology
basis on M2 we can take lifts of the 4 loops on the octahedron that start near 0
and go once around one root of unity. Because we have cone angle π at the roots
of unity for both holomorphic 1-forms, these curves develop to straight segments
of equal length, which we scale to 1. The directions can be easily obtained from
the different cone angles at 0 and we get for the period matrix of ω1, ω2(

1 ζ ζ2 ζ3

1 ζ3 ζ6 ζ

)
=

(
1

√
2

2 (1 + i) i
√

2
2 (−1 + i)

1
√

2
2 (−1 + i) −i

√
2

2 (1 + i)

)
,

where ζ = e2πi/8. From this it follows that ω1 +ω2 and ω1−ω2 can be integrated
to give maps to the isomorphic tori with lattices spanned by

(
1,
√
−2/2

)
and(

1, 2
√
−2
)
. They also have complex multiplication, as can be seen by folding a

sheet of A4 paper.1

Similarly one can compute the Jacobians of all the Fermat surfaces. We carry
this out for the quartic:

Here X will always be the four punctured sphere with punctures at the points
1, i,−1,−i or 0, 1,−1,∞. This is the only four punctured sphere for which we
can sometimes describe different admissible cone metrics explicitly.

We will construct a branched covering M2 of genus 3 over X very similar
to the construction of Klein’s surface, but this time using 4 slits instead of 3
and taking only a fourfold covering. We choose all the four numbers di that
we need to specify the identifications to be 1. Using the Riemann–Hurwitz
formula one can check that the so-defined surface has genus 3. Now one has
to be careful to choose cone metrics on X, because we have to guarantee that
different cone metrics live on the same 4-punctured sphere, namely X. This is
done economically by representing X as a double cover over S such that i, −i are
mapped to∞ and 1, −1 are mapped to 0, 1 without branching. Then admissible
triangles on S in the sense that their lift to M2 via X has no linear holonomy
are given as [1, 5, 2]-, [5, 1, 2]- and [2, 2, 4]-triangles. These lift to three cone
metrics on X with the following angles:

1 i −1 −i

π/2 π/2 5π/2 π/2
5π/2 π/2 π/2 π/2
π π π π

Counting the branching orders, this gives holomorphic 1-forms on M2 with di-
visors 4P2, 4P1, and P1 + P2 + P3 + P4. And they can be used to derive the
equation x4 + y4 + z4 = 0.

1The ISO series of paper sizes, A1, A2, . . . , has the property that cutting in half an An
sheet yields two A(n+ 1) sheets similar to the original one.
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For the computation of the Jacobian we want to use the curves c1, c2 defined
in Section 7.3 and use the lifts of the curves

ηk = ck1c2c
5−k
1 for k = 0, . . . , 5

to M2 via X as a homology basis. Remark that these curves have closed lifts on
M2 because we have decided to start at P1, which is an eightfold branch point of
M2 over 0 — starting at P2 or P3 would not produce closed curves. But having
been careful gives after checking that the ηk form indeed a homology basis the
following period matrix of the ωi: 1 ζ i ζ3 −1 ζ5

1 ζ5 i ζ7 −1 ζ

1 i −1 −i 1 i

 , ζ = e2πi/8 .

So we see that ω3, ω1 +ω2 and ω1−ω2 integrate to maps to the square torus —
which gives another proof that this M2 does not cover the second genus 2-
example: If this were the case, there would be a nontrivial map between their
respective Jacobians by the universal property of Jacobians, inducing a nontrivial
map from the square torus to the A4-torus (page 47, footnote). Such a map does
not exist.

References

[Bujalance and Singerman 1985] E. Bujalance and D. Singerman, “The symmetry type
of a Riemann surface”, Proc. London Math. Soc. (3) 51:3 (1985), 501–519.

[Burnside 1911] W. Burnside, Theory of groups of finite order, Cambridge U. Press,
1911.

[Coxeter and Moser 1957] H. S. M. Coxeter and W. O. J. Moser, Generators and
relations for discrete groups, Springer, Berlin, 1957. Fourth edition, 1980.

[Gray 1982] J. Gray, “From the history of a simple group”, Math. Intelligencer 4:2
(1982), 59–67. Reprinted in this collection.
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“Fermat’s quartic curve, Klein’s curve and the tetrahedron”, pp. 43–62 in Extremal
Riemann surfaces (San Francisco, 1995), edited by J. R. Quine and P. Sarnak,
Contemp. Math. 201, Amer. Math. Soc., Providence, RI, 1997. Preprint, 1994.

[Schulte and Wills 1985] E. Schulte and J. M. Wills, “A polyhedral realization of Felix
Klein’s map {3, 7}8 on a Riemann surface of genus 3”, J. London Math. Soc. (2)
32:3 (1985), 539–547.

[Singerman 1995] D. Singerman, “Mirrors on Riemann surfaces”, pp. 411–417 in Second
International Conference on Algebra (Barnaul, 1991), edited by L. A. Bokut’ et al.,
Contemp. Math. 184, Amer. Math. Soc., Providence, RI, 1995.

[Streit 1996] M. Streit, “Homology, Bely̆ı functions and canonical curves”, Manuscripta
Math. 90:4 (1996), 489–509.

Hermann Karcher

Mathematisches Institut der Universität Bonn

Beringstraße 6

53115 Bonn

Germany

unm416@ibm.rhrz.uni-bonn.de

Matthias Weber

Mathematisches Institut der Universität Bonn

Beringstraße 6

53115 Bonn

Germany

weber@math.uni-bonn.de





The Eightfold Way
MSRI Publications
Volume 35, 1998

The Klein Quartic in Number Theory

NOAM D. ELKIES

Abstract. We describe the Klein quartic X and highlight some of its re-
markable properties that are of particular interest in number theory. These
include extremal properties in characteristics 2, 3, and 7, the primes divid-
ing the order of the automorphism group of X; an explicit identification
of X with the modular curve X(7); and applications to the class number 1
problem and the case n = 7 of Fermat.

Introduction

Overview. In this expository paper we describe some of the remarkable prop-
erties of the Klein quartic that are of particular interest in number theory. The
Klein quartic X is the unique curve of genus 3 over C with an automorphism
group G of size 168, the maximum for its genus. Since G is central to the
story, we begin with a detailed description of G and its representation on the
three-dimensional space V in whose projectivization P(V ) = P2 the Klein quar-
tic lives. The first section is devoted to this representation and its invariants,
starting over C and then considering arithmetical questions of fields of definition
and integral structures. There we also encounter a G-lattice that later occurs as
both the period lattice and a Mordell–Weil lattice for X. In the second section we
introduce X and investigate it as a Riemann surface with automorphisms by G.
In the third section we consider the arithmetic of X: rational points, relations
with the Fermat curve and Fermat’s “Last Theorem” for exponent 7, and some
extremal properties of the reduction of X modulo the primes 2, 3, 7 dividing #G.
In the fourth and last section, we identify X explicitly with the modular curve
X(7), describe some quotients of X as classical modular curves, and report on
Kenku’s use of one of these quotients in a novel proof of the Stark–Heegner the-
orem on imaginary quadratic number fields of class number 1. We close that
section with Klein’s identification of π1(X) with an arithmetic congruence sub-
group of PSL2(R), and thus of X with what we now recognize as a Shimura
curve.
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Notations. We reserve the much-abused word “trivial” for the identity element
of a group, the 1-element subgroup consisting solely of that element, or a group
representation mapping each element to the identity.

Matrices will act from the left on column vectors.
We fix the seventh root of unity

ζ := e2πi/7, (0.1)

and set

α := ζ + ζ2 + ζ4 =
−1 +

√
−7

2
. (0.2)

The seventh cyclotomic field and its real and quadratic imaginary subfields will
be called

K := Q(ζ), K+ := Q(ζ + ζ−1), k := Q
(√
−7
)

= Q(α). (0.3)

These are all cyclic Galois extensions of Q. The nontrivial elements of Gal(K/Q)
fixing k are the Galois automorphisms of order 3 mapping ζ to ζ2, ζ4; the non-
trivial Galois automorphism preserving K+ is complex conjugation x ↔ x̄. As
usual we write OF for the ring of integers of a number field F ; recall that OK ,
OK+ , Ok are respectively the polynomial rings Z[ζ], Z[ζ + ζ−1], Z[α].

We use G throughout for the second-smallest noncyclic simple group

PSL2(F7) ∼= SL3(F2) [ = GL3(F2) ] (0.4)

of 168 elements.
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1. The Group G and its Representation (V, ρ)

1.1. G and its characters. We reproduce from the ATLAS [Conway et al.
1985, p. 3] some information about G and its representations over C. (That
ATLAS page is also the source of facts concerning G cited without proof in the
sequel.) The conjugacy classes c and character table of G are as follows:

c 1A 2A 3A 4A 7A 7B
#c 1 21 56 42 24 24

χ1 1 1 1 1 1 1
χ3 3 −1 0 1 α ᾱ

χ3 3 −1 0 1 ᾱ α

χ6 6 2 0 0 −1 −1
χ7 7 −1 1 −1 0 0
χ8 8 0 −1 0 1 1

(1.1)

The outer automorphism group Aut(G)/G of G has order 2; an outer auto-
morphism switches the conjugacy classes 7A,7B and the characters χ3, χ3, and
(necessarily) preserves the other conjugacy classes and characters. Having spec-
ified α in (0.2), we can distinguish χ3 from χ3 by labeling one of the conjugacy
classes of 7-cycles as 7A; we do this by regarding G as PSL2(F7) and selecting
for 7A the conjugacy class of ±

(
1 1
0 1

)
. When we regard G as PSL2(F7), the group

Aut(G) is PGL2(F7); if we use the SL3(F2) description of G, we obtain an outer
involution of G by mapping each 3× 3 matrix to its inverse transpose.

Modulo the action of Aut(G) there are only two maximal subgroups in G

(every other noncyclic simple group has at least three), of orders 21 and 24. These
are the point stabilizers in the doubly transitive permutation representations
of G on 8 and 7 letters respectively. These come respectively from the action
of G ∼= PSL2(F7) on the projective line mod 7 and of G ∼= SL3(F2) on the
projective plane mod 2. The 21-element subgroup is the normalizer of a 7-Sylow
subgroup of G, and is the semidirect product of that subgroup (which is of course
cyclic of order 7) with a group of order 3. Since all the 7-Sylows are conjugate
under G, so are the 21-element subgroups, which extend to 42-element maximal
subgroups of Aut(G) isomorphic to the group of permutations x 7→ ax+ b of F7.
The 24-element subgroup is the normalizer of a noncyclic subgroup of order 4
in G, and is the semidirect product of that subgroup with its automorphism
group, isomorphic with the symmetric group S3; thus the 24-element maximal
subgroup is isomorphic with S4. There are 14 such subgroups, in two orbits of
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size 7 under conjugation by G that are switched by an outer automorphism; thus
these groups do not extend to 48-element subgroups of Aut(G).1

From these groups we readily obtain the irreducible representations of G with
characters χ6, χ7, χ8: the first two are the nontrivial parts of the 7- and 8-letter
permutation representations of G, and the last is induced from a nontrivial one-
dimensional character of the 21-element subgroup.

We now turn to χ3 and χ3. Let (V, ρ) and (V ∗, ρ∗) be the representation with
character χ3 and its contragredient representation with character χ3. Both V

and V ∗ remain irreducible as representations of the 21- and 24-element sub-
groups; we use this to exhibit generators for ρ(G) explicitly.

Fix an element g in the conjugacy class 7A. Then V decomposes as a direct
sum of one-dimensional eigenspaces for ρ(g) with eigenvalues ζ, ζ2, ζ4. The nor-
malizer of 〈g〉 in G is generated by g and a 3-cycle h such that h−1gh = g2. Thus
h cyclically permutes the three eigenspaces. The images of any eigenvector under
1, h, h2 therefore constitute a basis for V ; relative to this basis, the matrices for
ρ(g), ρ(h) are simply

ρ(g) =

 ζ4 0 0
0 ζ2 0
0 0 ζ

 , ρ(h) =

 0 1 0
0 0 1
1 0 0

 . (1.2)

In other words, the representation (V, ρ) restricted to the 21-element subgroup
〈g, h〉 of G is induced from a one-dimensional character of 〈g〉 sending g to ζ.
Since this subgroup is maximal in G, we need only exhibit the image under ρ of
some group element not generated by g, h. In his historic paper introducing (V, ρ)
and his eponymous quartic curve, Klein [1879b, § 5] found that the involution

− 1√
−7

 ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5

 (1.3)

fills this bill. We thus refer to the image of G in SL3(C) generated by the
matrices (1.2,1.3) as the Klein model of (V, ρ).

The transformation (1.3) may seem outlandish, especially compared with (1.2),
but we can explain it as follows. Except for the scaling factor −1/

√
−7, it is just

the discrete Fourier transform on the space of odd functions F7 → C: identify
such a function f with the vector (f(1), f(2), f(4)) ∈ V . It follows that this
involution (1.3), as well as the transformations ρ(g), ρ(h), are contained in Weil’s
group of unitary operators of the space of complex-valued functions on F7 [Weil

1Let H,H ′ be two subgroups of G isomorphic to S4 in different orbits. Then H,H ′ are
not conjugate in G, but are almost conjugate (a.k.a. “Gassmann equivalent” [Perlis 1977]):
H,H ′ intersect each G-conjugacy class in subsets of equal size. Equivalently, the permutation
representations of the action ofG on the coset setsG/H, G/H ′ are isomorphic (in our case with
character χ6 ⊕ χ1). This has been used by Perlis to construct non-isomorphic number fields
of degree 7 (the minimum) with the same zeta function [Perlis 1977] and, following [Sunada
1985], to exhibit isospectral planar domains [Gordon et al. 1992; Buser et al. 1994].
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1964, § I]; they all commute with the parity involution ι : f(x) ↔ f(−x), and
together generate the restriction to V of the commutator of ι in Weil’s group.
Starting with any odd prime p instead of 7, this would produce the ((p− 1)/2)-
dimensional representation of PSL2(Fp) or of its double cover according as p is
congruent to 3 or 1 mod 4; see also [Adler 1981, p. 116] for a concrete approach to
the first case, of which G is the instance p = 7. If we take g = ±

(
1 1
0 1

)
, h = ±

(
2 0
0 4

)
in PSL2(F7) then (1.3) is the image under ρ of the involution s = ±

(
0 −1
1 0

)
.

The restriction of ρ to S4 ⊂ G is the group of orientation-preserving symme-
tries of the cube, that is, the group of signed 3× 3 matrices of determinant 1.
(The action on the four diagonals of the cube identifies this group with S4;
the 3-dimensional representation is the nontrivial part of the permutation rep-
resentation of S4 twisted by its sign character.) Unlike (V, ρ) and its restric-
tion to the 21-element subgroup, this representation leaves a quadratic form
invariant. We choose the subgroup isomorphic with S4 generated by s, h, and
g2sg−2 = ±

(
2 2
1 −2

)
. Then the invariant quadric (which we shall need later) is a

multiple of
X2 + Y 2 + Z2 + ᾱ(XY +XZ + Y Z); (1.4)

under the change of basis with matrix 1 1 + ζα ζ2 + ζ6

1 + ζα ζ2 + ζ6 1

ζ2 + ζ6 1 1 + ζα

 (1.5)

we find that s, h, g2sg−2 map to the signed permutation matrices

−

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 1 0
1 0 0
0 0 −1

 , (1.6)

while g maps to

1
2

 −1 1 ᾱ

α α 0
−1 1 −ᾱ

 . (1.7)

The matrices (1.6) and (1.7) generate an image of G in SL3(C), which we shall
call the S4 model of (V, ρ).

We can also recover from (V, ρ) and (V ∗, ρ∗) the irreducible representations
of G of dimensions 6,7,8: the first is the symmetric square Sym2(V ); the second
is Sym3(V ) 	 V ∗; and the last is (V ⊗ V ∗) 	 1.

1.2. G-invariant polynomials in V . The action of G on V ∗ extends to an
action on the ring

C[V ∗] =
∞⊕
m=0

Symm(V ∗) (1.8)

of polynomials on V . Klein determined over a century ago [1879b, § 6] the
subring C[V ∗]G of polynomials invariant under this action: it is generated by
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three algebraically independent homogeneous polynomials of degrees 4, 6, 14,
and a fourth polynomial of degree 21 whose square is a polynomial in the first
three. It follows that the subring of polynomials invariant under the 336-element
group ±G = {±1} × G is a polynomial ring generated by invariants of degrees
4, 6, 14. It is known [Shephard and Todd 1954] that a finite subgroup of GLn(C)
has a polynomial invariant ring if and only if it is a complex reflection group, that
is, a group generated by its elements g such that 1n − g has rank 1. In our case
the complex reflections in {±1}×G are −ρ(s) and its conjugates, of which there
are 21 (the size of the conjugacy class 2A). We next find explicit polynomials
Φ4,Φ6,Φ14,Φ21 such that the invariant rings C[V ∗]±G and C[V ∗]G are generated
by {Φ4,Φ6,Φ14} and {Φ4,Φ6,Φ14,Φ21} respectively, and determine Φ2

21 as a
polynomial in Φ4,Φ6,Φ14.

Letting X, Y, Z ∈ V ∗ be the coordinate functions in the Klein model of (V, ρ),
we can write the quartic invariant as

Φ4 := X3Y + Y 3Z + Z3X, (1.9)

because even the action on Sym4(V ∗) of the 21-element subgroup of G generated
by (X, Y, Z) 7→ (ζX, ζ4Y, ζ2Z) and cyclic permutations of X, Y, Z (see (1.2)) has
only a one-dimensional invariant subspace, generated by Φ4. The Klein quartic
is the zero locus

X := {(X : Y : Z) ∈ P(V ) : Φ4(X, Y, Z) = 0} (1.10)

of Φ4 in the projective plane P(V ) = (V − {0})/C∗. In the S4 model the
monomial matrices do not suffice to determine Φ4 up to scaling, but starting
from (1.9) we may use the change of basis (1.5) to find that Φ4 is proportional
to

X′
4 + Y ′

4 + Z′
4 + 3α(X′2Y ′2 +X′

2
Z′

2 + Y ′
2
Z′

2). (1.11)

[We could also have determined the coefficient 3α by requiring invariance un-
der the 7-cycle (1.7).] The formulas we exhibit2 in the next three paragraphs
for Φ6,Φ14,Φ21 in terms of Φ4 can then be used to obtain those invariants as
polynomials in the coordinates X′, Y ′, Z′ of the S4 model, starting from (1.11).

Since Φ4 is invariant under G, so is its Hessian determinant

H(Φ4) =

∣∣∣∣∣∣∣
∂2Φ4/∂X

2 ∂2Φ4/∂X ∂Y ∂2Φ4/∂X ∂Z

∂2Φ4/∂Y ∂X ∂2Φ4/∂Y
2 ∂2Φ4/∂Y ∂Z

∂2Φ4/∂Z∂X ∂2Φ4/∂Z ∂Y ∂2Φ4/∂Z
2

∣∣∣∣∣∣∣ , (1.12)

2These determinantal formulas (1.13), (1.14), and (1.17) come straight from [Klein 1879b,
§6]. Except for the coefficients 1/54, 1/9, 1/14, they can also be found in [Benson 1993,
p. 101]; note that Benson’s coordinates are related with ours by an odd permutation of the
Klein coordinatesX, Y, Z, and the 3× 3 matrix for ρ(s) in [Benson 1993] is missing the factor
1/
√
−7 and has an incorrect (3,3) entry.
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and we may take

Φ6 := − 1
54
H(Φ4) = XY 5 + Y Z5 + ZX5 − 5X2Y 2Z2 (1.13)

as the sextic invariant. These polynomials Φ4,Φ6 are f and (−∇) in Klein’s
notation [1879b]. They are irreducible: each of Φ4,Φ6 can have at most 6 irre-
ducible factors, permuted by G up to scaling, and since G has no proper subgroup
of index ≤ 6 the factors must be themselves invariant; but the only invariant
polynomials of degree < 4 are constant, so neither Φ4 nor Φ6 can admit a proper
factorization.

The degree-14 invariant is not uniquely determined even up to scaling: one
can also add any multiple of Φ2

4Φ6. But we will usually work mod Φ4, so this
additional ambiguity will disappear. A G-invariant polynomial of degree 14 not
proportional to Φ2

4Φ6 can be obtained from either of the two conjugacy classes of
subgroups S4 ⊂ G: each of these contains seven subgroups, each of which has a
unique invariant quadric (that is, an invariant line in Sym2(V ∗)), and the product
of these seven quadrics is a G-invariant polynomial of degree 7 · 2 = 14. We may
choose for Φ14 any linear combination of this product and Φ2

4Φ6. Alternatively
Φ4 may be obtained as a differential determinant from Φ4,Φ6 by extending the
Hessian determinant we used to obtain Φ6 from Φ4:

Φ14 =
1
9

∣∣∣∣∣∣∣∣∣
∂2Φ4/∂X

2 ∂2Φ4/∂X ∂Y ∂2Φ4/∂X ∂Z ∂Φ6/∂X

∂2Φ4/∂Y ∂X ∂2Φ4/∂Y
2 ∂2Φ4/∂Y ∂Z ∂Φ6/∂Y

∂2Φ4/∂Z ∂X ∂2Φ4/∂Z ∂Y ∂2Φ4/∂Z
2 ∂Φ6/∂Z

∂Φ6/∂X ∂Φ6/∂Y ∂Φ6/∂Z 0

∣∣∣∣∣∣∣∣∣ , (1.14)

which in terms of the Klein coordinates for V is

∑
cyc

(X14 − 34X11Y 2Z − 250X9YZ4 + 375X8Y 4Z2 + 18X7Y 7 − 126X6Y 3Z5)
(1.15)

(in which
∑

cyc means sum over the three cyclic permutations of X, Y, Z, so
for instance Φ4 =

∑
cycX

3Y ). All the invariant polynomials of degree 14 are
irreducible except for Φ2

4Φ6 and the products of the two orbits of S4-invariant
quadrics. Multiplying the images of the quadric (1.4) under powers of ρ(g) yields

Φ14 + (69 + 7α)Φ2
4Φ6, (1.16)

so the reducible combinations of Φ2
4Φ6 and Φ14 are Φ2

4Φ6 itself, (1.16), and its
conjugate Φ14 + (62− 7α)Φ2

4Φ6.
Finally the invariant Φ21 may be described as the product of 21 linear forms:

from the character table, each of the 21 involutions in G fixes a one-dimensional
subspace of V ∗, and we obtain Φ21 by multiplying generators of these subspaces.
Alternatively Φ21 may be described as a multiple of the Jacobian determinant
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of (Φ4,Φ6,Φ14) with respect to (X, Y, Z). We choose the multiple

Φ21 =
∂(Φ4,Φ6,Φ14)
14 ∂(X, Y, Z)

=
1
14

∣∣∣∣∣∣∣
∂Φ4/∂X ∂Φ4/∂Y ∂Φ4/∂Z

∂Φ6/∂X ∂Φ6/∂Y ∂Φ6/∂Z

∂Φ14/∂X ∂Φ14/∂Y ∂Φ14/∂Z

∣∣∣∣∣∣∣ ; (1.17)

the factor 1/14 makes this an integral polynomial X21 + Y 21 + Z21 + · · · in the
Klein coordinates. Then Φ2

21 is invariant under ±G, and is thus a polynomial in
Φ4,Φ6,Φ14. By comparing coefficients we find

Φ2
21 = Φ3

14 − 1728Φ7
6 + 1008Φ4Φ4

6Φ14 − 32Φ2
4Φ6Φ2

14 + 19712Φ3
4Φ5

6

− 1152Φ4
4Φ2

6Φ14 + 11264Φ6
4Φ3

6 − 256Φ7
4Φ14 + 12288Φ9

4Φ6. (1.18)

Thus
Φ3

14 −Φ2
21 ≡ 1728Φ7

6 mod Φ4. (1.19)

The existence of a linear dependence mod Φ4 between Φ7
6, Φ3

14, and Φ2
21 could

have been surmised from the degrees of these invariants; we shall see that it
is closely related to the description of X as a G-cover of CP1 branched at only
three points, with ramification indices 2, 3, 7. (It is also the reason that this curve
figures in the analysis of the Diophantine equation Ax2 +By3 = Cz7 in [Darmon
and Granville 1995].) The occurrence of the coefficient 1728 = 123 in (1.19),
reminiscent of the identity E3

2 − E2
3 = 1728∆ for modular forms on PSL2(Z),

suggests that X may be closely related with elliptic and modular curves; we shall
see that this is in fact the case in the final section.

1.3. Arithmetic of (V, ρ): fields of definition. So far we have worked over C.
In fact all the representations of G except those of dimension 3 can be realized
by homomorphisms of G to GLd(Q); we say that these representations are de-
fined over Q. This is obvious for the trivial representation, and clear for the 6-
and 7-dimensional ones from their relation with the 7- and 8-letter permutation
representations of G. By comparing characters we see that the direct sum of the
7- and 8-dimensional representations is isomorphic with the exterior square of
the 6-dimensional one, whence the 8-dimensional representation is also defined
over Q. We cannot hope for the 3-dimensional representations to be defined
over Q, because χ3 takes irrational values α, ᾱ on the 7-cycles in G. We next
investigate how close we can come to overcoming this difficulty.

The S4 model shows that (V, ρ) can be defined over the quadratic extension k
of Q generated by the values of χ3. On the other hand, the Klein model of (V, ρ)
uses matrices over the larger field K, but is defined over Q in the weaker sense
that ρ(G) ⊂ SL3(K) is stable under Gal(K/Q). Indeed the Galois conjugates
of ρ(g) are its powers, ρ(h) ∈ SL3(Q) is fixed by Gal(K/Q), and the involu-
tion (1.3) is contained in SL3(K+) and taken by Gal(K+/Q) to its conjugates
by powers of h, so the group ρ(G) generated by these three linear transforma-
tions is permuted by Gal(K/Q). The S4 model cannot be defined over Q even
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in this weaker sense: if it were, complex conjugation would induce a nontrivial
automorphism of G fixing S4 ⊂ G pointwise, but no such automorphism exists.
This is why the invariants Φ4,Φ6,Φ14,Φ21 are polynomials over Q in the Klein
model but not in the S4 model. This still leaves open the possibility of finding a
model in which ρ(G) is both contained in SL3(k) and stable under Gal(k/Q) by
applying a suitable GL3(K) or GL3(k) change of basis to the Klein or S4 model.

Indeed it turns out that such a model, giving in effect a faithful representation
of Aut(G) into ΓL3(k),3 does exist, and is in fact unique up to isomorphism. This
is because constructing such a model amounts to choosing an outer involution
of G to map to the Galois involution of k/Q, and there is just one conjugacy
class of involutions in Aut(G) − G. Under the identification of Aut(G) with
PGL2(F7), one such involution is r = ±

(
1 0
0 −1

)
. The subgroup of G fixed by this

involution is the copy of S3 generated by h, s; thus only this subgroup will map
to matrices in GL3(Q). Allan Adler points out (in e-mail) a beautiful way to see
the image of the 42-element subgroup 〈g, h, r〉 of Aut(G): regard K as a three-
dimensional vector space over k; let g be multiplication by ζ; let h be generator of
Gal(K/k) taking ζ to ζ2; and let r be complex conjugation, acting k-antilinearly
as it should. Since, as noted already, 〈g, h〉 acts irreducibly on V , this suffices to
determine the representation. We choose the basis (ζ − ζ6, ζ2 − ζ5, ζ4 − ζ3) for
K/k— note that this basis is orthogonal under the G-invariant Hermitian norm
‖β‖ = TrK/k(ββ̄) on K. We find that this basis is related with the basis for the
S4 model by the change of basis with matrix −α 1 2α+ 3

2α+ 3 −α 1
1 2α+ 3 −α

 , (1.20)

and that in this basis the matrices for ρ(g), ρ(h), ρ(s) are

1√
−7

−2 α −1
α −1 1−α
−1 1−α −1−α

 ,

 0 1 0
0 0 1
1 0 0

 ,
1
7

−3 −6 2
−6 2 −3

2 −3 −6

 . (1.21)

We call this the rational S3 model of (V, ρ). Since it is weakly defined over Q,
its polynomial invariants have rational coefficients. For most purposes it is still
more convenient to use the simpler invariants of the Klein model; for instance
the quartic invariant Φ4, which is the pretty trinomial (1.9) in the Klein model,
becomes a multiple of

A4+B4+C4+6(AB3+BC3+CA3)−3(A2B2+B2C2+C2A2)+3ABC(A+B+C)
(1.22)

in our basis, and looks even worse with other coordinate choices. But it does
have the advantage not only of minimal fields of definition but also of identifying

3By this is meant the semidirect product of GL3(k) with Gal(k/Q), in analogy with the
semilinear groups ΓLn(Fq) over finite fields properly containing Fp.
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G with linear groups over both F2 and F7 by reducing (V, ρ) modulo primes
of OK with those residue fields.

1.4. Arithmetic of (V, ρ): reduction mod p and the lattice L. Remarkably
the representation (V, ρ) remains irreducible at every prime, and its reductions
mod 2 and 7 reveal the identification of G with SL3(F2) and PSL2(F7) respec-
tively. Before showing this we put it in context by briefly recalling what it means
to reduce a representation mod p.

For this paragraph only, let G be any finite group, and (V, ρ) an irreducible
representation of G defined over a number field F . Let L ⊂ V be an OF -lattice
stable under G. (Such a lattice always exists; for instance we may choose any
nonzero v ∈ V and take for L the OF -linear combinations

∑
g∈G agρ(g)(v).) For

each prime ideal p of OF , we then obtain a representation of G on the (OF /p)-
vector space L/pL. If this representation is irreducible then it does not depend
on the choice of L, and we may unambiguously say that (V, ρ) is irreducible
mod p and call L/pL its reduction mod p. This is the case for all but finitely
many p, including all primes whose residual characteristic does not divide the
order of G. But it may, and usually does, happen that there are some primes p,
necessarily with #G ≡ 0 mod p, such that L/pL is reducible, in which case that
representation may depend on the G-stable lattice L (though the composition
factors of L/pL depend only on (V, ρ) and p). For instance, if F = Q and G is the
symmetric group Sn (n > 3), and we take for (V, ρ) its usual (n−1)-dimensional
representation, then it is reducible mod p if and only if p divides n. When p

divides n, the representation L/pL depends on the choice of L. If we choose
for L the root lattice

An−1 =
{

(a1, a2, . . . , an) ∈ Zn :
∑n

1
ai = 0

}
,

the representation L/pL contains the 1-dimensional trivial representation gener-
ated by (1, 1, . . . , 1); if we choose instead the dual lattice A∗n−1 then L/pL has a
G-invariant functional but no invariant proper subspace of positive dimension.

We return now to the case that G is the simple group of 168 elements and
V is its 3-dimensional representation with character χ3. We may choose either
F = K or F = k. In either case we may see without any computation that V is
reducible mod p for each prime p of F . Indeed if V was reducible then G would
have a nontrivial representation mod p of dimension 1 or 2; since G is simple
and non-abelian, it would thus be a subgroup of GL2(OF/p). But the only
non-abelian simple groups with an irreducible 2-dimensional representation over
some field are the groups SL2(F2r ) for r > 1 (this follows from the classification
of finite subgroups of SL2 over an arbitrary field, see for instance [Suzuki 1982,
Theorem 6.17]). But G is not such a group — it does not even have order 23r−2r .
This completes the proof that V is irreducible at each prime of F .

Thus (V, ρ) is one of the few known representations of finite groups in di-
mension greater than 1 that are “absolutely irreducible” in the sense of [Gross
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1990], that is, are irreducible and remain so in every characteristic.4 Since k has
unique factorization, the main result (Prop. 5.4) of [Gross 1990] then shows that
the lattice L is unique up to scaling. In the coordinates of the rational S3 model
L is proportional to the self-dual lattice{ 1√

−7
(x, y, z) : x, y, z ∈ Ok; y − 2x, z − 4x ∈

√
−7OK; x+ 2y + 4z ∈ 7OK

}
.

(1.23)
In the coordinates of the S4 model we may take L to be the Ok-lattice generated
by the column vectors

(2, 0, 0), (α, α, 0) (ᾱ, 1, 1). (1.24)

The groupG can in turn be defined as the group of determinant-1 automorphisms
of this lattice [Conway et al. 1985]. Likewise the only G-invariant lattices in V ∗

are of the form cL∗ for nonzero c, where L∗ is generated by

(2, 0, 0), (ᾱ, ᾱ, 0) (α, 1, 1); (1.25)

this L∗ may be identified with the dual lattice of L. (Of course L, L∗ are iso-
morphic qua lattices because the representations V, V ∗ are identified by an au-
tomorphism of G.) We note two facts for future reference. First, that in our
case it is enough to assume that L or L∗ is a Z-lattice stable under the action
of G: we obtain the action of Ok automatically because ρ(g) + ρ(g2) + ρ(g4)
is multiplication by α on V and by ᾱ on V ∗. Second, that L is known to be
the unique indecomposable positive-definite unimodular Hermitian Ok-lattice of
rank 3 [Hoffmann 1991, Theorem 6.1].

We next consider the reductions of (V, ρ) in characteristics 2, 7. We deal with
characteristic 2 first. There are two primes ℘2, ℘̄2 above 2 in Ok, interchanged
by complex conjugation. We may take ℘2 = (α), ℘̄2 = (ᾱ). Thus the reductions
of the rational S3 model for (V, ρ) modulo those primes are related by an outer
automorphism of G. Using either prime, we obtain a nontrivial representation
G→GL3(F2). Since G is simple, this map must be an isomorphism. That is,
each invertible linear transformation of V mod ℘2 or ℘̄2 comes from a unique
element of G; equivalently, each automorphism of L/℘2L or L/℘̄2L lifts to a
unique determinant-1 isometry of L! Now Dickson proved that for each prime
power q and every positive integer n the ring of invariants for the action of
GLn(Fq) on its defining representation is polynomial, with generators of degrees
qn − qm for m = 0, 1, . . . , n − 1. (See the original paper [Dickson 1934], and
[Bourbaki 1968, Chapter V, § 5, Ex. 6 on pp. 137–8] for a beautiful proof; the

4The best known examples of absolutely irreducible representations are the defining repre-
sentations of the Weyl group of E8 and the isometry group of the Leech lattice. Both of those
representations are defined over Q; thus the uniqueness up to scaling of the stable lattices for
those groups is already contained in the work of Thompson [1976], who gave those examples as
well as the 248-dimensional representation of his sporadic simple group. Gross’s paper [Gross
1990] extends Thompson’s work to several classes of representations not defined over Q, and
gives many examples.
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Dickson invariants and the invariants of subgroups of GLn(Fq) are treated in
greater detail in the last chapter of [Benson 1993].) In our case, (q, n) = (2, 3),
so the degrees are 4, 6, 7. Indeed (1.18) reduces mod 2 to5 Φ2

21 = Φ3
14, so that

mod 2 there is a new invariant Φ7 such that Φ2
7 = Φ14, Φ3

7 = Φ21; the Dickson
invariants for GL3(F2) are this Φ7 together with Φ4,Φ6 — note that indeed the
degrees 4, 6, 7 are 23 − 22, 23 − 21, 23 − 20.

There is a unique prime ℘7 = (
√
−7 ) of Ok above 7. The action of G on the

3-dimensional F7-vector space L/℘7L is then the unique reduction of (V, ρ) in
characteristic 7. Since β ≡ β̄ mod ℘7 for all β ∈ Ok, the G-invariant Hermitian
form on L reduces to a non-degenerate quadratic form on L/℘7L, which G must
respect. Thus the image of our representation G→GL3(F7) is contained in the
orthogonal group SO3(F7) (not merely O3(F7) because ρ(G) ⊂ SL(V ) already
in characteristic zero). But we already know a 3-dimensional representation of
G ∼= PSL2(F7) in characteristic 7, namely the symmetric square Sym2(V2) of its
defining representation. [Note that the matrix −1 in the center of SL2(F7) acts
on Sym2(V2) by multiplication by (−1)2 = +1, which is to say trivially, so we ac-
tually do obtain a 3-dimensional representation of the quotient group PSL2(F7).]
Moreover, this representation has an invariant quadratic form, namely the dis-
criminant of a binary quadric, and G acts on Sym2(V2) by linear transformations
of determinant 1. Thus we obtain a map PSL2(F7)→ SO3(F7). The image is not
quite all of SO3(F7); indeed

SO3(F7) ∼= Aut(G). (1.26)

Both groups have order 336 = 2 · 168, so to obtain the isomorphism (1.26) we
need only extend the action of G on Sym2(V2) to Aut(G) ∼= PGL2(F7). To
do this, begin by choosing for each element of Aut(G) − G a representative
γ ∈ GL2(F7) of determinant −1; such a γ exists since −1 is not a square in F7,
and is well-defined up to γ ↔ −γ. Then γ induces a linear transformation Sym2 γ

[ = Sym2(−γ) ] of determinant −1 on Sym2(V2) that preserves the quadratic
form. We thus obtain a well-defined −Sym2 γ ∈ SO3(F7) not contained in the
image of G. These elements, together with Sym2 γ for γ ∈ G, fill out all of
SO3(F7). (Geometrically, the actions of PGL2 and SO3 induce automorphisms
of P1 and of a conic in P2 respectively, and the isomorphism (1.26) reflects the
identification of the conic with P1 [Fulton and Harris 1991, p. 273].) We’ve
seen that the G part of SO3(F7) is obtained from the action of G on L/℘7L.
But Aut(G) acts on L too, and since ℘7 is Galois-invariant, the conjugate-linear
automorphisms of L also act on L/℘7L.

We thus see that, as in the mod-2 case, each automorphism of L/℘7L preserv-
ing the quadratic form lifts uniquely to an automorphism (possibly conjugate-

5It might be objected that we should not be using (1.18) because that equation relates the
invariants of the Klein model. But that model still reduces well in characteristic 2; its only
flaw there is that the field of definition is too large: F8 instead of F2. But this does not affect
the structure of the F2-ring of invariants.
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linear and/or of determinant −1) of L. Moreover, L “explains” the sporadic
isomorphism between SL3(F2) and PSL2(F7): these two linear groups are just
the mod-2 and mod-7 manifestations of the isometries of L.6

The invariant quadratic form on L/℘7L can also be seen by reducing the ring
of G-invariants mod ℘7. As in the characteristic-2 case, there is a new invariant
Φ2, and here each of Φ4, Φ6, Φ14 is proportional to the appropriate power Φ2

2, Φ3
2,

Φ7
2 of this invariant quadric! Note that our formulas (1.11,1.22) for the quartic

invariant in the S4 and rational S3 models both reduce mod ℘7 to perfect squares,
namely (X2 +Y 2 +Z2)2 and

(
X2 +Y 2 +Z2 + 3(XY +YZ +ZX)

)2. Curiously,
though, it is the S4 form that is pertinent for Φ4 = Φ2

2; that Φ4 is also a square
mod 7 in the rational S3 model is not directly relevant. This is because the
matrices (1.6,1.7) for ρ(G) in the S4 model are ℘7-integral, while the matrices
(1.21) in the rational S3 model have denominators

√
−7 and even 7, and thus do

not reduce well mod ℘7. [For each odd prime power q, the full ring of invariants
of the three-dimensional representations of O3(Fq), PSL2(Fq), and the three
intermediate groups have been determined by Kemper [1996, Theorem 2.4(c)].
Of these five groups, only two have polynomial invariants, including O3(Fq) but
not PSL2(Fq) of {±1} × PSL2(Fq). In our case of q = 7, the invariants of
O3(F7) are generated by Φ2,Φ

2
21, and a new invariant Φ8 given by X8 +Y 8 +Z8

in the coordinates of the reduced S4 model; G and ±G do not have polynomial
invariant rings, though another index-2 subgroup of O3(F7) has invariant ring
F7[Φ2,Φ8,Φ21]. See [Kemper 1996] for further details.]

2. The Klein Quartic X as a Riemann Surface

2.1. The action of G on X. The action of G on V induces an action on the
projective plane (V −{0})/C∗ ∼= CP2, and on the Klein quartic X ⊂ CP2, which
is the zero-locus of the invariant quartic polynomial Φ4. We use this to describe
the geometry of X.

We have seen already that Φ4 is an irreducible polynomial. Thus its zero locus
X is an irreducible curve. An irreducible plane quartic curve can have at most(

4−1
2

)
= 3 singularities. Any singular points of X would be permuted by G; since

the largest proper subgroups of G have index 7, each singular point would have
to be fixed by G. But G fixes no point on CP2 because the representation (V, ρ)
is irreducible. Thus X has no singularities, so is a curve of genus 3 canonically
embedded in CP2.

Since each element of G other than the identity can have only finitely many
fixed points on X, there are only a finite number of orbits of G of size less than
#G = 168. We next describe these orbits and their point stabilizers:

6Several of the other sporadic isomorphisms between linear groups in different characteris-
tics are likewise explained by highly symmetrical lattices in small dimension. For instance the
Weyl group of E6 occurs as both an orthogonal group acting on F5

3 and a symplectic group

acting on F6
2, these vector spaces arising as E6/3E

∗
6 and E6/2E6. See [Kneser 1967].
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Proposition. (i) Each of the eight 7-Sylow subgroups H7 ⊂ G has three fixed
points in CP2 and is the stabilizer in G of each of these three points, all of
which are on X. The 8 · 3 = 24 points thus obtained are all distinct and
constitute a single orbit of G. They are Weierstrass points of X of weight 1,
and X has no other Weierstrass points.

(ii) Each of the twenty-eight 3-Sylow subgroups H3 ⊂ G has three fixed points
in CP2. The normalizer N(H3) of H3 in G, isomorphic with the symmetric
group S3, is the stabilizer in G of one of these points; this point is not on X.
The remaining fixed points of H3 are on X and each has stabilizer H3. The
line joining these two points is the unique line of CP2 stable under N(H3),
and is tangent to X at both points. The 28 · 2 = 56 points thus obtained are
all distinct and constitute a single orbit of G. The lines joining pairs of these
points with the same stabilizer are the 28 bitangents of X.

(iii) Each of the twenty-one 2-element subgroups H2 ⊂ G fixes a point and a line
in CP2. The normalizer N(H2) of H2 in G, isomorphic with the 8-element
dihedral group, is the stabilizer in G of the fixed point , which is not on X.
The fixed line meets X in four distinct points, each of which has stabilizer H2

in G; these four points are permuted transitively by N(H2). The 21 · 4 = 84
points thus obtained are all distinct and constitute a single orbit of G.

(iv) Every G-orbit in X, other than the orbits of size 24, 56, 84 described in (i),
(ii), (iii) above, has size 168 and trivial stabilizer .

Proof. Since there are no points of CP2 fixed by all of G, the stabilizer of every
point P ∈ CP2 must be contained in a maximal subgroup. For both kinds of
maximal subgroup we have representations by monomial matrices relative to a
suitable choice of coordinates, which let us readily describe the point stabilizers.

If the stabilizer S(P ) has even order it must be contained in one of the 24-
element subgroups. In the coordinates of the S4 model, we find that such a
point P must be one of:

– a unit vector, with S(P ) an 8-element dihedral group;
– a vector (1 : ±1 : ±1), with S(P ) ∼= S3;
– a permutation of (1 : ±1 : 0), with S(P ) a noncyclic group of order 4 (these

last three cases coming from an opposite pair of faces, edges, or sides of the
cube respectively);

– a permutation of (1 : i : 0), with S(P ) a cyclic group of order 4, or
– a permutation of (1 : x : ±x) for some x /∈ {0,±1}, with S(P ) a two-element

group.7

Moreover, the only nontrivial groups of odd order in S4 are its 3-Sylows, which
are conjugate to the group of cyclic permutations of the coordinates; this group

7There are several x /∈ {0,±1} for which the stabilizer of this point in G is larger, but then
that stabilizer is contained in a different maximal S4 ⊂ G, and the point’s coordinates in that
subgroup’s S4 model appear earlier in this list.
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fixes (1 : 1 : 1), which we already saw has stabilizer S3, and the two points
(1 : e±2πi/3 : e∓2πi/3). The stabilizer of each of these last points must be the 3-
Sylow: it cannot be a larger subgroup of S4, because we have already accounted
for all of these; and the only other possibility would be a 21-element subgroup,
which has no fixed points at all because it acts irreducibly on CP2. Turning
to subgroups of the 21-element subgroup, we use the coordinates of the Klein
model: the 7-element normal subgroup 〈g〉 fixes only the three unit vectors, and
all 3-element subgroups are conjugate to 〈h〉 which fixes only (1 : 1 : 1) and the
two points

(1 : e±2πi/3 : e∓2πi/3).

Clearly the first of these is also fixed by the involution (1.3). From our analysis
of the S4 model it follows that its stabilizer is the S3 generated by h and that
involution, while the other two fixed points of h have stabilizer 〈h〉.

Moreover, using the explicit formula for Φ4 in the S4 and Klein models we see
that the stabilizers of any points of X must be cyclic of order 1,2,3, or 7. Thus
part (iv) of the Proposition will follow from the first three parts.

Now a Weierstrass point of any Riemann surface of genus w > 1 is a point
at which some holomorphic differential vanishes to order at least w. (See [Ar-
barello et al. 1985, 41–43] for the facts we’ll need on Weierstrass points.) For
a smooth plane quartic, the holomorphic differentials are linear combinations of
the coordinates, so since w = 3 the Weierstrass points are those at which some
line meets the curve at least triply, which is to say the inflection points of the
curve. In our case the tangent to

X : X3Y + Y 3Z + Z3X = 0

at (1 : 0 : 0) is the line Y = 0, which indeed meets X triply at that point. Thus
(1 : 0 : 0) is a Weierstrass point, and by G-symmetry so are all 24 points in its
orbit. But each Weierstrass point of a Riemann surface has a positive integral
weight, and the sum of these weights is w3 − w. Since this is 24 in our case,
each point has weight 1 and there are no other Weierstrass points, as claimed.
(Knowing the w3−w formula we could have also concluded this directly from the
existence of a unique orbit of size as small as 24, even without computing that
it consists of inflection points.) We have thus proved Part (i) of the proposition.

(ii) First we check that N(H3) is indeed S3. Since all 3-Sylows are conjugate
in G, it is enough to do this when H3 is contained in a maximal S4. But the
normalizer of every 3-element subgroup of S4 is an S3, so its normalizer in G is
a subgroup of even order that is thus contained in a (perhaps different) maximal
S4, so is indeed S3 as claimed.

To get at the fixed points of H3 and its normalizer we again use the Klein
model. We find that the fixed point (1 : 1 : 1) of h is not on X, while the other two
fixed points are. Moreover the line connecting those two points is X+Y +Z = 0;
solving for Z and substituting into Φ4 we obtain −(X2 + XY + Y 2)2, so this
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line is indeed a bitangent of X. That any smooth plane quartic curve has 28
bitangents is well known; see for instance [Hartshorne 1977, p. 305, Ex. 2.3h].
The remaining claims of (ii) either follow, as in (i), from the conjugacy in G of
all 3-Sylow subgroups, or were already established during the above analysis of
the stabilizers of points in CP2.

(iii) Again we first check that N(H2) is as claimed, using the fact that the
involutions in G constitute a single conjugacy class. The normalizer of a double
transposition in S4 ⊂ G is an 8-element dihedral group. Thus its normalizer in G
is either that group, a maximal S4, or all of G, but the last two are not possible
because these groups have trivial centers. So N(H2) is indeed an 8-element
dihedral group.

The noncyclic 4-group N(H2)/H2 acts on the fixed line of H2 and on its
intersection with X. Since no point of X may have stabilizer properly containing
H2, the number of points of X on the fixed line must be a multiple of 4. But the
intersection of a line with a smooth quartic curve consists of at least 1 and at
most 4 points. Thus there are four fixed points of H2 on X, transitively permuted
by N(H2). The remaining claims of (iii) follow as before. �

Corollary [Klein 1879b, § 6]. The 24-, 56- and 84-point orbits are the zero loci
of Φ6, Φ14, and Φ21 on X, each with multiplicity 1.

Proof. Since none of Φ6, Φ14, and Φ21 is a multiple of Φ4, these polynomials
do not vanish identically on X, so their zero loci contain respectively 24, 56, and
84 points with multiplicity. Since the polynomials are G-invariant, their zero loci
must be positive linear combinations of G-orbits. But by the Proposition there
are only three orbits of size < 168. Moreover none of the integers 24, 56, 84 can
be written as a nonnegative integer combination of the others: this is clear for
24, which is the smallest of the three; and almost as clear for 56, which is not a
multiple of 24, and for 84, which is congruent to neither 0 nor 56 mod 24. Thus
the vanishing loci can only be as claimed in the Corollary. �

(The Φ6 case could also have been obtained from (1.13), since the inflection
points of any smooth plane curve P (X, Y, Z) = 0 are the zeros of the Hessian
H(P ) [Coolidge 1931, p. 95, Theorem 18]. The case of Φ21 could also be de-
duced from our description of Φ21 as the product of linear forms fixed by the 21
involutions in G. Klein also identifies the zeros of Φ21 on X with the curve’s 84
“sextactic points”, that is, the points at which the osculating conic meets X with
multiplicity 6 rather than the generic 5.)

Hirzebruch [1983, pp. 120, 140] draws attention to the configuration in CP2

of the 21 lines fixed by involutions in G. Three of these meet at each of the 28
points fixed by subgroups S3 ⊂ G, and four lines meet at each of the 21 points
fixed by 2-Sylows in G. These are all the points of CP2 that lie on more than one
of the 21 lines. In the notation of [Hirzebruch 1983], we thus have a configuration
of k = 21 lines with t3 = 28, t4 = 21, and tn = 0 for n 6= 3, 4. Thus this is
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one of the few nondegenerate line configuration known to achieve equality in the
inequality

t2 + 3
4t3 ≥ k +

∑
n>4

(n− 4)tn

of [Hirzebruch 1983, p. 140].
We can also use this Proposition to obtain, via the Riemann–Hurwitz formula,

the genus of the quotient of X by each subgroup H ⊂ G: the quotient by
the trivial group is of course X itself, with genus 3; the quotient by a cyclic
subgroup of order 2, 3, or 4 is a curve of genus 1; and the quotient by any other
subgroup has genus zero. Another way to obtain these is to identify the space
H1(X/H) of holomorphic differentials on X/H with the subspace (H1(X))H of
such differentials on X fixed by H. But since X is a smooth plane quartic, we
can identify H1(X) with the space of linear forms in the coordinates. Thus in
our case the representation of G on H1(X) is isomorphic with (V ∗, ρ∗), and we
may recover the dimension of the subspace fixed by each subgroup H from the
character table.

Since the quotient of X by the 7-Sylow 〈g〉 ⊂ G has genus 0, we can regard
X as a cyclic cover of CP1 of degree 7. We can see this explicitly: the covering
map sends (X : Y : Z) ∈ X to (X3Y : Y 3Z : Z3X) on the line

{(a : b : c) ∈ CP2 : a+ b+ c = 0}. (2.1)

Then (Y/Z)7 = ab2/c3, and (X : Y : Z) is determined by (a : b : c) together
with the seventh root Y/Z of ab2/c3. Thus if we take y = −Y/Z and x = b/c

we find that X is birational with the curve

y7 = x2(x+ 1). (2.2)

This model of X exhibits the action of the 21-element subgroup 〈g, h〉 of G: g
multiplies y by ζ−1, while g cyclically permutes a, b, c (or equivalently the points
−1, 0,∞ on the x-line). It also lets us write periods of differentials on X as linear
combinations of Beta integrals. For instance, for the form dx/y3 we find∫ −1

−∞

dx

y3
= B

(
2
7 ,

4
7

)
,

∫ 0

−1

dx

y3
= B

(
1
7 ,

4
7

)
,

∫ ∞
0

dx

y3
= B

(
1
7 ,

2
7

)
; (2.3)

the identity Γ(u)Γ(1 − u) = π/ sinπu shows that each of these integrals is a
K+ multiple of

Π7 :=
1

π
√

7
Γ
(

1
7 ) Γ

(
2
7

)
Γ(4

7

)
, (2.4)

and thus that all the periods of dx/y3 on X are in KΠ7. We later (2.12) use this
to evaluate a complete elliptic integral as a multiple of Π7.

We also compute for later use the quotient curve X/〈h〉 of genus 1. Since Φ4

is not fixed by odd coordinate permutations, we can do this by multiplying Φ4
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by its image under such a permutation, and expressing the resulting symmetric
function

(X3Y + Y 3Z + Z3X)(X3Z + Z3Y + Y 3X) (2.5)

in terms of the elementary symmetric functions

s1 = X + Y + Z, s2 = XY + Y Z + ZX, s3 = XYZ. (2.6)

We find that (2.5) is

s4
2 + s3(s5

1 − 5s3
1s2 + s1s

2
2 + 7s2

1s3). (2.7)

We thus get an affine model for X/〈h〉 by setting this polynomial equal to zero
and substituting 1 for s1:

7s2
3 + (s2

2 − 5s2 + 1)s3 + s4
2 = 0. (2.8)

To put this in Weierstrass form, divide (2.8) by s4
2 and rewrite it as

7
(
s3

s2
2

)2

+ (s−2
2 − 5s−1

2 + 1)
s3

s2
2

+ 1 = 0. (2.9)

Let u = s3/s
2
2. Then (2.9) is a quadratic polynomial in s−1

2 over Q(u), so it has
a root if and only if its discriminant −28u3 + 21u2− 4u is a square. The further
substitution u = −1/x then yields the desired form

Ek : y2 = 4x3 + 21x2 + 28x (2.10)

of the quotient curve. We can then compute that the curve has j-invariant
−3375 = −153, and thus has complex multiplication (CM) by Ok. We note for
future reference that the unit vectors, which have s2 = s3 = 0, map to the point
at infinity of Ek, while the branch points of the cover X→Ek are the fixed points
(1 : e±2πi/3 : e∓2πi/3) of h, which have s1 = s2 = 0 and turn out to map to two
points on Ek whose x-coordinates are roots −α, −ᾱ of

x2 − x+ 7 = 0. (2.11)

The 2-element group N(〈h〉)/〈h〉 = 〈h, s〉/〈h〉 acts on Ek. Since X/〈h, s〉 has
genus 0, the involution in 〈h, s〉/〈h〉 must multiply the invariant differential on
Ek by −1. Thus it is of the form P ↔ P0−P for some P0 ∈ Ek (using the group
law on Ek), and is determined by the image of a single point. We compute that
s takes the unit vectors to points on X whose coordinates are proportional to the
three roots of u3 − 7u2 + 49, and that these points map to the 2-torsion point
(0, 0) on Ek. Thus this point is P0; in other words, the nontrivial element of
〈h, s〉/〈h〉 acts on Ek by the involution that switches the point at infinity with
(0, 0) but is not translation by that 2-torsion point of Ek.

We further find that the curve Ek has conductor 49. (To see that the con-
ductor is odd, note that the linear change of variable y = 2y1 + x puts Ek in
the form y2

1 + xy1 = x3 + 5x2 + 7x with good reduction at 2.) This conductor
is small enough that we may locate the curve in the tables of elliptic curves
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dominated by modular curves compiled by Tingley et al. (the “Antwerp Tables”
in [Birch and Kuyk 1975]) and Cremona [1992]: the curve is listed as 49A and
49-A1 respectively. We find there that Ek is literally a modular elliptic curve: it
is not only dominated by, but in fact isomorphic with, X0(49). We shall later ob-
tain this isomorphism from the identification of X with the modular curve X(7).
Likewise the fact that Ek has CM by Ok is no accident: we shall see that if there
is a nonconstant map from X to an elliptic curve then the elliptic curve has CM
by some order (subring of finite index) in Ok; equivalently, such a curve must
be isogenous with Ek. (It is clear that conversely a curve isogenous with Ek
admits such a map, since we have just constructed a nonconstant map from X

to Ek itself.) For instance this must be true of the quotient of X by one of the
21 two-element subgroups of G. Since these subgroups are all conjugate in G,
the resulting curves are isomorphic; in fact the reader may check (starting from
the S4 model of X, in which several of these involutions are visible) that these
elliptic curves are all Q̄-isomorphic with Ek.

An algebraic map from X to Ek can be used to pull back an invariant differ-
ential on Ek to H1(X). Thus the periods of Ek can be evaluated in terms of the
Beta integrals that arise in the periods of X. This yields the formula∫ ∞

0

dx√
4x3 + 21x2 + 28x

= 1
4Π7 =

1
4π
√

7
Γ
(

1
7

)
Γ
(

2
7

)
Γ
(

4
7

)
, (2.12)

equivalent to Selberg and Chowla’s result [1967, pp. 102–3]; its explanation via X

is essentially the argument of Gross and Rohrlich [1978], though they pulled the
differential all the way back to the Fermat curve F7, for which see Section 3.2
below.

2.2. X as the simplest Hurwitz curve. A classical theorem of Hurwitz
([1893]; see also [Arbarello et al. 1985, Chapter I, Ex. F-3 ff., pp. 45–47]) as-
serts that a Riemann surface S of genus g > 1 can have at most 84(g − 1)
automorphisms, and a group of order 84(g − 1) is the automorphism group of
some Riemann surface of genus g if and only if it is generated by an element of
orders 2 and one of order 3 such that their product has order 7. In that case
the quotient of S by the group is the Riemann sphere, and the quotient map
S→CP1 is ramified above only three points of CP1, with the automorphisms of
orders 2, 3, 7 of S appearing as the deck transformations lifted from cycles around
the three branch points. Thus the group elements of orders 2, 3, 7 specify S by
Riemann’s existence theorem for Riemann surfaces. Note that the construction
does not depend on the location of the three branch points on CP1, because
Aut(CP1) = PGL2(C) acts on CP1 triply transitively.

A Riemann surface with the maximal number 84(g − 1) of automorphisms,
regarded as an algebraic curve over C, is called a Hurwitz curve of genus g.
Necessarily g ≥ 3, because a curve C genus 2 over C has a hyperelliptic involution
ι, and Aut(C)/{1, ι} is the subgroup of PGL2(C) = Aut(CP1) permuting the
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six ramified points, but the stabilizer in Aut(CP1) of a six-point set has size at
most 24. So a Hurwitz curve must have genus at least 3. We know already that
X is such a curve. In fact one may check that G is the only group of order 168
satisfying the Hurwitz condition, and that up to Aut(G) there is a unique choice
of elements of orders 2, 3 in G whose product has order 7. (For instance we may
take the involution s and the 3-cycle sg.) Thus X is the unique Hurwitz curve
of genus 3. We readily write the quotient map X→X/G ∼= CP1 explicitly, using
our invariant polynomials Φ6,Φ14,Φ21: a point (X : Y : Z) on X maps to

j :=
Φ3

14

Φ7
6

=
Φ2

21

Φ7
6

+ 1728 (2.13)

on CP1. Note that this is a rational function of degree 4 · 42 = 168 = #G on X,
and thus of degree 1 on X/G. That the two expressions in (2.13) are indeed
equal on X follows from (1.19). We then see from (2.13) that the branch points
of orders 2, 3, 7 on CP1 have j coordinates 1728, 0,∞ respectively. Of course we
have chosen this coordinate j on X/G ∼= CP1 to facilitate the identification of X

and X/G with the modular curves X(7) and X(1) later in this paper.
Hurwitz curves can also be characterized in terms of their uniformization by

the hyperbolic plane H. Any Riemann surface S of genus > 1 can be identi-
fied with H/π1(S); conversely, any discrete co-compact subgroup Γ ⊂ Aut(H) ∼=
PSL2(R) that acts freely on H (that is, every point has trivial stabilizer) yields a
Riemann surface H/Γ of genus > 1 whose fundamental group is Γ. The automor-
phism group of H/Γ is N(Γ)/Γ, where N(Γ) is the normalizer of Γ in Aut(H).
It follows that H/Γ is a Hurwitz curve if and only if N(Γ) is the triangle group
G2,3,7 of orientation-preserving transformations generated by reflections in the
sides of a given hyperbolic triangle with angles π/2, π/3, π/7 in H. Equivalently,
Γ is to be a normal subgroup of G2,3,7. Since G2,3,7 has the presentation

G2,3,7 =
〈
σ2, σ3, σ7 | σ2

2 = σ3
3 = σ7

7 = σ2σ3σ7 = 1
〉

(2.14)

(with σj being a 2π/j rotation about the π/j vertex of the triangle), this yields
our previous characterization of the groups that can occur as Aut(S) = G2,3,7/Γ.
In Section 4.4 we identify X with a Shimura modular curve by recognizing G2,3,7

as an arithmetic group in PSL2(R), and π1(X) with a congruence subgroup of
G2,3,7.

2.3. The Jacobian of X. We have noted already that the representation
of G on H1(X) isomorphic with (V ∗, ρ∗). In particular, the representation is
irreducible and defined over k, and its character takes values /∈ Q. It follows as
in [Ekedahl and Serre 1993] that the Jacobian J = J(X) is isogenous to the cube
of an elliptic curve with CM by Ok. This does not determine J completely, but
the fact that G acts on the period lattice of J means that this period lattice is
proportional to L, and this does specify J . (See [Mazur 1986, pp. 235–6], where
this is attributed to Serre; also compare [Buser and Sarnak 1994, Appendix 1],
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where the packing of congruent spheres in R6 obtained from L is conjectured to
maximize the density of a packing coming from the period lattice of the Jacobian
of a curve of genus 3.) In the notation of [Serre 1967] we have8 J ∼= Ek ⊗ L.

We next describe a Mordell–Weil lattice associated with X; see for instance
[Elkies 1994] for more background on Mordell–Weil lattices.

Let E be an elliptic curve, and consider algebraic maps from X to E. These
constitute an abelian group using the group law on E. This group may also
be regarded as the group of rational points of E defined over the function field
of X; we thus call it the Mordell–Weil group M of maps from X to E, in analogy
with the Mordell–Weil group of an elliptic curve over a number field. This group
contains a subgroup isomorphic with E, namely the group of constant maps; the
quotient group M/E may in turn be identified (via the embedding of X into J)
with the group of morphisms from J to E. It follows that this group is trivial
unless E has CM by an order in Ok, in which case it is a free abelian group
of rank 6. This proves our earlier claim that the elliptic curves E admitting a
nonconstant map from X are exactly the curves isogenous with Ek.

The function ĥ : M→Z taking each f : X→E to twice its degree as a rational
map turns out to be a quadratic form. (For Riemann surfaces this is easy to
see: let ω be a nonzero invariant differential on E; then f 7→ f∗ω is a group
homomorphism from M to H1(X), and ĥ(f) = 2 deg(f) is the image of f∗ω
under the quadratic form θ 7→ 2

∫
X
θ ∧ θ̄

/∫
C
ω ∧ ω̄. Several proofs that ĥ is a

quadratic form valid in arbitrary characteristic are given in [Elkies 1994]. We
use the notation ĥ because this is a special case of the Néron–Tate canonical
height; note that thanks to the factor of 2 the associated bilinear pairing

〈f1, f2〉 = 1
2

(
ĥ(f1 + f2)− ĥ(f2)− ĥ(f1)

)
is integral.) This quadratic form is positive-definite on the free abelian group
M/E, and gives this group the structure of a Euclidean lattice, which we thus
call the Mordell–Weil lattice of maps from X to E.

Assume now that E is an elliptic curve with CM by Ok, i.e. that E is iso-
morphic with Ek. Then the Mordell–Weil lattice inherits the action of Ok on E

as well as the action of G on X. Therefore it is isomorphic with our lattice L∗

of (1.25) up to scaling. Moreover, the quadratic form ĥ satisfies the identity
ĥ(βf) = |β|2ĥ(f) for each β ∈ Ok, because |β|2 is the degree of the isogeny
β : E→E. Thus ĥ is a Hermitian pairing on L. This pairing is again unique
up to scaling, this time because V ∗ is unitary and Hermitian (see again [Gross
1990]). If we identify L∗ with the lattice generated by the three vectors (1.25)
then we have

ĥ(v) = |v1|2 + |v2|2 + |v3|2. (2.15)

8Serre actually defines E ⊗ L (or rather L∗ ∗ E) only when L is a lattice of rank 1 over
End(E), but for each g ≥ 1 the same construction for a lattice of rank g yields a polarized
abelian variety isogenous with Eg.
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This lattice has 21 pairs of vectors such as (2, 0, 0) of minimal nonzero norm 4.
These correspond to maps of degree 2 from C to E, which in turn are indexed
by the 21 involutions g ∈ G. Each g is counted twice, because there are up to
translation in E two ways to identify the quotient curve X/{1, g} with E, each
yielding a map: X→E of degree 2. Likewise the 28 pairs of vectors such as
(α, α, α) of the next-lowest norm 6 correspond to maps of degree 3, all of which
turn out to be quotient maps by the twenty-eight 3-Sylow subgroups of G. For
each n the number Nn of maps of degree n up to translation on E is the number
of vectors of norm 2n in L, which is the qn coefficient of the theta series

θL :=
∞∑
n=0

Nnq
n =

∑
v∈L

q
1
2 ĥ(v) (2.16)

of L. But θL is a modular form of weight 3 with quadratic character on Γ0(7)
fixed by the Fricke involution w7 ([Gross 1990, § 9]; we shall encounter Γ0(7) and
w7 again in Section 4.2), and the space of such modular forms is 2-dimensional.
The constraints N0 = 1, N1 = 0 determine θL uniquely, and we find

θL =

( ∑
β∈Ok

qββ̄
)3

− 6q
∞∏
n=1

(1 − qn)3(1− q7n)3

= 1 + 42q2 + 56q3 + 84q4 + 168q5 + 280q6 + 336q7 + 462q8 + · · · .

(2.17)

This confirms our values N2 = 42 and N3 = 56 and lets us easily calculate as
many Nn as we might reasonably desire.

3. Arithmetic Geometry of X

3.1. Rational points on X. Faltings’ theorem (né Mordell’s conjecture) asserts
that a curve of genus at least 2 over a number field has finitely many rational
points. Unfortunately both of Faltings’ proofs of this [1983; 1991] are ineffective,
in that neither yields an algorithm for provably listing all the points; even for a
specific curve of low genus over Q this problem can be very difficult. (See for
instance [Poonen 1996].) Fortunately the special case of X is much easier. One
shows that the elliptic curve Ek has rank zero, and its only rational points are
the point at infinity and (0, 0). Since X admits a nonconstant map to Ek defined
over Q, namely the quotient map X→X/〈h〉 ∼= Ek, the Q-rational points of X

are just the rational preimages of the two points of Ek(Q). We find that the
only points of X(Q) are the obvious ones at (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1).
Equivalently, the only integer solutions of X3Y + Y 3Z + Z3X = 0 are those
in which at least two of the three variables vanish. This is all for the Klein
model; one may likewise analyze the rational S3 model for X, computing9 that
its quotient by 〈h〉 is isomorphic with Ek, and that neither of the rational points

9This computation begins in the same way as our derivation of (2.10), but yields an equation
y2 = x4 − 10x3 + 27x2 − 10x− 27 for the quotient curve; to bring this to Weierstrass form,
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of Ek lies under a rational point of X. However, the fact that X has no rational
points in the rational S3 model can be obtained much more simply, without any
computation of quotient curves and analysis of elliptic curves over Q: one need
only observe that the polynomial (1.22) does not vanish mod 2 unless X, Y, Z
are all even.

The proof that Ek(Q) consists only of the point at infinity and (0, 0) is an
application of Fermat’s method of descent. Suppose that x 6= 0 is a rational
number such that x(4x2 + 21x + 28) = y2 for some y ∈ Q. Necessarily x > 0,
because 4x2 + 21x+ 28 > 0 for all x ∈ R. Write x as a fraction m/n in lowest
terms. If x works then so does 7/x (note that (7/x,−7y/x2) is the translate of
(x, y) by the 2-torsion point (0, 0) in the group law of Ek). Replacing x by 7/x
if necessary, we may assume that the exponents of 7 in the factorizations of m, n
are both even. Then the integer (n2y)2 = mn(4m2 + 21mn+ 28n2) is a perfect
square, and its factors m, n, 4m2 + 21mn + 28n2 are relatively prime in pairs
except possibly for common factors of 2 · 49r or 4 · 49r. Thus either all three are
squares, or one is a square and the each of the other two is twice a square. We
claim that the latter is impossible. Indeed, since m, n cannot both be even, we
would have either (m, n) = (M2, 2N2) or (m, n) = (2M2, N2). In the first case,

4m2 + 21mn + 28n2 = 2(2M4 + 21M2N2 + 56N4). (3.1)

But M is odd (else m, n are both even), so 2M4 + 21M2N2 + 56N4 is either
2 or 3 mod 4 according as N is even or odd; in neither case can it be a perfect
square. In the second case, N is odd and

4m2 + 21mn + 28n2 = 2(8M4 + 21M2N2 + 14N4). (3.2)

Again the parenthesized factor is either 2 or 3 mod 4, this time depending on
the parity of M , so it cannot be a square.

So we conclude that m, n are both squares. Thus x = x2
1 for some x1 ∈ Q∗, and

4x4
1 +21x2

1 +28 ∈ Q∗2. We “complete the square” by writing
√

4x4
1 + 21x2

1 + 28
as 2x2 + (21− ξ)/4, finding

16ξx2 = ξ2 − 42ξ − 7. (3.3)

Necessarily ξ 6= 0 because the right-hand side has irrational roots. Thus we
obtain a point on the elliptic curve

E′k : η2 = ξ(ξ2 − 42ξ − 7) (3.4)

other than the origin and (0, 0). We then mimic the argument in the previous
paragraph to show that either ξ or −7/ξ must be a square. This time the
possibility that must be excluded is that that one of them is−ξ2

1 for some ξ1 ∈ Q.
Taking ξ1 = M/N , we would then have a square of the form 7N4−42M2N2−M4.
But this is congruent to 3 mod 4 if either M or N is even, and to −4 mod 16

complete the square as we do several times in the sequel, for instance when obtaining (3.4) or
in the calculation starting with (3.9).
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if they are both odd, so again we reach a contradiction. Thus ξ = ξ2
1 and

we find that ξ4
1 − 42ξ2

1 − 7 is a square, say
(
ξ2 − (8x2 + 21)

)2. This yields
x2ξ

2 = 4x2
2 + 21x2 + 28; again the right-hand side has irrational roots, so we

find x2 ∈ Q∗ such that x2(4x2
2 + 21x2 + 28) ∈ Q2 — which is to say, a new point

on Ek! Moreover, we can compute our original x or 7/x as a rational function
in x2 of degree 4, which means that if the numerator and denominator of x are
at all large (|M |, |N | > 100 is more than enough) then those of x2 are smaller.
Iterating this descent process enough times, we eventually find a rational solution
of y2 = 4x3 + 21x2 + 28x with nonzero x = M/N such that |M |, |N | ≤ 100. But
a direct search shows that there is no such x. This completes the proof that the
only rational points on Ek are the two torsion points already known.

[In modern terminology, Fermat’s method is “descent via a 2-isogeny” E′k→Ek
[Silverman 1986, pp. 301 ff.]. The method can be used on any elliptic curve with
a rational 2-torsion point, and will often prove that the curve has only finitely
many rational points. The reappearance of Ek at the second step, which makes it
possible to iterate the process until reaching a small point, is due to the existence
of a dual isogeny Ek→E′k also of degree 2. Composing these two isogenies yields
the multiplication-by-2 map on Ek; thus we proved in effect that any rational
point on Ek is in either divisible by 2 or of the form 2P+(0, 0) inEk(Q), and then
used the fact that multiplication by 2 in Ek(Q) quadruples the height to reduce
the determination of Ek(Q) to a finite search. In our case the 2-isogenous curve
E′k has j-invariant 2553 and CM by Z[

√
−7 ]; it is the elliptic curve numbered

49B in [Birch and Kuyk 1975] and 49-A2 in [Cremona 1992].]
It remains to find the preimages on X of the two rational points of Ek. We

saw already that the point at infinity comes from the unit vectors on X, and
that the 2-torsion point (x, y) = (0, 0) is the image of an 〈h〉-orbit of points on X

whose coordinates are proportional to the three roots of u3 − 7u2 + 49. These
roots (and their ratios) are contained in K+ but not in Q. Thus the unit vectors
are the only rational points on X, as claimed.

3.2. Fermat’s Last Theorem for exponent 7. The Fermat curve

F7 : A7 +B7 +C7 = 0

admits a nonconstant map to X defined over Q, namely

(A : B : C) 7→ (A3C : B3A : C3B).

(The map is a cyclic unramified cover of degree 7, but we do not need this for
now.) Thus any rational point on F7 maps to a rational point on X. Having
just listed the rational points on X we can thus determine the rational points
on F. It turns out that each point of X(Q) lies under a unique point of F(Q).
This yields a proof of the case n = 7 of “Fermat’s Last Theorem”, a proof that is
elementary in that it uses only tools available to Fermat (algebraic manipulation
and 2-descent on an elliptic curve with a rational 2-torsion point); in particular
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it does not require arithmetic in cyclotomic number fields such as K. Indeed the
proof is analogous to Fermat’s own proof of the case n = 4, in the sense that in
both cases one maps Fn to an elliptic curve and proves that the elliptic curve
has rank 0; it is arguably easier than Euler’s proof of the case n = 3, for which
F3 is already an elliptic curve but the determination of F3(Q) requires what we
now recognize as a 3-descent. As is the case for n = 4, the map from F7 to Ek
is a quotient map, here by a 21-element subgroup of Aut(F7) isomorphic with
〈g, h〉 ⊂ G.

Stripped of all algebro-geometric machinery, this elementary proof runs as
follows: Suppose there existed nonzero integers a, b, c such that a7 + b7 + c7 = 0.
Then

x := a3c, y := b3a, z := c3b (3.5)

would be nonzero integers with

x3y + y3z + z3x = a3b3c3(a7 + b7 + c7) = 0, (3.6)

which we showed impossible in the previous section.
Curiously there is yet another proof of the n = 7 case of Fermat along the

same lines, which was discovered in the mid-19th century [Genocchi 1864]10 but
is practically unknown today. Here we use the quotient of F7 by the group S3 of
coordinate permutations. This yields the following nice generalization of Fermat
for n = 7:

Theorem [Genocchi 1864]11. Let a, b, c be the solutions of a cubic x3 − px2 +
qx−r = 0 with rational coefficients p, q, r. If a7 +b7 +c7 = 0 then either abc = 0
or a3 = b3 = c3.

That is, the only rational points on F7/S3 are the orbits of (1 : −1 : 0) and
(1 : e2πi/3 : e−2πi/3). We compute equations for F7/S3 by writing a7 + b7 + c7

as a polynomial in the elementary symmetric functions

p = a + b+ c, q = ab+ ac+ bc, r = abc (3.7)

of a, b, c.

Proof. We easily calculate

0 = a7 + b7 + c7 = p7−7p5q+7p4r+14p3q2−21p2qr−7pq3 +7pr2 +7q2r (3.8)

(for instance by using the fact that the power moments πn = an+ bn+ cn satisfy
the recursion πn+3−pπn+2 + qπn+1−rπn = 0 and starting from π0 = 3, π1 = p,

10From Dickson [1934, p. 746], footnote 85. Dickson further notes that Genocchi’s method
may be viewed as a simplification of Lamé’s, and that Genocchi does not carry out the descent
for proving that (3.9) has no finite rational points. We likewise leave the 2-descent on the
equivalent curve (3.12) to the reader, who may either do it by hand using the method described
in [Silverman 1986, pp. 301 ff.] or automatically with Cremona’s mwrank program.

11In fact Genocchi states at the end of his paper that he had announced the results several
years earlier in “Cimento di Torino, vol. VI, fasc. VIII, 1855.”
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π2 = p2 − 2q to reach the formula (3.8) for π7). Now if p = 0 then (3.8) reduces
to π7 = 7q2r, so if π7 = 0 then either r = 0 or q = 0, which yields abc = 0
or a3 = b3 = c3 respectively. If on the other hand p 6= 0 then we may assume
p = 1 by replacing a, b, c by a/p, b/p, c/p. We then find that (3.8) is a quadratic
polynomial in r of discriminant 49q4 − 98q3 + 147q2 − 98q + 21. We note that
the resulting elliptic curve

u2 = 49q4 − 98q3 + 147q2 − 98q+ 21 (3.9)

has rational points at infinity, and use them to obtain a Weierstrass form for the
curve by the usual device of completing the square: let

u = 7(q2 − q + 1− 2t) (3.10)

in (3.9) to find

7t(q2 − q) = 7t2 − 7t+ 1, (3.11)

a quadratic in q with discriminant 196t3− 147t2 + 28t. Thus 196t3− 147t2 + 28t
must be a square. Taking t = −x/7, then, we obtain the elliptic curve

−7y2 = 4x3 + 21x2 + 28x, (3.12)

which we recognize as the
√
−7-twist of Ek. Since that curve has CM by Z[α],

this new curve (3.12) is also 7-isogenous with Ek, and thus has rank zero. (This
curve appears as 49C in [Birch and Kuyk 1975] and 49-A3 in [Cremona 1992].)
In fact we can apply a 2-descent directly to (3.12) using the 2-torsion point (0, 0),
and then find that this point is the only rational point of (3.12) other than the
point at infinity. But if x = 0 then t = 7x = 0 and (3.11) becomes 0 = 1, which
is impossible (indeed the points x = 0,∞ on (3.12) come from the solutions
p = r = 0 and p = q = 0 of (3.8)— which solution is which depends on the
choice of square root u implicit in (3.9)). Thus indeed p = 0 in any rational
solution of (3.8), which completes the proof of Genocchi’s theorem. �

[Along these lines we note that Gross and Rohrlich [1978] have shown that the
orbits of (1 : −1 : 0) and (1 : e2πi/3 : e−2πi/3) also contain the only points of F7

rational over any number field of degree at most 3.]

3.3. Reduction of X modulo 2,3,7. For each of the primes p = 2, 3, 7 divid-
ing #G, the reduction of X mod p enjoys some remarkable extremal properties:
maximal or minimal numbers of points over finite fields in each case, and max-
imal group of automorphisms for p = 3. We consider these three primes in
turn.

Characteristic 2. Since we want all the automorphisms of G to be defined
over F2, we use the S4 or rational S3 model for X. Then the Jacobian of X is
F2-isogenous to the cube of an elliptic curve with CM by Z[α] and trace 1. It
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follows that the characteristic polynomial of Frobenius for X/F2 is (T 2−T+2)3,
with triple roots −α,−ᾱ. Thus for each m ≥ 1 our curve has

2m + 1− 3
(
(−α)m + (−ᾱ)m

)
(3.13)

rational points over F2m. We tabulate this for the first few m:

m 1 2 3 4 5 6 7 8 . . .

#(X(F2m)) 0 14 24 14 0 38 168 350 . . .
(3.14)

We noted already that the reduction mod 2 of the rational S3 model for X

has no F2-rational points. That it has no F32-rational points is rather more
remarkable. By the Weil estimates, a curve of genus w over Fq has at least
q − 2wq1/2 + 1 rational points; if w > 1, this lower bound may be negative,
but only for q ≤ 4w2 − 3. In our case w = 3, this bound on q is 33, which
is not a prime power, so F32 is the largest finite field over which a curve of
genus 3 may fail to have any rational point. [For w = 2, the bound 4w2 − 3 is
the prime 13, but Stark showed ([1973]; see in particular pages 287–288) that
there is no pointless curve of genus 2 over F13; an explicit such curve over F11

is y2 = −(x2 + 1)(x4 + 5x2 + 1).]
The 14 points of our curve over F4 are all the points of P2(F4)−P2(F2). It is

known that this is the maximal number of points of a genus-3 curve over F4 [Serre
1983a; 1983b; 1984]. Note that the only F16-points are those already defined
over F4; indeed one can use the “Riemann hypothesis” (which is a theorem of
Weil for curves over finite fields) to show as in [Serre 1983b] that a genus-3 curve
over F4 with more than 14 points would have fewer F16 points than F4 points,
and thus prove that 14 is the maximum. The 24 points over F8 likewise attain
the maximum for a genus-3 curve over that field [Serre 1983a; 1984]. Note that
the only F64-points are those already rational over a subfield F4 or F8.

Upon reading a draft of this paper, Serre noted that in fact for m = 2, 3, 5 the
curve X is the unique curve of genus 3 over F2m with the maximal (m = 2, 3)
or minimal (m = 5) number of rational points. He shows this as follows. Let
C/F2m be any curve with the same number of points as X. First Serre proves
that C has the same eigenvalues of Frobenius as X. For m = 3, 5 this follows
from the fact that C attains equality in the refined Weil bound∣∣#C(Fq)− (q + 1)

∣∣ ≤ gb2q1/2c (3.15)

(see [Serre 1983b, Theorem 1]). For m = 2 we instead use the fact that
#C(F16) ≥ #C(F4) = 14. Serre then notes that in each of the three cases
m = 2, 3, 5 we have αm = (x ±

√
−7 )/2 for some x ∈ Z, from which it follows

that Z[(−α)m] is the full ring of integers in k. Thus the Jacobian of C is isomor-
phic as a principally polarized abelian threefold Ek⊗M , where M is some inde-
composable positive-definite unimodular Hermitian Ok-lattice of rank 3. But by
Hoffmann’s result [1991, Theorem 6.1] cited above, L is the unique such lattice.
Thus C has the same Jacobian as X, from which C ∼= X follows by Torelli.
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Since k has unique factorization, the condition αm =
(
x±
√
−7
)
/2 is equiv-

alent to the Diophantine equation

x2 + 7 = 2n (3.16)

with n = m + 2. (This equation also arises in [Serre 1983a], in connection
with curves of genus 2 over F2m with many points, and even in coding theory
[MacWilliams and Sloane 1977, p. 184], because it is equivalent to the condition
that the volume of the Hamming sphere of radius 2 in (Z/2)(x−1)/2 be a power
of 2.) Ramanujan observed12 that, in addition to the cases n = 3, 4, 5, 7 already
encountered, this equation has a pair of solutions (n, x) = (15,±181). We find
that (−α)13 has negative real part, and conclude from Serre’s argument that X

is the unique curve of genus 3 over F213 with the maximal number of rational
points, namely 8736 = 253 · 7 · 13. Nagell [1960] was apparently the first to show
that the Diophantine equation (3.16) has no further integer solutions.

The 24 points over F8 are, as could be expected, the reduction mod 2 of the
24-point orbit of Weierstrass points of X in characteristic zero. The F4 points
require some more comment: since G acts on X by automorphisms defined over
the prime field, it permutes these 14 points, whereas in characteristic zero there
was no orbit as small as 14 in the action of G on X, or even on P2. But in
characteristic 2 the 24-element subgroups of G ∼= SL3(F2) arise naturally as
stabilizers of points and lines in P2(F2). The stabilizer of a line P1(F2) ⊂ P2(F2)
permutes the two points of the line rational over F4 but not F2; the subgroup
fixing each of those points thus has index 2 in the line stabilizer. Moreover each
point of P2(F4) − P2(F2) lies on a unique F2-rational line. Thus the stabilizer
of each of these points is a subgroup A4 ⊂ G. Such a subgroup contains three
involutions, each now having two instead of four fixed points on X, and four
3-Sylows. Thus the 14 points of X(F4) are the reductions mod 2 of both the
56-point and the 84-point G-orbits. All points of X not defined over F4 or F8

have trivial stabilizer in G; such points first occur over F27 , where the 168 points
of X(F27) constitute a single G-orbit. The image of this orbit, together with
those of X(F4) and X(F8), account for the three F2-points of X/G ∼= P1. The
350− 14 = 336 points in X(F28)− X(F22) are likewise the preimages of the two
points of X/G defined over F4 but not F2.

We conclude the description of X in characteristic 2 with an amusing observa-
tion of Seidel concerning the F8-rational points of X, reported by R. Pellikaan at
a 1997 conference talk. Since F8 is the residue field of the primes above 2 of K,
the reductions mod 2 of the Klein and S4 models of X become isomorphic over

12On page 120 of the Journal of the Indian Mathematical Society, Volume 5 #3 (6/1913),
we find under “Questions for Solution”:

464. (S. Ramanujan):— (2n − 7) is a perfect square for the values 3, 4, 5, 7, 15 of n.
Find other values.

No other values were found, but it does not seem that a proof that none exist ever appeared
in the Journal.
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that field; we use the Klein model. Consider the 24 − 3 = 21 points of X(F8)
other than the three unit vectors. These may be identified with the solutions in
F∗8 of the affine equation x3y + y3 + x = 0 (with x = X/Z, y = Y/Z) for the
Klein model of X. We choose (α) for our prime above 2, so ζ reduces to a root of
ζ3 + ζ + 1 in F8. The 21 solutions (x, y) are then entered in the following table:

x 1 ζ3 ζ6 ζ2 ζ5 ζ1 ζ4

y

1 • • •
ζ • • •
ζ2 • • •
ζ3 • • •
ζ4 • • •
ζ5 • • •
ζ6 • • •

(3.17)

(note that we have listed the x- and y-coordinates in different orders so as to make
the 〈g〉 symmetry visible). Seidel’s observation is that (3.17) is the adjacency
matrix for the finite projective plane of order 2! The explanation is that for
x, y ∈ F∗8,

x3y + y3 + x = 0 ⇐⇒ x4y2 + xy4 + x2y = 0 ⇐⇒ TrF8/F2
x2y = 0. (3.18)

Now (x, y) 7→ TrF8/F2
x2y is a nondegenerate pairing from F8 × F8 to F2, so

if we regard x ∈ F8 an element of 3-dimensional vector space over F2 then y

is a functional on that vector space and (3.18) is the condition that a nonzero
functional annihilate a nonzero vector. Thus if we regard x, y ∈ F∗8 as 1- and
2-dimensional subspaces of F3

2 then x3y + y3 + x = 0 if and only if the x-line is
contained in the y-plane, which is precisely the incidence relation on the points
and lines of the finite projective plane P2(F2).

Characteristic 3. Since 3 is inert in k, the smallest field over which all the
automorphisms in G might be defined is F9. Again we make sure that they are
in fact defined over that field by using the S4 or rational S3 model for X. That 3
does not split in k also makes the elliptic curve Ek, with CM by Ok, supersingular
in characteristic 3; we find that its characteristic polynomial of Frobenius over
F9 is (T + 3)2, and hence that X has 9m− 6(−3)m + 1 rational points over F9m.
Thus, depending on whether m is odd or even, X has the maximal or minimal
number of rational points for a curve of genus 3 over F9m. Moreover, the curve
has 28 points over both F9 and F81, and thus maximizes the genus w of a curve
C/F9 that can attain the Weil upper bound 9 + 6w + 1 on #C(F9).
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In fact this turns out to be a special case of a known construction of curves
attaining the Weil bound over Fq2 . Note that Φ4, as given by either (1.11) or
(1.22), reduces mod 3 to X′4 +Y ′

4 +Z′
4 or A4 +B4 +C4. That is, the Klein and

Fermat quartics are isomorphic in characteristic 3. Now for each prime power q,
the equation xq+1 + yq+1 + zq+1 = 0 defining the Fermat curve Fq+1 can be
written as

xqx+ yqy + zqz = 0. (3.19)

For a ∈ Fq2 we note that aqa is just the norm of a from Fq2 to Fq. This lets us
easily count the solutions of (3.19) in Fq2 , and we calculate that Fq+1 has q3 + 1
rational points over Fq2 . Since this curve has genus (q2 − q)/2, it thus attains
the Weil bound. Therefore its characteristic polynomial of Frobenius over Fq2 is
(T + q)q

2−q , so the number of Fq4 -rational points of Fq+1 is

q4 − (q2 − q)q2 + 1 = q3 + 1 (3.20)

again. If there were a curve C/Fq2 of genus w > (q2 − q)/2 attaining the Weil
bound, its number q2 + 2qw+ 1 of Fq2 -rational points would exceed the number
q4− 2q2w+ 1 of points rational over Fq4 ; thus again Fq+1 is the curve of largest
genus attaining the Weil bound over Fq2 . These properties of Fq+1 over Fq2 are
well-known, see for instance [Serre 1983a; 1984].

Since X ∼= F4 in characteristic 3, its group of automorphisms over F9 must
accommodate both G and the 96-element group of automorphisms of F4 in char-
acteristic zero. In fact AutF9(X) is the considerably larger group U3(3) of order
6048, consisting of the unitary 3 × 3 matrices over F9; it is the largest auto-
morphism group of any genus-3 cuver over an arbitrary field. Again this is a
special case of the remarkable behavior of the “Hermitian curve” Fq+1/Fq2 : by
regarding xqx+ yqy+ zqz as a ternary Hermitian form over Fq2 we see that any
linear transformation of x, y, z which preserves this form up to scalar multiples
also preserves the zero-locus (3.19); since of those transformations only multiples
of the identity act trivially on Fq+1, we conclude that the group PGU3(q) acts
on Fq+1 over Fq2 . Once q > 2, this is the full Fq-automorphism group of Fq+1,
and is the only example of a group of order > 16w4 acting on a curve of genus
w > 1 (here w = (q2 − q)/2 and the group has order q3(q2 − 1)(q3 + 1) ) over an
arbitrary field [Stichtenoth 1973].

Returning to the special case of X, we note that the stabilizer in G of each of
its 28 F9-rational points is a subgroup N(H3) ∼= S3. Thus the two fixed points
on X of H3 collapse mod 3 to a single point; for each of the three involutions
in S3, this point is also the reduction of one of its four fixed points. Thus the
56- and 84-point G-orbits reduce mod 3 to the same 28-point orbit. The 24-
point orbit is undisturbed, and is first seen in X(F93); all other points of X in
characteristic 3 have trivial stabilizer.

Since Ek is supersingular in characteristic 3, its ring of F̄3-endomorphisms
has rank 4 instead of 2; thus the Mordell–Weil lattice of F̄3-maps from X to Ek
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now has rank 12 instead of 6. Gross [1990, p. 957] used the action of U3(3)
on this lattice to identify it with the Coxeter–Todd lattice. This lattice has
756 = 63 · 12 minimal vectors of norm 4, which as before come from involutions
of the curve; the count is higher than in characteristic zero because there are
63 involutions in U3(3) = AutF̄3

X and 12 automorphisms of Ek, rather than
21 and 2 respectively. To see the new automorphisms, reduce (2.10) mod 3 to
obtain y2 = x3 + x, with automorphisms generated by (x, y) 7→ (x + 1, y) and
(x, y) 7→ (−x, iy) with i2 = −1.

Adler [1997] found that the modular curve X(11), with automorphism group
PSL2(F11) in characteristic zero, has the larger automorphism group M11 when
reduced mod 3. Once we identify X with the modular curve X(7) in the next
section we’ll be able to regard its extra automorphisms mod 3 as a similar phe-
nomenon. This quartic in characteristic 3 has another notable feature: each of
its points is an inflection point! See [Hartshorne 1977, p. 305, Ex. 2.4], where
the curve13 is described as “funny” for this reason. (The 28 points of X(F9)
are distinguished in that their tangents meet X with multiplicity 4 instead of 3;
these fourfold tangents are the reductions mod 3 of the bitangents of X in char-
acteristic zero.) Again Adler found in [1997] that X(11), naturally embedded
in the 5-dimensional representation of PSL2(11), is also “funny” in this sense
when reduced mod 3. While it is not reasonable to expect the extra automor-
phisms of X(7) and X(11) in characteristic 3 to generalize to higher modular
curves X(N) (the Mathieu group M11, being sporadic, can hardly generalize),
one might ask whether further modular curves are “funny” mod 3 or in other
small characteristics.

Characteristic 7. The curve X even has good reduction in characteristic 7
over a large enough extension of Q; that is, X has “potentially good reduction”
mod 7. We can see this from our realization of X as a cyclic triple cover of Ek.
The elliptic curve Ek has potentially good reduction mod 7, because the change
of variable x =

√
−7 x1 puts its Weierstrass equation (2.10) in the form

(
√
−7 )−3y2 = 4x3

1 − 3
√
−7 x2

1 − 4x1, (3.21)

and over a number field containing (−7)1/4 the further change of variable y =
2(−7)3/4y1 makes (3.21) reduce to y2

1 = x3
1 − x1 at a prime above 7. [In general

any CM elliptic curve has potentially good reduction at all primes; equivalently,
the j-invariant of any CM curve is an algebraic integer.] Since the x-coordinates
of the two branch points of the cover X→Ek are the roots of (2.11), their x1

coordinates are the roots of
√
−7x2

1 + x1 =
√
−7, one of which has negative

7-valuation while the other’s 7-valuation is positive. Thus these points reduce to
distinct points on y2

1 = x3
1 − x1, namely the point at ∞ and the 2-torsion point

(0, 0), and the cover X→Ek branched at those points has good reduction mod 7
as well.

13In its Klein model, but for once the distinction is irrelevant.
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On the other hand, the homogeneous quartic defining X cannot have good
reduction mod 7, even potentially: we have seen that even in the rational S3

model the quartic invariant Φ4 factors mod 7 as Φ2
2. How can a plane quartic

curve have good reduction if its defining equation becomes so degenerate?
This apparent paradox is resolved only by realizing that the moduli space

of curves of genus 3 contains not only plane quartics but also hyperelliptic
curves. While a non-hyperelliptic curve of genus 3 is embedded as a quartic in
P2 canonically14, the canonical map to P2 from a hyperelliptic curve of genus 3
is a double cover of a conic C : Q2 = 0. Moreover, the moduli space of curves
of genus 3 is connected, so a hyperelliptic curve S of genus 3 may be contained
in a one-parameter family of curves of the same genus most of which are not
hyperelliptic. In that case, the neighbors of S in the family are plane quartics
Q4 = 0 that approach the double conic Q2

2 = 0 coming from S; if we write Q4 as
Q2

2 + εQ′4 +O(ε2) in a neighborhood of S then the branch points of the double
cover S→C are the 2 ·4 = 8 zeros of Q′4 on C.15 This means that a smooth plane
quartic curve Q4 = 0 may reduce to a hyperelliptic curve of genus 3 modulo a
prime at which Q4 ≡ Q2

2. This is in fact the case for our curve X, with Q4 = Φ4

and Q2 = Φ2: Serre found [Mazur 1986, p. 238, footnote] that, over an extension
of k sufficiently ramified above ℘7, the Klein quartic reduces to

v2 = u7 − u (3.22)

at that prime, where u is a degree-1 function on the conic Φ2 = 0 in P2 that
identifies this conic with P1. This reduced curve (3.22) inherits the action of G:
a group element ±

(
a b
c d

)
∈ PSL2(F7) acts on (3.22) by

±
(
a b

c d

)
: (u, v) 7→

(
au+ b

cu + d
,

v

(cu+ d)4

)
. (3.23)

As in the case of characteristic 3, the group of automorphisms of the reduced
curve properly contains G; here it is the direct product of G with the two-
element group (u, v) 7→ (u,±v) generated by the hyperelliptic involution. Also
as in characteristic 3, this reduced curve attains the upper or lower Weil bound
on the number of points of a genus-3 curve over finite fields of even degree over
the prime field. This is because the prime 7 is not split in k, so the reduction
of Ek to an elliptic curve in characteristic 7 is supersingular. The supersingularity
could also be seen directly from its Weierstrass model y2

2 = x3
1 − x1; that the

eigenvalues of Frobenius for v2 = u7−u over F49 all equal −7 could also be seen
by counting points: since (u7 − u)/

√
−1 ∈ F7 for all F49, and

√
−1 is a square

in F49, the preimages of each u ∈ P1(F49) − P1(F7) are F49-rational, and these

14Here “canonically” means via curve’s holomorphic differentials, which are sections of the
canonical divisor; see for instance [Hartshorne 1977, p. 341].

15Thanks to Joe Harris for explaining this point; it should be well-known, but is not easy
to find in the literature. Armand Brumer points out that this picture is explained in [Clemens
1980, pp. 155–157].
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2 · 42 = 84 points together with the 8 Weierstrass points u ∈ P1(F7) add up to
92, which attains the Weil bound 49 + 6 · 7 + 1.

4. X as a Modular Curve

4.1. X as the modular curve X(7). Since G ∼= PSL2(F7) we can realize G
as the quotient group Γ(1)/Γ(7), where Γ(1) is the modular group PSL2(Z) and
Γ(7) is the subgroup of matrices congruent to the identity mod 7. The following
facts are well known: Γ(1) acts on the upper half-plane H = {τ ∈ C : Im τ > 0}
by fractional linear transformations ±

(
a b
c d

)
: τ 7→ (aτ + b)/(cτ +d); the quotient

curve H/Γ(1) parametrizes elliptic curves up to C-automorphism; if we extend
H by to H∗ by including the “cusps” Q ∪ {∞} = P1(Q), the resulting quotient
curve X(1) may be regarded as a compact Riemann surface of genus 0; and for
each N ≥ 1, the quotient of H∗ by the normal subgroup Γ(N) of Γ(1) is the
modular curve X(N) whose non-cusp points parametrize elliptic curves E with
a full level-N structure. A “full level-N structure” means an identification of the
group E[N ] of N -torsion points with some fixed group TN . Why TN and not
simply (Z/N)2 as expected? We can certainly use TN = (Z/N)2 if we regard
X(N) as a curve over an algebraically closed field such as C. But that will not
do over Q once N > 2: the Weil pairing (see for instance [Silverman 1986, III.8,
pp. 95 ff.]) identifies ∧2E[N ] with the N -th roots of unity µN , which are not
contained in Q. So TN must be some group ∼= (Z/N)2 equipped with an action
of Gal(Q̄/Q) such that ∧2TN ∼= µN as Galois modules. There are many choices
for TN — for instance, E[N ] for any elliptic curve E/Q! — which in general yield
different modular curves over Q (though they all become isomorphic over Q): TN
and T ′N yield the same curve only if T ′N ∼= TN⊗ψ for some quadratic character ψ.
The simplest choice is

TN = (Z/N)× µN , (4.1)

and that is the choice that we shall use to define XN as a curve over Q. Note,
however, that the action of Γ(1)/Γ(N) is still defined only over the cyclotomic
field Q(µN). The canonical map X(N)→X(1) that forgets the level-N struc-
ture is a Galois cover with group Γ(1)/Γ(N) = PSL2(Z/N); it is ramified only
above three points of X(1), namely the cusp and the elliptic points that param-
etrize elliptic curves with complex multiplication by Z[i] and Z[e2πi/3], and the
ramification indices at these points are N , 2, and 3 respectively.

Now consider N = 7. Then X(7) is a G-cover of the genus-0 curve X(1) with
three branch points of indices 2, 3, 7; therefore it is a Hurwitz curve, and thus
isomorphic with X at least over C. The 24-point orbit is the preimage of the
cusp, and the 56- and 84-point orbits are the preimages of the elliptic points
τ = e2πi/3 and τ = i on X(1) parametrizing CM elliptic curves with j-invariants
0 and 1728. We shall show that the choice (4.1) of T7 yields X(7) as a curve
over Q isomorphic with the Klein model of X, and give explicitly an elliptic
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curve and 7-torsion points parametrized by a generic point (x : y : z) ∈ P2 with
x3y + y3z + z3x = 0.

The projective coordinates for X can be considered as a basis for H1(X).
Holomorphic differentials on a modular curve H∗/Γ are differentials f(τ) dτ on
H∗ that are regular and invariant under Γ, i.e. such that f(τ) is a modular cusp
form of weight 2 for Γ: a holomorphic function satisfying the identity

f
(
aτ + b

cτ + d

)
= (cτ + d)2f(τ) (4.2)

for all ±
(
a b
c d

)
∈ Γ and vanishing at the cusps. We next choose a convenient basis

for the modular cusp forms of weight 2 for Γ(7).
Taking ±

(
a b
c d

)
= ±

(
1 7
0 1

)
in (4.2) we see that f must be invariant under

τ 7→ τ + 7; thus it has a Fourier expansion in powers of q1/7, where as usual

q := e2πiτ (so dτ =
1

2πi
dq

q
). (4.3)

Since we require vanishing at the cusp τ = i∞, the expansion must involve only
positive powers of q1/7. The action of g = ±

(
1 1
0 1

)
on modular forms multiplies

q by ζ; thus g decomposes our space of modular forms into eigen-subspaces with
eigenvalues ζa, such that for each a mod 7 the ζa eigenspace consists of forms∑
m>0 cmq

m/7 whose coefficients cm vanish at all m 6≡ a mod 7. We find three
such forms:

x = q4/7(−1 + 4q − 3q2 − 5q3 + 5q4 + 8q6 − 10q7 + 4q9 − 6q10 · · ·),
y = q2/7(1− 3q − q2 + 8q3 − 6q5 − 4q6 + 2q8 + 9q10 · · ·),
z = q1/7(1− 3q + 4q3 + 2q4 + 3q5 − 12q6 − 5q7 + 7q9 + 16q10 · · ·).

(4.4)

These can be expressed as the modified theta series

x, y, z =
∑
β

Re(β) qββ̄/7, (4.5)

the sum extending over β ∈ Z[α] congruent mod (
√
−7 ) to 2, 4, 1 respectively.

They also have the product expansions

x, y, z = εqa/7
∞∏
n=1

(1 − qn)3(1 − q7n)
∏
n>0

n≡±n0mod7

(1− qn), (4.6)

where the parameters ε, a, n0 are: for x, −1, 4, 1; for y, +1, 2, 2; and for z, +1, 1, 4.
That these in fact yield modular forms can be seen by factoring the resulting
products (4.6) into Klein forms (for which see for instance [Kubert and Lang
1981, pp. 25 ff. and 68 ff.]); it follows that x, y, z do not vanish except at the
cusps of X(7).

Since x, y, z are ζ4-, ζ2-, and ζ-eigenforms for g, the three-dimensional repre-
sentation of G that they generate must be isomorphic with (V, ρ), and so the
action of G on X(7) will make it a quartic in the projectivization not of (V, ρ) but
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of (V ∗, ρ∗).16 Using either the sum or the product formulas for x, y, z, together
with the action of Γ(1) on theta series or on Klein forms, we can compute that h
cyclically permutes x, y, z. This is enough to identify (x, y, z) up to scaling with
our standard basis for V (again thanks to the fact that the 21-element subgroup
〈g, h〉 of G acts irreducibly on V ). This leads us to expect that

Φ4(x, y, z) = x3y + y3z + z3x = 0, (4.7)

and the q-expansions corroborate this. To prove it we note that Φ4(x, y, z), being
a G-invariant polynomial in the cusp forms x, y, z, must be a cusp form of weight
4 · 2 = 8 for the full modular group Γ(1); but the only such form is zero. (See
for instance [Serre 1973, Ch.VII] for the complete description of cusp forms on
Γ(1).) Thus the coordinates (x : y : z) for the canonical image of X(7) in CP2

identify it with the Klein model of X.
We next identify the other G-invariant polynomials in x, y, z with known mod-

ular cusp forms for Γ(1). We find that

Φ6(x, y, z) = ∆ [ = q
∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 · · · ], (4.8)

which requires only checking the q1 coefficient because every Γ(1) cusp form
of weight 12 is a multiple of ∆. Likewise the leading terms of Φ14(x, y, z) and
Φ21(x, y, z), together with their weights 28, 42, suffice to identify these modular
forms with

Φ14(x, y, z) = ∆2E2 [ = ∆2
(

1 + 240
∞∑
n=1

n3qn

1− qn
)

= q2 + 192q3 − 8280q4 · · · ],
(4.9)

Φ21(x, y, z) = ∆3E3 [ = ∆3
(

1− 504
∞∑
n=1

n5qn

1− qn
)

= q3 − 576q4 + 22140q5 · · · ].
(4.10)

Thus the elliptic curve parametrized by a non-cusp point (x : y : z) on X is

E(x:y:z) : v2 = u3 − 1
48λ

2Φ14(x, y, z) + 1
864λ

3Φ21(x, y, z), (4.11)

for some yet unknown λ of weight −14 (that is, homogeneous of degree −7 in
x, y, z) that only changes E(x:y:z) by a quadratic twist.

To determine the values of u at 7-torsion points of E(x:y:z) we identify that
curve with C/(Z ⊕ Zτ) ∼= C∗/qZ and expand the Weierstrass ℘-function of that
curve at some point q1 ∈ C∗/qZ in a q-series depending on q1. We find

u = λ∆

(
1
12
− 2

∞∑
n=1

qn

(1− qn)2
+

∞∑
n=−∞

qnq1

(1− qnq1)2

)
. (4.12)

16This mildly unfortunate circumstance could only have been avoided by more awkward
artifices such as declaring ζ to be e−2πi/7 instead of e+2πi/7 in (0.1). Of course the distinction
between the V and V ∗ models of X is harmless because the two representations are related by
an outer automorphism of G.
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The 7-torsion points of C∗/qZ are generated by ζ and q1/7. Substituting these for
q1 in (4.12) we obtain λP (x, y, z) for certain polynomialsP of degree 7 determined
up to multiples of Φ4. We find P by comparing q-expansions. For q1 = ζ we
obtain the symmetrical form

P = 1
7

(
(c1 − 2c2 − 53

12)x7 + (c2 − 2c4 − 53
12)y7 + (c4 − 2c1 − 53

12)z7
)

+ 2
3

(
(c2 − c4)x4y2z + (c4 − c1)y4z2x + (c1 − c2)z4x2y

)
, (4.13)

using the abbreviation cj := ζj + ζ−j ∈ K+. the polynomials for ζ2, ζ4 are
obtained from these by cyclically permuting c1, c2, c4 and x, y, z. That only these
six monomials can occur is forced by the invariance of the polynomial under 〈g〉.
The polynomial for q1 = q1/7 looks more complicated, because invariance under
sgs is not so readily detectable; we refrain from exhibiting that polynomial in
full, but note that it can be obtained from (4.13) by the linear substitution ρ(s),
and that its coefficients, unlike those of (4.13), are rational.17

It remains to choose λ. We would have liked to make it G-invariant, since the
action of G would then preserve our model (4.11) for E(x:y:z) and only permute
its 7-torsion points. But we cannot make λ an arbitrary homogeneous function of
degree −7 in x, y, z because we are constrained by the condition that E(x:y:z)[7] ∼=
T7 for all non-cusp (x : y : z) ∈ X(7). This means, first, that E(x:y:z) must be a
nondegenerate elliptic curve, and second, that its 7-torsion group be generated
by a rational point (for the Z/7 part of T7) and a point that every Gal(Q̄/Q)
element taking ζ to ζa multiplies by a (for the µ7 part). The first condition
amounts to the requirement that the divisor of λ be supported on the cusps
of X(7); this determines λ up to multiplication by a “modular unit” in C(X(7)).
The second condition then determines λ up to multiplication by the square of
a modular unit. It turns out that already the first condition prevents us from
choosing a G-invariant λ: such a λ would be Φ14/Φ21 times a rational function
of j, and thus would have zeros or poles on the elliptic points of order 2 and 3
(the 56- and 84-point orbits of X).

We next find a λ, necessarily not G-invariant, that does the job. From our
computation of u-coordinates at 7-torsion points we know that u/λ∆ is a poly-
nomial P (x, y, z) ∈ Q[x, y, z]. Moreover

Q := P 3 − 1
48

Φ14P + 1
864

Φ21 (4.14)

cannot vanish except at a cusp, lest a 7- and a 2-torsion point on C∗/qZ coincide.
[In fact Q has the product expansion

q23/7
∞∏
n=1

(
(1− qn−6

7 )(1 − qn− 1
7 )
)−8((1− qn− 5

7 )2(1− qn− 2
7 )
)2(1− qn)84, (4.15)

17This is ultimately due to the fact that the coefficients of (4.12) are rational. In fact it is

no accident the least common denominator of the coefficients of P for q1 = q1/7 is 12, same

as for (4.12); but we need not pursue this here.
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which manifestly has neither zero nor pole in X(7) − {cusps}.] Thus for any λ0

homogeneous of degree 14 in x, y, z whose divisor is supported on the cusps (for
instance λ0 = x14) we may take

λ = Q/λ2
0, (4.16)

which satisfies the first condition and yields a 7-torsion point on the curve (4.11)
rational over Q(x, y, z).

We claim that this, together with our computations thus far, lets us deduce
that λ also satisfies the second condition, and thus completes our proof that X(7)
is Q-isomorphic with X, as well as the determination of the 7-torsion points on
the generic elliptic curve (4.11) parametrized by X. We must show that E[7] is
isomorphic as a Gal(Q̄/Q) module with T7 = (Z/7)× µ7. Indeed, consider the
action on E[7] of an element γ of Gal(Q̄/Q) that takes ζ to ζa. By our choice
of λ, this γ fixes the point with q1 = q1/7; thus this point generates a subgroup
∼= Z/7 of E[7]. From our computation of (4.13) we see that γ multiplies the
q1 = ζ point by either a or −a. But the Weil pairing of the ζ and q1/7 points is
ζ, which γ takes to ζa. Thus γ must also take the q1 = ζ point to ζa. In other
words, the q1 ∈ µ7 points comprise a subgroup of E[7] isomorphic as a Galois
module with µ7. Having found subgroups of E[7] isomorphic with Z/7 and µ7,
we are done.

4.2. The modular interpretation of quotients of X. Now let H be a
subgroup of G, and consider the quotient curve X/H. When H is trivial, this
quotient is X itself, which we have just identified with the moduli space X(7) of
elliptic curves with full level-7 structure. When H = G, the quotient is the mod-
uli space X(1) of elliptic curves with no further structure, and the quotient map
X(7)→X(1) in effect forgets the level-7 structure. For intermediate groups H,
the quotient curve, which can still be regarded also as the quotient of H∗ by
a congruence subgroup of Γ(1), parametrizes elliptic curves with partial level-7
structure such as a choice of a 7-torsion point or 7-element subgroup. In this
section we describe the three classical modular curves X0(7), X1(7), and X0(49)
that arise in this way. The same constructions yield for each N > 1 the curves
X0(N), X1(N), X0(N2) as quotients of X(N), though of course for each N we
face anew the problem of finding explicit coordinates and equations for these
modular curves and covers.

Each of the eight 7-element subgroups T of E (equivalently, of E[7]) yields
an isogeny of degree 7 from E to the quotient elliptic curve E/T . The T ’s may
be regarded as points of the projective line (E[7]−{0})/F∗7 ∼= P1(F7), permuted
by G. The stabilizer in G of a point on this P1(F7) is a 21-element subgroup;
for instance, 〈g, h〉 is the stabilizer of ∞. Taking H = 〈g, h〉 we conclude that
X/H parametrizes elliptic curves E together with a 7-element subgroup T , or
equivalently together with a 7-isogeny E→E/T . This X/H is the quotient of H∗
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by the subgroup

Γ0(7) :=
{
±
(
a b

c d

)
∈ PSL2(Z) : c ≡ 0 mod 7

}
(4.17)

of Γ(1), and is called the modular curve X0(7). This curve has genus 0, with
rational coordinate (“Hauptmodul”)

j7 =
1
q

( ∞∏
n=1

(1− qn)/(1− q7n)

)4

= q−1 − 4 + 2q + 8q2 − 5q3 − 4q4 · · · . (4.18)

Comparing this with the product expansions for x, y, z,∆, we may express j7 as
a quotient of 〈g, h〉-invariant sextics in x, y, z:

j7 =
(xyz)2

∆
=

(xyz)2

Φ6(x, y, z)
. (4.19)

Either by comparing this with (2.13), or directly from the q-expansions, we then
find that the degree-8 cover X0(7)/X(1) is given by

j = (j2
7 + 13j7 + 49)(j2

7 + 245j7 + 74)3/j7
7 . (4.20)

Given a 7-isogeny E→E/T , the image of E[7] in E/T is a 7-element subgroup
of E/T and thus yields a new 7-isogeny E/T→E/E[7] ∼= E. This is in fact
the dual isogeny [Silverman 1986, p. 84 ff.] of the isogeny E→E/T . Thus we
have a rational map w7 : X0(7)→X0(7) that takes a non-cusp point of X0(7),
parametrizing an isogeny E→E/T , to the point parametrizing the dual isogeny
E/T→E. Moreover, iterating this construction recovers our original isogeny
E→E/T ; thus w7 is an involution of X0(7). This w7 is known as the Fricke
involution of X0(7). In general X0(N) = H∗/Γ0(N) parametrizes N -isogenies
with cyclic kernel (a.k.a. “cyclic N -isogenies”) between elliptic curves, and the
dual isogeny yields the Fricke involution wN of X0(N). This involution can
also be described over C as the action of the fractional linear transformation
τ ↔ −1/Nτ on H∗, which descends to an automorphism of X0(N) because it
normalizes Γ0(N). In our case of N = 7 we find the formula

w7(j7) = 49/j7 (4.21)

for the action of w7 on X0(7). The coefficients of the curve E/T and the 7-
isogenies E 
 E/T parametrized by X0(7) can be computed as explicit functions
of j7 by the methods of [Elkies 1998a].

The modular curve X1(7) parametrizes elliptic curves with a rational 7-torsion
point. It is thus the quotient of X(7) by the subgroup of G that fixes a 7-torsion
point. To obtain this modular curve, and the elliptic curve it parametrizes,
over Q, we must be careful to use a 7-torsion point that generates the subgroup
Z/7 of T7: we have already computed in (2.2) the quotient of X by the 7-element
subgroup 〈g〉 ofG, which is the stabilizer of a 7-torsion point; but this is the point
(4.13), which generates the subgroup µ7 of T7, and so is not rational over Q.
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The Z/7 subgroup has stabilizer 〈sgs〉, so we may obtain X1(7) as X(7)/〈sgs〉.
Alternatively we may start from X(7)/〈g〉 and apply w7. This second approach
requires some explanation. At the level of Riemann surfaces, there is no problem:
for any N > 1, the modular curve X1(N) is H∗/Γ1(N) where

Γ1(N) :=
{
±
(
a b

c d

)
∈ PSL2(Z) : c ≡ 0, a, d ≡ 1 mod N

}
, (4.22)

and again τ ↔ −1/Nτ normalizes this subgroup and so yields an involution
of X1(N). But over Q some care is required. The curve X1(N) parametrizes
pairs (E, P ) where E is an elliptic curve and P ∈ E is a point of order N . The
involution takes (E, P ) to (E′, P ′), where E′ = E/〈P 〉 and P ′ generates the
image of E[N ] under the quotient map E→E′. But to specify the generator we
must use the Weil pairing: P ′ must be the image of a point P̃ ∈ E[N ] whose Weil
pairing with P is e2πi/N . Once N > 2 the root of unity e2πi/N is not rational, so
we cannot demand that both P and P ′ be rational N -torsion points on E,E′.
Instead, P, P ′ must generate Galois modules such that 〈P 〉⊗ 〈P ′〉 ∼= µN . So, for
instance, if P is rational then 〈P ′〉 ∼= µN , and conversely if 〈P 〉 ∼= µN then P ′ is
rational. The latter case applies for us: in our model of X(7), the distinguished
7-torsion points on the elliptic curve E parametrized by X(7)/〈g〉 constitute a
subgroup ∼= µ7 of E[7]; thus the curve E′ has a rational 7-torsion point.

Using X/〈g〉 forX1(7), we find that this modular curve has rational coordinate

d :=
y2z

x3
= q−1 + 3 + 4q + 3q2 − 5q4 − 7q5 − 2q6 + 8q7 · · · , (4.23)

and that the cyclic cubic cover X1(7)→X0(7) is given by

j7 = d+
1

1− d +
d− 1
d
− 8 =

d3 − 8d2 + 5d+ 1
d2 − d . (4.24)

The elliptic curve with a 7-torsion point parametrized by X1(7) was already
exhibited in extended Weierstrass form by Tate [1974, p. 195]:

y2 + (1 + d− d2)xy + (d2 − d3)y = x3 + (d2 − d3)x2 (4.25)

(we chose our coordinate d so as to agree with this formula). Besides making the
coefficients simpler compared to the standard Weierstrass form y2 = x3+a4x+a6,
Tate’s formula has the advantage of putting the origin at a 7-torsion point —
Tate actually obtained (4.25) starting from a generic elliptic curve

y2 + a1xy + a3y = x3 + a2x
2 (4.26)

tangent to the x-axis at the origin, and working out the condition for the origin
to be a 7-torsion point. The equations for the curve 7-isogenous with (4.25) can
again be obtained by the methods of [Elkies 1998a], or — since here the points
of the isogeny’s kernel are rational — already from Vélu’s formulas [Vélu 1971]
on which those methods are based.
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From our discussion in the previous paragraph, the involutionw7 ofX1(7) can-
not be defined over Q, only over K+. (The full cyclotomic field K is not needed
because X1(7) cannot distinguish a 7-torsion point from its inverse, so only the
squares in (Z/7)∗ = Gal(K/Q) are needed, and they comprise Gal(K+/Q); in
general for each prime p ≡ 3 mod 4 the Fricke involution wp of X1(p) is de-
fined over the real subfield of the cyclotomic field Q(e2πi/p).) In fact there are
three choices of w7, cyclically permuted by Γ0(7)/Γ1(7) (and Gal(K+/Q)); we
calculate that the choice associated with τ ↔ −1/7τ gives

w7(d) =
(4 + 3c1 + c2)d− (3 + 3c1 + c2)

d− (4 + 3c1 + c2)
, (4.27)

where cj := ζj + ζ−j ∈ K+ as in (4.13).
We have seen already that X/〈h〉 coincides with X0(49), and hinted that this

is in fact no mere coincidence. We can now explain this: where a point on X(7)
specifies an elliptic curve E together with a basis ±{P1, P2} for E[7], the 〈h〉-
orbit of the point specifies only the two subgroups 〈P1〉 and 〈P2〉 generated by
the basis elements. Equivalently, it specifies two elliptic curves E1 = E/〈P1〉,
E2/〈P2〉 among the eight curves 7-isogenous with E. (Note that 〈h〉 is the
stabilizer in PSL2(F7) of the two points 0,∞ on P1(F7).) But then we ob-
tain a cyclic 49-isogeny E1→E2 by composing the isogenies E1→E, E→E2.
Conversely, any cyclic 49-isogeny between elliptic curves factors as a product
of two 7-isogenies and thus comes from a point X/〈h〉. Thus X/〈h〉 is indeed
the modular curve X0(49) parametrizing cyclic 49-isogenies. In this description
of X0(49), the involution w49 of X/〈h〉 is the involution we have already con-
structed from the normalizer of 〈h〉 in G. Note that w49 switches the roles of
E1, E2 but preserves E. In terms of congruence subgroups of Γ(1), the identifi-
cation of X/〈h〉 with X0(49) is explained by noting that the congruence groups{
±
(
a b
c d

)
∈ PSL2(Z) : b, c ≡ 0 mod 7

}
and Γ0(49) are conjugate in PSL2(R) by

±7−1/2
(

7 0
0 1

)
: τ 7→ 7τ .

Some final remarks on this curve Ek = X/〈h〉 = X0(49): recall that we
showed that its only Q-rational points are the point at infinity and (0, 0). Since
these are both cusps of X0(49) we conclude that there are no elliptic curves
over Q admitting a rational cyclic 49-isogeny. However, there are infinitely
many number fields, including quadratic ones such as Q(i) and Q(e2πi/3) =
Q(
√
−3 ), over which Ek is an elliptic curve of positive rank. (Take x = −2 or

x = −3 in the Weierstrass equation (2.10) for Ek.) Over such a number field
there are infinitely many pairs of elliptic curves with different j-invariants that
admit a rational cyclic 49-isogeny. Moreover 49 is the largest integer for which
this can happen: the curve X0(N) for N > 49 has genus > 1, and thus by
Faltings only finitely many points over any given number field. See the tables
and introductory remarks of [Birch and Kuyk 1975] for more information on the
genera and rational points of the modular curves X0(N).
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4.3. Kenku’s proof of the solution of the class number 1 problem.
What of the quotients of X by S4 and the 2-Sylow subgroup of G? The first
of these we calculate using the fact that ±ρ(S4) is itself a reflection group,
with invariant ring generated by polynomials of degrees 2, 4, 6; we choose the
elementary symmetric functions of X2, Y 2, Z2 as our generators:

Ψ2 := X2 +Y 2 +Z2, Ψ4 := (XY )2 +(XZ)2 +(YZ)2, Ψ6 := (XY Z)2. (4.28)

We then express a basis for the G-invariants in the S4 model as polynomials in
Ψ2,Ψ4,Ψ6. Clearly the invariant quartic (1.11) is Ψ2

2 + (3α− 2)Ψ4. The degree-
6 invariant is proportional to (1 + α)Ψ3

2 + (2 − 3α)Ψ2Ψ4 − (42 + 7α)Ψ6. The
determinant (1.14) defining the degree-14 invariant is proportional to

(−9+9α)Ψ7
2 + (56−70α)Ψ5

2Ψ4 − (294+105α)Ψ3
2Ψ2

4 + (28+154α)Ψ2Ψ3
4

+Ψ6

(
(1008+2198α)Ψ4

2 + (1148−7014α)Ψ2
2Ψ4 + (−12348+1078α)Ψ2

4

)
+(15778 + 15435α)Ψ2Ψ2

6. (4.29)

Now the genus-0 curve X/S4 is rationally parametrized by the function f :=
Ψ3

2/Ψ6, which is of degree 24 on X and thus of degree 1 on X/S4. So to obtain
the degree-7 cover X/S4→X/G we need only write the rational parameter Φ3

14/Φ7
6

of X/G as a rational function of Ψ3
2/Ψ6 on X. Since Ψ2

2 = (2− 3α)Ψ4 on X, our
expressions for the G-invariant polynomials of degrees 6, 14 simplify to multiples
of

Ψ3
2(1 + (−14 + 7α)f), Ψ7

2

(
3 + (490 + 196α)f + (3430 + 2401α)f2

)
. (4.30)

Thus j = Φ3
14/Φ7

6 is given by

26
(
3 + (490 + 196α)f + (3430 + 2401α)f2

)3/(1 + (−14 + 7α)f
)7
, (4.31)

in which the coefficient 26 may either be obtained by keeping track of all the
constants of proportionality along the way, or by requiring that the third point
of ramification of j (other than the points j = 0,∞ forced by the factorization
in (4.18)) occur at j = 123. To put (4.31) in a nicer form we replace f by the
equivalent coordinate ψ, related with f by

f =
(α+ 3)ψ + 14 + 26α

56(ψ + 3(1 + α))
, (4.32)

which puts the pole of j at ψ =∞ and thus makes j a seventh-degree polynomial
in ψ:
j =

(
ψ − 3(1 + α)

)(
ψ − (2 + α)

)3(
ψ + (3 + 2α)

)3
= 123 +

(
ψ + (2 + 4α)

)(
ψ2 + 2αψ − (6 + 9α)

)(
ψ2 − 2(1 + α)ψ + (1− 2α)

)2
.

(4.33)

We noted already that the S4 model of X cannot be defined over Q because S4 is
its own normalizer in Aut(G). For the same reason this polynomial (4.33) cannot
have rational coefficients. Over a number field F containing k, we may choose a
conjugacy class of subgroups S4 ⊂ G, and then depending on our choice either
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(4.33) or its Gal(k/Q) conjugate parametrizes elliptic curves E/F such that
Gal(F̄ )/F acts on E[7] by a subgroup of a 24-element group in that conjugacy
class.18

On the other hand, the 8-element dihedral subgroups D8 of G do extend to
16-element subgroups of Aut(G). This is a consequence of Sylow theory, but
the subgroups in question can also be seen from the interpretation of G and
Aut(G) as PSL2(F7),PGL2(F7): choose an identification of F2

7 with F49, and
consider the action of ΓL1(F49) on F49. Multiplication by some a ∈ F∗49 and Ga-
lois conjugation are F7-linear transformations of determinant a8 and −1 respec-
tively. Using only F∗49 we obtain cyclic subgroups of orders 4, 8 in PSL2(F7) and
PGL2(F7), the nonsplit Cartan subgroups of these linear groups; allowing also
Galois conjugation, we obtain the normalizers of the nonsplit Cartan subgroups,
which are 8- and 16-element dihedral groups and are the 2-Sylow subgroups of
PSL2(F7), PGL2(F7) respectively. Since D8 ⊂ G is normalized by outer auto-
morphisms of G, the quotient of X/D8 can be defined over Q— even though it
factors through the quotient by S4, which is only defined over k! To obtain that
quotient as a degree-3 cover of the ψ-line we may either proceed as we did to
obtain (4.33), namely, writing Ψ2,Ψ4,Ψ6 in terms of the invariants of D8, or
locate the ramification points of the cover. This triple cover is totally ramified
at the simple root ψ = 3(1 + α) of j, and has double points at the solutions of
ψ2 + 2αψ = (6 + 9α) at which j = 123. We find that the cover is given by

ψ =
(2 + 3α)φ3 − (18 + 15α)φ2 + (42 + 21α)φ+ (14 + 7α)

φ3 − 7φ2 + 7φ+ 7
, (4.34)

in which we chose the degree-1 function φ on X/D8 so that j ∈ Q(φ):

j = 64

(
φ(φ2 + 7)(φ2 − 7φ+ 14)(5φ2 − 15φ− 7)

)3
(φ3 − 7φ2 + 7φ+ 7)7

= 123 + 562 (φ− 3)(2φ4 − 14φ3 + 21φ2 + 28φ+ 7)P 2(φ)
(φ3 − 7φ2 + 7φ+ 7)7

,

(4.35)

where P (φ) is the polynomial

P (φ) = (φ4 − 14φ2 + 56φ+ 21)(φ4 − 7φ3 + 14φ2 − 7φ+ 7). (4.36)

In the modular setting φ parametrizes elliptic curves E such that the Galois
action on E[7] is contained in a subgroup D8 ⊂ G, i.e. by the normalizer of
a nonsplit Cartan subgroup; we thus refer to the φ-line as the modular curve
Xn(7).

18Note that, since F ⊇ k, any γ ∈ Gal(F̄ )/F must take ζ to one of ζ, ζ2, ζ4; thus the
determinant of its action on E[7] is a square in F∗7. Thus γ acts on E[7] by a scalar multiple
of a unimodular F7-linear transformation of E[7], and may be regarded as an element of
PSL2(F7) ∼= G.
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Kenku [1985] used this curve to obtain a novel proof of the Stark–Heegner
theorem, which states that the only quadratic imaginary fields with unique fac-
torization are Q(

√
D) with D = −3,−4,−7,−8,−11,−19,−43,−67,−163. Let

F = Q(
√
D) be a quadratic imaginary field of discriminant D < 0 and class

number 1. There is then an elliptic curve E/Q with CM by OF , unique up to
Q̄-isomorphism. Assume that the prime 7 is inert in F ; this certainly happens if
|D| > 28, else the prime(s) above 7 in F cannot be principal. (The fields with
D = −4,−8,−11 also satisfy this condition.) Then the action ofOF on E[7] gives
E[7] the structure of a one-dimensional vector space over F49, and Gal(Q̄/Q)
must respect this structure. Thus E yields a rational point of Xn(7). But this
point is constrained by the condition that jE ∈ Z. That is, φ = φ(E) must be a
rational number such that j(φ), given by (4.35), is an integer. Writing φ = m/n

in lowest terms, we find j(φ) = A(m, n)/B(m, n) with A,B homogeneous poly-
nomials of degree 21 without common factors. Thus gcd(A(m, n), B(m, n)) is
bounded given gcd(m, n) = 1; one may calculate that this gcd is a factor of
567, and thus that m3 − 7m2n+ 7mn2 + 7n3 divides 56. Thus if m, n are at all
large then m/n must be a very good rational approximation to one of the roots
3+4 cos 2aπ/7 (a ∈ F∗7) of φ3−7φ2 +7φ+7. In the present case Kenku was able
to list all φ ∈ Q such that j(φ) ∈ Z using Nagell’s list [1969] of the solutions of
x+y = 1 in units x, y of K+. The list can also be obtained from general bounds
on rational approximation, provided all the constants are given explicitly as they
are in [Bugeaud and Győry 1996]. For our specific problem of approximating ele-
ments of K+ \Q, much better results are available, which make the computation
easily tractable; for instance Michael Bennett reports that the methods of [Ben-
nett 1997] yield the bound

∣∣cos(π/7)−p/q
∣∣ > 0.099q−7/3 for all nonzero p, q ∈ Z,

which is more than enough to find all solutions of |m3−7mn2 +7mn2 +n3| ≤ 56.
We find that the list of integral points on Xn(7), however obtained, consists of
the points with

φ ∈
{

0,∞, 1, −1, 2, 3, 5, −3
5 , 7, 7

3 ,
11
2 ,

19
9

}
. (4.37)

Of the resulting integral values of j(φ), the first eight are j-invariants of CM
elliptic curves, with discriminant −3, −8, −11, −16, −67, −4, −43, −163 re-
spectively. (The discriminant−3 occurs even though 7 is split in Q(

√
−3 ) thanks

to the cube roots of unity in Q(
√
−3 ), which yield extra automorphisms of a

curve of j-invariant zero; D = −16 occurs because the order Z[2i] ∈ Q(i) still has
unique factorization.) It is easy to check that none of the remaining four values
j = 10375, 21575, 2611323314932693, 291761932931493 can be the j-invariants of a
CM curve, and this completes Kenku’s proof that the list of imaginary quadratic
fields of class number 1 is complete.

[We remark that Siegel [1968] had already given a similar proof of the Stark–
Heegner theorem using Xn(5) together with the condition that jE is a cube,
which is tantamount to using the degree-30 cover of X(1) by Xn(15). An amus-
ing feature of Siegel’s argument which I have not seen mentioned elsewhere is
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that the Diophantine equation for an integral point on Xn(15) is equivalent to
the condition that a Fibonacci number be a perfect cube, and thus that Siegel
in effect reduced the Stark–Heegner theorem to the fact that the only such Fi-
bonacci numbers are 0,±1,±8.]

What of the four discriminantsD = −3,−12,−19,−27 of imaginary quadratic
orders with unique factorization in which 7 splits? Let E be an elliptic curve with
CM by the order of discriminant −D. The primes above 7 yield a distinguished
pair of 7-element subgroups of E, which must be respected by the Galois group.
Thus jE lifts to a rational point on the quotient of X(7) by the normalizer of the
split Cartan group of diagonal matrices. In our case the split Cartan group is
〈h〉, and its normalizer is 〈h, s〉, so we know these quotient curves already. Since
S4 contains the normalizers of both the split and the non-split Cartan groups
(note that p = 7 is the largest case in which PSL2(Fp) has a proper subgroup
containing Cartan normalizers of both kinds), the j-invariant of a CM curve lifts
to a rational point of X(7)/S4 in both the split and inert cases. These points
(necessarily rational only over k, since X(7)/S4 is not defined over Q) are as
follows:

D −3 −4 −8 −11 −12

x 2 + α, 3 + 3α,−3− 2α −4− 2α 2 + 3α 5 + 2α −3 + α

D −16 −19 −27 −43 −67 −163

x 6 + 4α 5− 2α −3 + 6α −3− 14α 42 + 13α −283− 182α

This accounts for all but two of the thirteen rational j-invariants. The remaining
rational j’s have D = −7 and D = −28; these are the j-invariants −153, 2553

of the curves Ek, E
′
k, for which 7 is ramified in the CM field Q(

√
D), a.k.a. k.

These two j’s lift to rational points not on X(7)/S4 but on X0(7), in fact to the
fixed points j7 = −7 and j7 = +7 of the involution w7.

4.4. X as a Shimura curve. Our identification of X with X0(7) = H∗/Γ0(7)
identifies Γ0(7) with the fundamental group not of X but of X punctured at the
24-point orbit. We have seen already that in the hyperbolic uniformization of X

the fundamental group π1(X) becomes a normal subgroup of the triangle group
G2,3,7. Remarkably this too is an arithmetic group: let

c = ζ + ζ−1 = 2 cos(2π/7), (4.38)

so OK+ = Z[c]; then there exist matrices i, j ∈ GL2(R) such as c1/2
(

1 0
0 −1

)
and

c1/2
(

0 1
1 0

)
with

i2 = j2 = c · 1, ij = −ji (4.39)

(this determines i, j uniquely up to GL2(R) conjugation) such that G2,3,7 con-
sists of the images in PSL2(R) of Z[c]-linear combinations of 1, i, j′, ij′ whose
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determinant equals 1. Here

j′ := 1
2

(
1 + ci+ (c2 + c+ 1)j

)
, (4.40)

and the determinant of a11 + a2i+ a3j + a4ij (a, b, c, d ∈ R) is

a2
1 − ca2

2 − ca2
3 + c2a2

4. (4.41)

For instance, G2,3,7 is generated by the images in PSL2(R) of

g2 := ij/c, g3 := 1
2

(
1 + (c2 − 2)j + (3− c2)ij

)
,

(4.42)
g7 := 1

2

(
c2 + c− 1 + (2− c2)i+ (c2 + c− 2)ij

)
,

with g2
2 = g3

3 = g7
7 = −1 and g2 = g7g3. (Note that “g2 = ij/c” is legitimate

since c is a unit.] Shimura [1967] found that the quotients of H by arithmetic
groups or their congruence subgroups also have modular interpretations, analo-
gous to the interpretation of H∗/Γ(N) as the moduli space for elliptic curves with
full level-N structure. The objects parametrized by Shimura’s modular curves
are more complicated than elliptic curves; for instance X and X/G parametrize
families of principally polarized abelian varieties of dimension 6. These abelian
sixfolds can be described precisely, but there is as yet no hope of presenting them
explicitly enough to derive formulas for the sixfold parametrized by a given point
of X/G or of X. Still these curves hold a place in number theory comparable
to that of the classical modular curves coming from congruence subgroups of
Γ(1), and limited computational investigation of these curves is now feasible (see
for instance [Elkies 1998b]). For the our present purposes we content ourselves
with describing the specific arithmetic groups and moduli problems connected
with the Klein quartic, referring the reader to [Vignéras 1980] for the arithmetic
of quaternion algebras over number fields in general, and to [Vignéras 1980;
Shimura 1967] for their associated Shimura modular curves.

The K+-algebra A generated by i, j is a quaternion algebra over K+: a simple
associative algebra with unit, containing K+, such that K+ is the center of A

and dimK+ A = 4. The ring O = OK+ [i, j′] ⊂ A is a maximal order in A. For
each of the three real places v of K+ we may form a quaternion algebra over R
by tensoring A with (K+)v ∼= R. It is known that a quaternion algebra over R
is isomorphic with either the algebra M2(R) of 2 × 2 real matrices, or with the
Hamilton quaternionsH. We have seen that in our chosen real embedding of K+,
taking c to 2 cos(2π/7), the algebra A ⊗K+ (K+)v is M2(R); for the other two
places, in which c is 2 cos(4π/7) and 2 cos(8π/7), that algebra is isomorphic with
H because then i2, j2 < 0. It is known that if a quaternion algebra over a number
field F becomes isomorphic with M2(R) over at least one of F ’s real places then
the maximal order O is unique up to conjugation in the algebra; moreover, that if
(as in our case) there is exactly one such place and F is totally real then the group
of units of norm 1 in O∗ ↪→ GL2(R) yields a co-compact subgroup Γ ∼= O∗/{±1}
of PSL2(R), and thus a compact Riemann surface “X(1)” := H/Γ, except in
the classical case of the algebra M2(Q) over Q. Since all maximal orders are
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conjugate, the resulting curve does not depend on the choice of maximal order O.
As a modular curve, “X(1)” parametrizes principally polarized abelian varieties
of dimension 2[K : Q] (= 6 in our case) with endomorphisms by O. This means
that the curve “X(1)”, though constructed transcendentally, is defined over some
number field; in our case that field may even be taken to be Q thanks to the facts
that K+ has unique factorization and is Galois over Q. Since for us Γ ∼= G2,3,7,
this curve is rational: the quotient of H by any triangle group has genus zero.

Our quaternion algebra A over K+ has the remarkable property that, for each
finite place v of K+, the quaternion algebra A⊗K+ (K+)v over (K+)v is isomor-
phic with M2((K+)v). (In other words, A is unramified at each finite prime v.)
Using this isomorphism, one may define arithmetic subgroups of Γ and mod-
ular curves covering “X(1)” analogous to the classical modular curves X(N),
X0(N) etc. For instance if ℘ is a prime of OK then the units of O congruent
to 1 mod ℘ constitute a normal subgroup of O∗ that maps to a normal subgroup
Γ(℘) of Γ. Thanks to the isomorphism of A ⊗K+ (K+)v with M2((K+)v) we
have Γ/Γ(℘) ∼= PSL2(k℘) [where k℘ is the residue field OK+/℘ of ℘]. The Rie-
mann surface “X(℘)” := H/Γ(℘) is then a normal cover of “X(1)” with Galois
group PSL2(k℘). This too is a Shimura modular curve, parametrizing princi-
pally polarized abelian sixfolds with endomorphisms by O and complete level-℘
structure — this last makes sense because OK+ ⊂ O acts on the sixfold so we may
speak about the sixfold’s ℘-torsion points. The isomorphism Γ/Γ(℘) ∼= PSL2(k℘)
lets us define groups Γ0(℘),Γ1(℘) intermediate between Γ and Γ(℘), and thus
Shimura modular curves “X0(℘)” and “X1(℘)”, which parametrize O-sixfolds
with partial level-℘ structure. The curves “X(℘)”, “X0(℘)” and “X1(℘)” are
defined over K+, and even over Q if ℘ is Galois-stable. Note that the Galois-
stable primes of K+ are those that lie over an inert rational prime, i.e. a prime
≡ ±2 or ±3 mod 7, and the prime ℘7 = (2− c) lying over the ramified prime 7.

We remarked already that Hurwitz curves come from normal subgroups of
G2,3,7. Shimura observed [1967, p. 83] that since each of the groups Γ(℘) is a
normal subgroup of Γ, and Γ ≡ g2,3,7, the resulting curves “X(℘)” are Hurwitz
curves. In particular “X(℘7)” is a Hurwitz curve of genus 3. We already know
what this means: “X(℘7)” is none other than the Klein quartic X. Furthermore,
its fundamental group π1(X) is the congruence subgroup of Γ consisting of the
images in PSL2(R) of Z[c]-linear combinations a11+a2i+a3j

′+a4ij
′ of norm 1

with 2− c dividing a2, a3, a4.
[The four Hurwitz curves of the next smallest genera also arise as “X(℘)” for

primes ℘ of K+: the prime above 2 yields the Fricke–Macbeath curve [Fricke
1899; Macbeath 1965] of genus 7 and automorphism group (P)SL2(F8), and the
primes above 13 yield three curves of genus 14 with automorphisms by PSL2(F13)
first found by Shimura. The next two Hurwitz curves have genus 17 and come
from non-arithmetic quotients of G2,3,7. See [Conder 1990] for more information
on the groups that can arise as automorphism groups of Hurwitz curves, and
[Conder 1987] for the list of all such groups of order less than 106.]



THE KLEIN QUARTIC IN NUMBER THEORY 97

The quotient curves X0(7), X1(7), X0(49) of X now reappear as Shimura
modular curves “X0(℘7)”, “X1(℘7)”, “X0(℘2

7)”. These curves have involutions
w℘7

and w℘2
7

analogous to the Fricke involutions of the classical modular curves.
However, the involutions of “X0(℘7)” and “X1(℘7)” are not the same as the
involutions of the same quotients of X when considered as the classical modular
curves X0(7) and X1(7). For instance, on X0(7) the involution w7 : j7 ↔ 49/j7
switched the two cusps j7 = 0,∞, and also the elliptic points of order 3, at which

j2
7 + 13j7 + 49 = 0.

On “X0(℘7)”, the elliptic points of order 3 remain the same and are still switched
by w℘7

; but there are no cusps — instead, the simple pole j7 = ∞ of j is the
unique elliptic point of order 7 of “X0(℘7)”, and must thus be fixed by w℘7

.
Therefore w℘7

takes j7 not to 49/j7 but to −13 − j7 . In this setting the three
Fricke involutions of “X1(℘7)” are defined over Q, and take d to 1− d, 1/d, and
d/(d− 1).

We have seen already that the Fermat curve F7 is an unramified cover of X.
It follows that π1(F7) is a subgroup of π1(X), and thus of G2,3,7. That sub-
group obligingly turns out to be a congruence subgroup, with the result that
F7, like X, is a Shimura modular curve. That subgroup — call it Γ7 — is in-
termediate between Γ(℘7) and Γ(℘2

7), and may be described as follows: under
an identification of Γ/Γ(℘2

7) with PSL2(OK+/℘
2
7), the group Γ7/Γ(℘2

7) consists
of matrices congruent to the identity mod ℘ whose bottom left entry vanishes.
Clearly Γ7, thus defined, contains Γ(℘7) as a normal subgroup of index 7, so
H/Γ7 is a degree-7 unramified cyclic cover of X. This is not yet enough to iden-
tify H/Γ7 with F7, but we obtain more automorphisms of H/Γ7 by observing
that Γ0(℘7) is also a normal subgroup. Thus the quotient group Γ0(℘7)/Γ7 acts
on H/Γ7. This group of automorphisms contains as an index-3 normal subgroup
Γ1(℘7)/Γ7, which is an elementary abelian group of order 72. The quotient of
H/Γ7 by this subgroup is the genus-zero curve H/Γ1(℘7) = “X1(℘7)”, which we
have already described as X1(7) = X/〈h〉; and the ramification behavior of this
quotient map (H/Γ7)→“X1(℘7)” does suffice to identify H/Γ7 with F7. The
147-element group Γ0(℘7)/Γ7 is then an index-2 subgroup of Aut(F7), generated
by diagonal 3×3 matrices and cyclic coordinate permutations; extending Γ0(℘7)
by w℘7

yields the full group of automorphisms of F7.
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[Serre 1984] J.-P. Serre, “Résumés des cours de 1983–1984”, pp. 79–83 in Annuaire,
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Hurwitz Groups and Surfaces

A. MURRAY MACBEATH

Abstract. Hurwitz not only gave an upper bound for the number of au-
tomorphisms of a compact Riemann surface of genus greater than 2, but
also gave a characterization of which finite groups could be groups of au-
tomorphisms achieving this bound. In practice, however, the identification
of such groups and of the surfaces they act on is difficult except in special
cases. We survey what is known.

1. How I Got Started on Hurwitz Groups

One day in the late 1950’s, rereading Siegel’s article [1945] entitled “Some
remarks on discontinuous groups”, I was struck by his proof that the smallest
area of fundamental region for a Fuchsian group is π/21.

Siegel notes the remarkable similarity between the arithmetic used in his proof
and the arithmetic in Hurwitz’s proof that a curve of genus g ≥ 2 has no more
than 84(g − 1) birational self-transformations. That, he said, is not surprising
because of the theory of uniformization. That was all— no indication where to
find Hurwitz’s paper, at that time unknown to me. (Siegel is one of my heroes,
but, it must be confessed, he was not very good at citing references.)

I did know about uniformization, and I made that connection at once. How-
ever, I had some trouble tracking down Hurwitz’s theorem. Finally, thanks to
the late Professor W. L. Edge, I read Hurwitz’s paper [1893], which invoked
Klein’s surface as an example to show that his bound was attained. So at last,
by a very tortuous path, I unearthed this chapter of mathematics, which has
fascinated me ever since.

Hurwitz left open the question whether there was any other surface with the
maximum number 84(g − 1) of automorphisms, as we now call them. Only one
other such surface was found, by Fricke, in the sixty years to 1961. My own first
contribution [Macbeath 1961] was a proof that there are infinitely many of them.

My research changed direction when I became aware of Klein’s curve and
Hurwitz’s theorem. I was driven to think more and more about Riemann surfaces
with many automorphisms. It was natural to progress to Riemann surfaces in
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general and to Teichmüller spaces. Friends and colleagues, whether their first
interest might be geometry, algebra, analysis or number theory, found points of
contact with this work. It is a truly central piece of mathematics.

The Klein surface is the Riemann surface of the algebraic curve with equation,
in homogeneous coordinates x : y : z,

x3y + y3z + z3x = 0. (1)

Klein [1879] showed that it is mapped on itself by 168 analytic transformations.
Since the equation is real, the surface is also mapped on itself by complex con-
juation, which can be composed with the analytic maps to give a further 168
antianalytic mappings, yielding a group of order 336. Klein concentrated his
attention on the subgroup of index 2 and order 168.

2. Klein

That group is the second smallest simple noncommutative group. (From now
on we will write “simple group” for “simple noncommutative group”.) It belongs
to two infinite families, PSL(2, 7) ∼= PSL(3, 2). For Klein it would certainly have
been PSL(2, 7) (if the notation had been invented), because he approached the
situation — group and Riemann surface — by studying the modular group Γ(1)
of all functions

z 7→ pz + q

rz + s
, (2)

where p, q, r, s ∈ Z, and ps − qr = 1. These are permutations of the upper
half-plane U := {z ∈ C | i(z̄ − z) > 0}.

Since the integers are a discrete subset of the reals, Γ(1) is, in any reasonable
sense, a discontinuous group of mappings. The upper half-plane is a Riemann
surface, so its quotient surface U/Γ(1) is also a Riemann surface — a sphere with
one missing point, or puncture. This is a slight disappointment if we are looking
for interesting Riemann surfaces. Subgroups of Γ(1) might do better.

The congruence subgroups Γ(n), which consist of mappings (2) such that(
p q

r s

)
≡ ± Id (mod n),

are the first to jump up and hit us. Being the kernel of a homomorphism, Γ(n)
is a normal subgroup of Γ(1), and the factor group acts on the quotient surface
as a group of automorphisms.

The quotient surfaces for Γ(2), Γ(3), Γ(4) and Γ(5) are spheres with 3, 4, 6
and 12 punctures. The factor groups include the symmetry groups of the platonic
solids (tetrahedron, octahedron and icosahedron). The quotient surface of Γ(6),
a torus with twelve punctures, is slightly more interesting, but the factor group
Γ(1)/Γ(6) is rather dull. Klein had studied all these groups in detail from the
viewpoints of complex analysis and projective geometry.
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At Γ(7), he found buried treasure. This surface has genus 3 with 24 punctures.
The punctures are “removable singularities” and pose no problem, so he had a
Riemann surface of genus 3 with 168 automorphisms. The quotient group is
what we get when we replace the integers in (2) by their residue classes modulo
7, a group now denoted by PSL(2, 7).

Now when we know that a surface S exists, then by general theory there is
a pair of meromorphic functions x, y on S that can distinguish any one point
of S from any other. The functions satisfy a polynomial identity F (x, y) = 0,
defining an algebraic curve. The curve has a vector space of abelian differentials,
it has Weierstrass points and all the other good things that an algebraic curve
possesses. Having found S, some of us might be content to rest on our laurels
in the mere knowledge that these things exist, but Klein was made of the right
stuff. He had to know what they were.

Not only did he find the equation (1) — no mean achievement from such mea-
gre data — he also found explicitly all the biholomorphic mappings as 3 × 3
matrices. These define projective transformations mapping the curve on itself.
By doing this he closed one of two gaps in Jordan’s list [1878] of finite ternary
linear groups, as Fricke points out [1926, footnote on p. 182].

It sems that Klein began with the differentials, and then worked out the linear
mappings induced on them by the 168 automorphisms. He studied the invariants
of this linear group, finding three basic invariants that are connected by equation
(1).

The Riemann surface of the curve (1) is a 168-sheeted covering of the sphere,
branched over three points of the sphere.

Above one of these points the 168 sheets join together in sevens to give 24
points of the surface. These are the points of inflection. They are also the
Weierstrass points.

Above another branch point, there are 84 points of the surface, where the
sheets join in twos. These are the sextactic points, through which pass a conic
section that has six-fold contact with the curve.

Above the third branch point the sheets join in threes to give 56 points of the
surface. These 56 points are the points of contact of (1) with the 28 bitangents,
or lines that are tangent to the curve at two points.

All these facts were discovered by Klein.
The numbers 2, 3, 7 reflect the fact that the universal cover of the whole

picture is the triangle group (2, 3, 7) acting on U. The modular group Γ(1)
is the triangle group (2, 3,∞). Replacing ∞ by 7 amounts to removing the
removable singularities.

For more detail see [Fricke 1926, p. 182–235] or the translation of Klein’s
article in this volume.
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3. Hurwitz

Hurwitz’s paper [1893] is a bold piece of work. His aim, as the title indicates,
was to study the general situation of an algebraic curve and a group Γ of auto-
morphisms. It had been proved by Schwarz that the automorphism group of a
curve of genus g ≥ 2 is finite, so he assumed that g ≥ 2.

His approach was topological, considering the Riemann surface of the curve
as a branched covering of the quotient surface of Γ-orbits. He worked out the
relation between the genus of the surface, the genus of the quotient surface and
the branching numbers. We now call this the Riemann–Hurwitz relation. From
this he worked out the upper bound 84(g − 1) mentioned by Siegel.

Among other results, Hurwitz also proved that the action of the automorphism
group on the abelian differentials is faithful, and that the order of any single
automorphism cannot exceed 10(g − 1). He also showed that a finite group can
be realized as a group of 84(g− 1) automorphisms of a surface of genus g ≥ 2 if
and only if it is generated by two elements t, u such that

t2 = u3 = (tu)7 = 1.

Such a group is now called a Hurwitz group. Even if we did not know anything
about Fuchsian groups, we would nowadays feel forced to invent the abstract
triangle group

〈t, u | t2 = u3 = (tu)7 = 1〉 (3)

and to rephrase the result:
The Hurwitz groups are precisely the finite homomorphic images of (3).
The problem of finding surfaces with 84(g−1) automorphisms is now reduced

to a purely group-theoretic question. Without making the connection to Rie-
mann surfaces, G. A. Miller [1902] proved that there are infinitely many Hurwitz
groups.

4. Poincaré

The introduction of Fuchsian groups by Poincaré [1882] had a strong influence
on our way of thinking about Riemann surfaces. Though his work was a decade
before Hurwitz’s, it is quite clear that Hurwitz was writing without reference to
it, and perhaps he did not know of it. Some very effective work on automor-
phisms, for example [Accola 1968], has been done quite recently without any
mention of Fuchsian groups, using covering space theory.

For me, though, the intuitive picture gained from Fuchsian groups is all-
important. I see the automorphism group as a tiling of the surface, the quotient
surface being what we get when we identify matched edges of any one tile.
By rolling the whole surface out on to the simply connected universal covering
surface U we get a coarser tiling (of U) whose matching gives the target surface
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of the automorphism group. Each of the coarse tiles is a mosaic of finer tiles,
whose edge-matching gives the quotient surface.

All the fine tiles have the same hyperbolic area, say a, and all the coarse tiles
have the same area A. The order n of the automorphism group is the number
of fine tiles that fit into one coarse tile. Therefore

A = na.

This is the Riemann–Hurwitz relation, which, in this form, seems blindingly
obvious. To use the relation effectively, we must rewrite the areas A, a in terms
of algebraic invariants of the Fuchsian groups. Still, the use of Fuchsian groups
makes everything more transparent.

Poincaré recognised U as the hyperbolic plane, which does not admit arbitrar-
ily fine congruent tilings. Siegel’s theorem is an exact quantitative expression of
this. The upper half-planeU had been known as the target space for the modular
group before Poincaré was even born, and hyperbolic (or, as it was then called,
noneuclidean) geometry had been studied for its own sake. With the metric

|dz|
y
,

U had been used as a model for hyperbolic geometry by Beltrami (see, e.g.,
[Stillwell 1996]). Regarded by many mathematicians as a gigantic counterexam-
ple designed to show that Euclid’s geometry could not be deduced without the
parallel postulate, hyperbolic geometry had to wait until Poincaré to be synthe-
sized with the modular figure and admitted to mathematical respectability.

Klein’s approach to his curve, involving the modular group, is much closer
to Poincaré than to Hurwitz. Even though the groundwork was done without
specific mention of general Fuchsian groups, the ideas were in the air, just waiting
for someone like Poincaré to crystallize them.

For historical and mathematical insight on the emergence of hyperbolic ge-
ometry from the shadows see the collection [Stillwell 1996]. It seems ironic that
Klein had written much earlier about both modular functions and “noneuclidean
geometry”. He had all the expertise to make the connection, but somehow he
did not. Perhaps it is understandable that he was at times less than generous
to the youthful Poincaré, who had burst like a supernova on the mathematical
scene.

As we have seen, Klein had plenty of reason to feel good about himself, and
it would have cost nothing to be more cordial.

5. From 1893 to 1960

Between Hurwitz’s paper and about 1960, there was a certain amount of rou-
tine work on automorphisms of Riemann surfaces, but very little of real signifi-
cance. Fricke discovered the Hurwitz group PSL(2, 23) of order 504 and genus 7,
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and Wiman [1895b; 1895a] improved the bound for the order of an automor-
phism from 10(g − 1) to 2(2g + 1), which is best possible. Wiman also worked
out all interesting automorphism groups for surfaces of genus 2, 3, 4, 5 and 6 by
using methods of classical algebraic geometry. A lot of labour was involved.

Siegel’s “remark”, taking only two lines of text, was also a major contribution.
One normally thinks of Siegel as an analyst and a number theorist, but here we
see geometric inspiration as well.

6. Hurwitz Groups

In 1900 the most up-to-date list of finite simple groups was to be found at the
end of Dickson’s book [1900, Chapter XV, particularly § 290]. By 1954, there
was still no advance. Then Chevalley’s paper [1955] appeared, starting off the
avalanche that culminated in the classification of all finite simple groups in the
1980’s.

Now the search for Hurwitz groups requires a knowledge of finite simple
groups. It is easy to show that the factor group of a Hurwitz group modulo
any maximal normal subgroup is a simple group and also a Hurwitz group. So
our obvious strategy for finding Hurwitz groups is first to comb the simple groups
for Hurwitz groups and then to find extensions building on these as factor groups.
See [Macbeath 1990].

Not knowing Miller’s work [1902], I started from scratch. I did not need more
than Dickson’s book and a little basic topology of surfaces to find the following
two results [Macbeath 1961; 1969].

• PSL(2, q), where q = pm, p prime, is a Hurwitz group if and only if either
q = 7, or q = p ≡ ±1 (mod 7), or q = p3, p ≡ ±2,±3 (mod 7).

• If G is a Hurwitz group of order 84(g − 1), for 0 < n ∈ Z, then there is a
group G(n) of order 84(g − 1)n2g that is also a Hurwitz group. The group
G(n) is an extension of a product of 2g copies of the finite cyclic group Z/n
by G.

The first of these results is proved by manipulating 2×2 matrix equations in the
finite field GF(q). The second is proved by applying Fuchsian group theory to
the groups of the coarse and fine tilings just mentioned. The group of the coarse
tiling is the fundamental group of the surface of genus g, which abelianizes to
give a product of 2g copies of Z, the infinite cyclic group. Hence the exponent
2g in the expression for the order of G(n).

It struck me forcibly at the time, and still seems remarkable, that this is all
so heavily group-theoretic. The methods indicated allow us to construct a great
variety of Hurwitz groups. The second theorem allows us to derive “towers”
G(p), G(p)(q), G(p)(q)(r), . . . .

Indeed there is no need to look for abelian kernels only in this process. It
has been observed by J. M. Cohen (oral communication) that a similar method
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proves that, given any simple group H, one can construct a Hurwitz group with
H in its composition series. When we build towers, the order of the group, and
therefore the genus of the surface, increases dramatically as a function of the
number of building blocks in the tower.

In the opposite direction, Cohen [1981] proved that PSL(3, q) is not a Hurwitz
group unless q = 2.

One can also look for permutation solutions of (3). Experimentation with
permutations of given degree n can be done graphically. A pair of permutations
t, u satisfying (3) can be drawn as a graph with triangles for the 3-cycles of u
and edges of a different colour joining points to their t-images. It is not difficult
to manipulate things so that (tu)7 = 1. The generated group is transitive if the
graph is connected.

One finds by trial that the only permutation solutions for degrees 7 and 8 give
us back PSL(2, 7)— the original Klein surface! At degree 9 we find PSL(2, 23),
already found by Fricke. There is no transitive group for 10 ≤ n ≤ 13. For
n = 14, we have PSL(2, 13), and for n = 15 we have the alternating group A15.

By systematically combining graphs — and a lot of ingenuity — Conder [1980]
proved that An is a Hurwitz group for n ≥ 168. He also determined specifically
which An are not Hurwitz groups for 16 ≤ n ≤ 167.

Sah [1969] produced a lot of information about Hurwitz groups and also
about other groups acting on Riemann surfaces. He showed that the Ree groups
2G2(3p) are all Hurwitz groups.

As far as I know, PSL(2, q), PSL(3, q), An, and the Ree groups 2G2(3p) are
the only infinite series of finite simple groups where we know precisely which
ones are Hurwitz groups.

During the search for finite simple groups, eleven “sporadic” simple groups
were found to be Hurwitz groups. These are listed in Conder’s excellent survey
article [1990]. It contains some more techniques for producing Hurwitz groups,
and is the best place to get further information about them.

7. The Wider Picture

The Hurwitz groups, then, proved to be surprisingly interesting. Apart from
Miller’s paper, presentations including (3) are found scattered through the lit-
erature. In [Coxeter and Moser 1957, p. 96] we find a presentation displaying
PSL(2, 7) as a Hurwitz group and PSL(2, 13) as a Hurwitz group in two different
ways. We can deduce that PSL(2, 13) acts on two Riemann surfaces of genus 14.
(We know now that there is a third one.)

Now, the first few Hurwitz groups, in order, act on surfaces of genus 3, 7, 14
and 17, and the admissible genera seem to become more sparse as they get larger.
For every g ≥ 2, though, there is a maximum order µ(g) for an automorphism
group, and it is not difficult to show that, for any g ≥ 2 there is a group of order
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8g + 8 acting on some surface of genus g. We therefore have

8g + 8 ≤ µ(g) ≤ 84(g − 1). (4)

Klein’s and other surfaces show that the upper bound is sharp. Independently,
and about the same time, Bob Accola in Providence and Colin Maclachlan in
Birmingham, England, found the lower bound and proved that it too is sharp.
Each of them produced an infinite family of g with µ(g) = 8g + 8, and the
two families are not only distinct but disjoint! Maclachlan used the language of
Fuchsian groups, but Accola, like Hurwitz, worked without them. See [Accola
1968; Maclachlan 1969].

Folk also looked at special kinds of groups. Wiman had dealt with cyclic
groups, but there was more to say. Harvey [1966] found, for each n, the smallest
genus of a surface with an automorphism of order n. This gave Wiman’s bound
as an easy corollary. Maclachlan [1965] found the upper bound for abelian au-
tomorphism groups. Accola was the first to observe that the order of a soluble
group of automorphisms cannot exceed 48(g−1). Zomorrodian [1985] found the
upper bound for nilpotent groups. See also [Macbeath 1984]. Maclachlan and
Gromadzki [1989] found the bound for supersoluble groups.

The aim of these workers was to find the largest or smallest group in some
particular category, but there is a good reason for looking at all the automor-
phism groups acting on surfaces of a given genus, whether or not they have any
extreme value. Here is why.

For every g we have a Teichmüller space Tg of “marked Riemann surfaces”
analogous to the modular figure in genus 1. TopologicallyTg is a euclidean space
of 6g− 6 real dimensions. The mapping class group Mg is a discontinuous group
acting on Tg . The quotient space Tg/Mg is the space Rg of all closed Riemann
surfaces of genus g. The quotient mapping Tg → Rg is a branched covering and
the points where ramification occurs are the Riemann surfaces with nontrivial
automorphisms.

To understand this situation it is necessary to get some understanding of the
whole set of groups involved as well as the dimensions of the subspaces of Tg
consisting of the fixed point sets for each group.

Though we have a good understanding of Teichmüller space, there is a lot we
don’t know about the configuration of interlocking fixed point sets, or branch
loci, as they are called. Even for fairly small values of g, the number of possible
groups, including cyclic and dihedral groups, is quite large and the same group
may act in several topologically different ways, as we saw with PSL(2, 13).

Some people have tried to outflank the problem, by taking a given group
and finding all the genera of surfaces on which it acts. Harvey [1966] did this
for cyclic groups, and his work was extended by Lloyd [1972]. More recently,
Kulkarni [1987] has shown that, for any group, the admissible values of g settle
ultimately into a periodic pattern modulo the prime factors of its order. For
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more information see [Kulkarni 1987; Harvey 1971; Macbeath and Singerman
1975]. Much remains to be done in this direction.

The title of Hurwitz’s paper, freely translated, is Algebraic structures with
one-to-one self-mappings. Most of the paper deals with the general picture of an
algebraic curve with automorphisms, looking closely at the branched covering of
the quotient surface by the target surface. The bound 84(g − 1) falls out as a
by-product.

The spirit of Hurwitz’s work is consistent with studying the general picture
and not beoming obsessed with one particular Fuchsian group, which, by an
arithmetical accident, happens to have the smallest quotient area. That is in
the spirit of Klein and Fricke too. Their books on modular and automorphic
functions [Klein and Fricke 1890–92; Fricke and Klein 1912] give many examples
of curves with fairly large non-Hurwitz automorphism groups.

8. Conclusion

It is appropriate to reflect how much Klein knew about his curve, and how
little we know about all the Hurwitz surfaces we have constructed. Apart from
Klein’s curve and the curve of genus 7, we know equations for no other curve
with 84(g − 1) automorphisms. Each one of them is an isolated point of Tg, so
the problem makes good sense. The only really useful tool that has emerged in
looking for equations seems to be the Lefschetz fixed point formula [Macbeath
1965; 1973]. For PSL(2, 23), it worked, but for PSL(2, 13) it was not quite
enough. On the other hand, there are limits to what we can expect to do. The
genus of the curve on which the Hurwitz group A15 acts is 7783776001. Even
with modern computers, the calculation of an equation might be difficult even if
we had a program to do it.

Let us pay tribute to Klein: he may not have known as much group theory as
we do, but he knew a whole lot more about other things.
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From the History of a Simple Group

JEREMY GRAY

The attractive pattern of 168 shaded and 168 unshaded triangles shown in
Figure 1 has an interesting history. Since its discovery by Klein in 1878 (see

Figure 1

This article originally appeared in The Mathematical Intelligencer 4:2 (1982), 59–67. The
editor is thankful to the author and to Springer-Verlag for permission to reprint.
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[Klein 1879]), it has often been reproduced; a close cousin
(Figure 2) inspired the badge of the 1978 International Con-
gress of Mathematicians in Helsinki. This article considers
its origins, which lie in the fields of nineteenth century ge-
ometry and the theory of equations.

Figure 2

But first let us look closely at the figure itself. Each tri-
angle, shaded or unshaded, has angles of π/2, π/3, and π/7.
Since

π

2
+
π

3
+
π

7
=

41π
42

< π,

we immediately recognize that this is a non-Euclidean figure, but we shall see
that Klein missed this conclusion altogether.

In each of the 14 slices emanating from the center there are 12 shaded and 12
unshaded triangles, so there are 168 of each kind. The sides of each triangle are
arcs of circles orthogonal to the boundary circles, or are diameters. The figure
can be continued in this fashion to reach indefinitely close to the boundary, and
it provides in this way a tessellation of the non-Euclidean plane. The unshaded
tessellation is preserved by non-Euclidean reflection in any side of any triangle
(i.e., by inversion) and so has the group of all such reflections as its symmetry
group. The group generated by all products of pairs of reflections is the symmetry
group of the shaded figure.

Klein had been led to construct the figure because of its use in studying a
certain polynomial equation (described at the end of this paper) for which the
group permuting the roots is PSL(2;Z/7Z), sometimes known as G168 because
of the number of its elements. Our first task, then, is to understand this group
geometrically.

The map Z → Z/7Z which takes residues modulo 7 induces a homomorphism
between two groups of 2× 2 matrices:

SL(2;Z)→ SL(2;Z/7Z),

where SL(2, K) is the group of 2×2 matrices with entries inK and of determinant
1. This is an onto map, and we shall denote its kernel by Γ7. The group SL(2;Z)
acts on the upper half-plane H = {z ∈ C : Im(z) > 0}: the element

(
a
c
b
d

)
in

SL(2;Z) sends z to (az + b)/(cz + d).
Since

(
a
c
b
d

)
and

(−a
−c
−b
−d
)

have the same effect on all z ∈ H, it is sometimes
convenient to factor out the centre, {±1}, of SL(2;Z), and obtain PSL(2;Z) =
SL(2;Z)/{±1}, which acts faithfully on H. Dedekind was the first to describe
this group geometrically, in a very important paper [1878]. He defined the region

R =
{
z ∈ H : |z| ≥ 1, −1

2 ≤ Re(z) ≤ 1
2

}
(see Figure 3), and showed that the orbit

O(z) =
{
az + b

cz + d
:
(
a b

c d

)
∈ SL(2;Z)

}
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ρ
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|z| = 1

Re(z) = 1
2

Re(z) = − 1
2

R

Figure 3

of each point z of H meets R precisely once (in its interior) or twice (on its
boundary). Consequently SL(2;Z) moves this region around en bloc, and covers
H like a tile, with overlaps occurring only on copies of the boundary of R.
Moreover, as Dedekind said, the elements of SL(2;Z) are all products of these
matrices: (

0 −1
1 0

)
, which sends z to −1/z and fixes i, and(

0 −1
1 1

)
, which sends z to −1/(z + 1) and fixes ρ,

a cube root of unity.
Klein took over Dedekind’s simple geometric presentation, and refined it by

making explicit that the set of all 2× 2 matrices with integer entries and deter-
minant 1 is a group, a fact Dedekind had not stressed although he would have
been well aware of it, and by looking for particular subgroups of it. The one of
most interest to him was Γ7.

The index of Γ7 in SL(2;Z) is, of course, the order of SL(2;Z/7Z). Since
Galois’s work had been published (in 1846) it had been usual to consider the
action of this group on the eight symbols 0, 1, . . . , 7, ∞ by

z 7→ αz + β

γz + δ
,

(
α β

γ δ

)
∈ SL(2;Z/7Z).

These symbols can be regarded as the slopes of lines through the origin in the
plane defined over the field of 7 elements (more precisely, as the points of the
projective line over that field). So the group SL(2; Z/7Z) has 336 elements, for
there are 8 directions for the position of the first basis vector

(
1
0

)
under

(
α
γ
β
δ

)
,

each with 6 possible positions for the image of
(

1
0

)
itself, then there are 7 choices

for the direction of the image of
(

1
0

)
, but no choice for its position once the

direction is chosen, since αδ − βγ = 1: 8 · 6 · 7 = 336. The group PSL(2;Z/7Z)
therefore has 1

2
336 = 168 elements. So, looking at the faithful action, one finds
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that Γ̄7 = Γ7/{±1} has index 168 in PSL(2;Z). So it must move 168 copies of R
around en bloc, and a suitable choice of which 168 copies can be made depending
on the purposes at hand. One way is to observe that(

0 −1
1 0

)(
0 −1
1 1

)
=
(
−1 −1

0 −1

)
,

which is equivalent to
(

1
0

1
1

)
in PSL(2;Z), an element which has the effect of

shifting the triangle sideways by z 7→ z + 1. Since(
1 1
0 1

)n
=
(

1 n

0 1

)
,

the element (
1 1
0 1

)7

is in Γ̄7, so one picks 7 copies of R in a horizontal strip. One can also pick other
elements of Γ̄7 which yield other copies of R, until the 168 block is determined.

To study the quotient, G168, one observes that any matrix representative of
an element in it also moves the 168-member block around, but that action is
only defined modulo Γ̄7, so G168 really maps the 168-member block to itself,
once suitable identifications have been made. The case G168 is rather unwieldy
at first glance, so consider for a moment starting with residues modulo 2:

Γ̄2 → PSL(2;Z)→ PSL(2;Z/2Z).

PSL(2;Z/2Z) has only 6 elements:(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
.

So Γ̄2 moves 6 copies of R around en bloc, and PSL(2;Z/2Z) can be regarded as
a group of self-maps of that region. The most attractive picture of this is shown
in Figure 4, and one notices that the action of Γ̄2, unlike that of PSL(2;Z), is
fixed-point free. It is this figure that inspired the ICM badge.

The action of Γ̄2 identifies the edges of the larger region in pairs, and so
one can ask what the region is topologically. In this case it is clear from the
identifications that the region is a sphere.

There is one problem with these pictures: the vertex at ∞ of the region R.
Klein simply switched to a region R̃ where this angle was 2π/7, since Γ̄7 cycles
7 copies of R around the vertex. This can be done by standard moves in the
theory of complex functions: either appeal to the Riemann mapping theorem, or
find an explicit map of R holomorphic everywhere except at copies of ∞, where
it has a suitable branch point. Klein presumably did the first; subsequently a
student of his, the American mathematician M. W. Haskell, did the second using
a quotient of two solutions to a hypergeometric equation [Haskell 1891]. Finally
we have Figure 1 before us, together with a description of G168 as the self-maps
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1 1

2 2

3 34 4

Figure 4

of this region, thought of as the quotient space Γ̄7\H, which also preserve the
shading. It turns out that the edge identifications are 1 with 6, 3 with 8 and so
on, and the even- and odd-numbered edges are directed oppositely so that the
triangles match up.

Klein was interested in the figure as an algebraic curve and as a Riemann
surface so he wanted to know its genus. This can be found using Euler’s formula

V − E + F = 2− 2g,

where V , E, and F denote the number of vertices, edges and faces in a triangu-
lation of the surface, and g is the genus.

Happily, we have a triangulation: it has 336 triangles (since R̄ is made up of
2 triangles), so F = 336; and E = 336 · 3/2, since each edge is counted twice. As
for the vertices, 336 have angles of π/7, so 14 cluster together at each one; 336
have angles of π/3 and are identified in 6’s; and 336 have angles of π/2 and are
identified in 4’s: a total of

336

(
1
14

+
1
6

+
1
4

)
= 164,

so V − E + F = 4, and g = 3: the Riemann surface has genus 3. Klein followed
Riemann’s approach of looking at the order of the branch points in order to
calculate the genus.

It then follows from Riemann’s work on algebraic curves [1857, § 13] that the
surface must be describable as a quartic, that is, using homogeneous coordinates
[x, y, z], by a homogeneous polynomial of degree 4. Klein then turned to the
projective theory of higher plane curves that had been developed in the preceding
generation, and showed how it could be illuminated by his new methods of
Riemann surface theory. This is a path well worth following.
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Plane Algebraic Curves

Although Newton had provided a very thorough analysis of cubics in the
1670’s, mathematicians rather neglected the systematic study of algebraic curves
other than conics until the start of the nineteenth century. When finally they
began, they confronted the question of deciding what could interestingly be said
about the profusion of new cubics, quartics, quintics, and so forth with which
they were confronted. The properties that most attracted them were projective
in nature, and were not shared by conics, notably: points of inflection, bitangents
(lines tangent at two places to a curve), double points, and cusps. The pioneer
in this study was Plücker, who was Klein’s first mathematical teacher. Plücker
[1835] showed that a non-singular curve F (x, y, z) = 0 of degree n has 3n(n− 2)
inflection points. Hesse’s proof [1844] is simpler, being couched in homogeneous
coordinates, but it essentially followed Plücker’s argument. Hesse observed that
at an inflection point adjacent normals are parallel, and so the mean curvature
vanishes there. But the formula for the mean curvature is∣∣∣∣ ∂2F

∂xi∂xj

∣∣∣∣ ,
which equated to zero is a curve of degree 3(n− 2). So, by Bezout’s principle, it
meets F = 0 in 3(n− 2)n points, which are the points of inflection.

This result led Plücker to make an intriguing observation in his next book
[1839]. The tangent to F = 0 at p has equation

x1
∂F

∂x1
(p) + x2

∂F

∂x2
(p) + x3

∂F

∂x3
(p) = 0

and the triple (
∂F

∂x1
(p),

∂F

∂x2
(p),

∂F

∂x3
(p)
)

can be thought of as defining the line coordinates of the tangent. This triple
can be thought of as a point in the dual space to the original projective plane,
and thus as defining a new plane curve called the dual of the original curve (see
Figure 5). Geometrically this can be done by picking a circle and then replacing
each point to the original curve by its polar with respect to the circle, and looking
at the envelope of the polars. Both methods were used. What is the degree of
the dual curve? Poncelet [1832] had shown that the tangents through (ξ1, ξ2, ξ3)
to F = 0 had equations

ξ1
∂F

∂x1
(p) + ξ2

∂F

∂x2
(p) + ξ3

∂F

∂x3
(p) = 0

for suitable P on F = 0. The locus of all points in the plane for which this
equation is true (for a given [ξ1, ξ2, ξ3] and F ) is a curve of degree n − 1 called
a first polar of F . It meets F = 0 in n(n − 1) points, so in general there are
n(n− 1) tangents to a given curve of degree n from a given point. Consequently
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curve F = 0

dual

Figure 5

the dual curve to a curve of degree n is of degree n(n−1), for the dual of n(n−1)
lines through a point is n(n− 1) points on a line.

Plücker’s intriguing paradox is this: plainly the dual curve of a dual curve is
the original curve, but the degree formula shows that the double dual has degree
n(n− 1)(n(n− 1)− 1), which is greater than n as soon as n > 2. Plücker had a
solution: any line through a double point is a tangent, since it meets the curve
in two coincident points, so the first polar passes through that point. But this
is not what tangency is really about, and if those intersections are ignored by
pulling the double point apart, this means two intersections of a curve and its
first polar must be discussed. So each double point on the original curve lowers
the degree of its dual by 2. Moreover, if the curve has a cusp the first polar is
a tangent there, so each cusp lowers the degree by 3. For example, the curve
x2

1x3 − x3
2 = 0 has a cusp at [0, 0, 1]. Its first polar with respect to [0, 0, 1] is

x2
1 = 0, which in fact is the equation of the tangent in this example.

So, if the original curve has α bitangents and β inflection points, the dual will
have α double points and β cusps, since bitangents dualize to double points and
inflection points to cusps. So if

2α+ 3β = n(n− 1)
(
n(n− 1)− 1

)
− n = n3(n− 2),

the paradox is explained. Moreover, Plücker had already shown that β = 3n×
(n− 2), from which he deduced that

α = 1
2
n(n− 2)(n2 − 9),
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and he proclaimed that a nonsingular curve of degree n has a dual with α double
points, β cusps, and degree n(n− 1), where

2α+ 3β = n3(n− 2).

This formula is now called Plücker’s formula. The value of α was first cal-
culated directly by Jacobi [1850]. The particular case when n = 4 is of most
interest to us: a non-singular quartic should have 24 inflection points and 28
bitangents. The inflection points cannot all be real, but the bitangents can be,
and Plücker even gave an example [1839]. He took two degenerate quartics: the
four straight lines in Figure 6, and the circle counted twice. A linear combina-
tion of the equations of these two curves defines a quartic with double points at
(0, 0), (1, 1), (1,−1), and a vertical tangent at the points a, a′. The figure shows
in thin lines the particular combination

Ω4 = (y + xy)(y − x)(x− 1)(x− 1.85)− 5(y2 + x(x− 2))2 = 0.

When deformed into Ω4− k = 0, for k > 0 small, the curve splits apart into four
bean-shaped pieces — the thick curves of the figure. Each has one bitangent of
its own and each pair has 4, a total of 4 + 6 · 4 = 28 in all. (We have varied

x=1

x=y

x=−y

a

a′

Figure 6
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Plücker’s coefficients, which were 3
2 and 2 instead of 1.85 and 5, in order to make

the concavity more apparent.)
The 28 bitangents became, and remain, a topic of delight. They are, for

instance, intimately connected to the 27 lines on a cubic surface, a fact first
noticed by Geiser [1869], and their automorphism group is isomorphic to the
Weyl group of the exceptional Lie algebra E7. Their history is far too lengthy to
describe here, even in the period before Klein, but mention should be made of
Hesse’s paper [1855], in which he studied them via the 28 lines through 8 points
in space, and in particular, to work of Riemann.

Riemann’s “Theorie der Abelschen Functionen” introduced an (infinitely many
valued) “function” θ of p variables on a Riemann surface of genus p which was
crucial to his solution to the Jacobi inversion problem for integrals. He associated
what he called a characteristic to θ, an expression(

e1, e2, . . . , ep
e′1, e

′
2, . . . , e

′
p

)
,

where each entry is 0 or 1, and he said the characteristic was odd if

e1e
′
1 + e2e

′
2 + · · ·+ epe

′
p

was odd, and even otherwise. Induction on p shows that (2p−1)(2p − 1) charac-
teristics are odd.

When the characteristic is odd θ has two repeated zeros and 2 repeated poles
on the surface, so it could be made to yield a bitangent curve to the surface,
and when p = 3 indeed to yield a bitangent. All this material, although partly
published by Riemann, his student Roch, and by Clebsch, was very obscure to
Riemann’s contemporaries. Clebsch himself thought this was due to the elusive
nature of the θ-function, which was defined transcendentally and only after a long
series of boldly innovative remarks. Riemann’s paper defines Riemann surfaces
and studies them topologically, uses the contentious Dirichlet principle to prove
an index theorem for the genus, considers what functions can exist on a Rie-
mann surface and proves the Riemann inequality for the dimension of the space
of meromorphic functions with prescribed poles, discusses coordinate transfor-
mations and birational transformations of a given curve and the dimension of the
corresponding moduli space of inequivalent curves of a given genus, and proves
half of Abel’s theorem before getting round to Jacobi inversion. Little wonder
people found it difficult! But the notation of the characteristics was convenient,
and in 1874 Weber used it to describe how the 28 bitangents are related (see
[Weber 1876]).

Briefly, Steiner had shown in [1848] that the bitangents fell into 63 groupings
of 6 pairs, with the property that the contact points of each pair with the quartic
gave a set of 8 points lying on a conic. Weber showed that the 63 families could
be indexed by the 63 characteristics other than

(
0
0

0
0

0
0

)
and that the sum of each
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pair of characteristics in a grouping was the indexing characteristic. Thus
(

0
0

0
0

1
0

)
indexes the pairs (

1
1

0
0

1
0

)
,
(

1
1

0
0

0
0

)
;
(

0
0

1
1

1
0

)
,
(

0
0

1
1

0
0

)
;(

1
1

1
0

1
0

)
,
(

1
1

1
0

0
0

)
;
(

1
0

1
1

1
0

)
,
(

1
0

1
1

0
0

)
;(

0
1

1
1

1
0

)
,
(

0
1

1
1

0
0

)
;
(

1
1

0
1

1
0

)
,
(

1
1

0
1

0
0

)
and (

1
1

0
0

1
0

)
+
(

1
1

0
0

0
0

)
=
(

0
0

0
0

1
0

)
,

etc. (adding coordinatewise, mod 2). This approach was in fact that of Riemann
[1862], as Weber found out on becoming joint editor of Riemann’s Werke with
Dedekind later in 1874, and had earlier been taken by Clebsch [1864], which
Weber seems not to have known. The geometric situation is that two conics,
each touching a quartic in 4 points, lie in the same system if their 8 points lie in
a conic. There are 63 systems (a result of Hesse’s) and each system contains 6
line pairs, the pairs of bitangents.

Jordan, basing himself on Clebsch’s work — which was published, rather than
on Riemann’s, which was not — gave an analysis of the 28 bitangents in [Jor-
dan 1870]. He showed (§ 332) that the group of symmetries of the bitangents is
isomorphic to the symplectic group Sp(6;Z/2Z), that is, to the group of 6×6 ma-
trices over the field of 2 elements which preserves the inner product represented
by the matrix

A =
(

0 I

−I 0

)
≡
(

0 I

I 0

)
(mod 2),

where I is the 3× 3 identity matrix. He also showed (§ 455) that the subgroup
of the group of symmetries which fixes a bitangent is isomorphic to the group
of symmetries of the 27 lines in a cubic surface, thereby connecting his work to
Geiser’s.

It is clear to us that each characteristic is a vector in the six-dimensional vector
space over Z/2Z and that the bitangents corresponding to those vectors v for
which vTAv ≡ 1 (mod 2); and, moreover, the action of G168 in its alternative
guise as SL(3;Z/2Z) is also now apparent. This version of G168 was presented by
Weber in [1896, p. 539], where he attributed it to Kronecker. However, Jordan
did not use this geometric approach, nor did Dickson in his discussion [1900]. It
would be interesting to know who first interpreted the characteristics in terms of
finite geometries, thereby making explicit what was implicit, but not geometric,
in [Jordan 1870]. The American mathematician A. B. Coble [1908; 1913] seems
to have been the first to illuminate the 27 lines and 28 bitangents with the
elementary theory of geometries over finite fields.

The combinatorial aspects of all this are pleasant, but the mathematics is
certainly not easy. All the more attractive then for Klein when he saw how to
make some of these configurations visible in this picture of his Riemann surface.
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Figure 7. From [Klein 1879].

Let us return to the description of the surface as an algebraic curve. It is a
quartic, and Klein showed quickly that if three suitable inflection tangents are
taken as triangle of reference the equation can be written as

F (x1, x2, x3) = x3
1x2 + x3

2x3 + x3
3x1 = 0.

As a real locus it looks like the curve in Figure 7. Under the action of G168

a typical point has an orbit consisting of 168 points. But some have smaller
orbits: the vertices have orbits consisting of 24, 56, and 84 points. These must,
by simple considerations of invariant theory, said Klein, correspond to the 24
inflection points, the 56 bitangents points, and 84 sextatic points (where a conic
has sixfold contact with the curve). So there are all these points, hitherto hard
to visualize, all laid out in one figure. Klein called them a, b and c points
respectively.

To get at the inter-relations of these points, Klein used elementary matrix
algebra and group theory to give an exhaustive analysis of the subgroups of
G168. He found, amongst other subgroups, 14 of order 4 (now called Klein’s
group), 14 of order 24, which come in two families of 7 conjugates, and 28 non-
abelian groups of order 6. The analysis showed that G168 has no non-trivial
normal subgroups, but Klein did not remark explicitly on its simplicity. Indeed,
he was more interested in the existence of 8 conjugate subgroups of order 21,
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and of two families of 7 conjugate subgroups of order 24 which are isomorphic
to the group of proper motions of an octahedron.

It is an easy matter to carry out the matrix algebra to find all the elements of
a given order. For example, elements of order 2 must have vanishing trace. One
can then arrange them in conjugacy classes, and thence find all the subgroups of
a given order. But it is not so easy to see them in the figure, because the action
of the group is not so clear and it is difficult to work with the identifications.
Klein argued as follows. The b-points, for example, are each fixed by a rotation
of order 3. There are 28 groups of order 3 in G168, so each such group fixes a
pair of b-points and these are the points of contact of a bitangent. The c-points
are fixed by rotations of order 2, of which there are 21, so each such rotation
fixes 4 of them.

To display them in the figure, Klein considered the 28 “symmetry lines” which
run in a cycle through six a, b, and c-points, as, for example, do the lines, which
run straight from the central point. They must be pursued with care across the
identifications, especially at the two kinds of vertex. There are 2 symmetry lines
through each c-point. There is then a unique pair of such lines which does not
meet the first pair, and the 4 c-points so picked out are a typical set of 4 c-points
fixed by a rotation. Similarly the 3 symmetry lines through a b-point meet again
in the corresponding b-point. Klein denoted 4 such pairs in the figure by A,A′;
B,B′; C,C ′; D,D′. However, he was not able to go further with this analysis
and exhibit the 63 systems of 6 pairs of bitangents. The Riemannian theory
of theta-characteristics is not taken up in this paper, nor in the famous study
[Klein 1882], and one rather supposes that Klein, like his contemporaries, did
not really understand it.

But he did have other, new, things to say. He showed that G168 could be
written down as a group acting on complex projective two-space, since it was the
automorphism group of a plane projective curve, and he exhibited its generators
explicitly. This gave him a finite subgroup of SL(3;C), and he observed that
it was missing from Jordan’s list of such groups [Jordan 1878], which he had
published earlier while studying differential equations all of whose solutions are
algebraic. Jordan, a friend of Klein’s since the latter’s visit to Paris in 1870,
accepted the correction in a letter and in a subsequent revision of his paper, but
both men missed a presentation of A6 as a subgroup of SL(3;C) subsequently
found by Valentiner [1889] and named after him.

Finally, Klein gave a startling visual description of the Riemann surface. G168

cannot be the symmetry group of a surface in space, but the subgroups of order
24 mentioned above can be, for each is the symmetry group of an octahedron.
The octahedral group permutes the four pairs of diametrically opposite points in
the middle of the faces of the octahedron, and Klein showed that the octahedral
subgroups in G168 permute 4 pairs such as A,A′; B,B′; C,C ′; and D,D′. The
24 a-points may be taken as the centers of 24 heptagons, and when the figure
is cut up along the six heavy zig-zag lines the heptagons may be taken in 3’s so
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Figure 8

that each face of the octahedron is covered, more or less, with 21 shaded and
21 unshaded triangles. What is missing from this quilt is the six vertices of
the octahedron. He regarded G168 as acting partly by rotating the octahedron,
and partly by sliding the quilt over the octahedron, using identifications across
the edges surrounding the vertices, which come from this dissection. He showed
that these identifications were of diametrically opposite points, and were best
performed by supposing the edges drawn out to infinity. He invoked the analogy
with the hyperboloid of one sheet, which, projectively, is a torus. The dotted
curve in Figure 1 represents the intersections of the curve with the plane at
infinity.

So he described the surface as three hyperboloids whose axes meet at right
angles, which is certainly appealing (see Figure 8).

A few remarks should be made about why Klein studied this problem in the
first place. An old problem in the theory of elliptic functions asks for a relation
between the moduli of elliptic integrals if the corresponding ratios of the periods
is increased by a prime p. Jacobi and Abel had shown that the moduli were
then related by a polynomial equation of degree p + 1. Galois know that the
polynomial equation could be reduced in degree to an equation of degree p when
p was 5, 7, and 11, but for no higher prime, and he know that for these equations
the corresponding group permuting the roots (its “Galois” group, as we say, for
this reason) was PSL(2,Z/pZ). Various mathematicians, notably Betti [1853]
and Jordan [1868], attributed this reduction to the existence of large subgroups
(of index p) in PSL(2,Z/pZ) when p = 5, 7, 11, and showed that such subgroups
did not exist for higher p. For example, when p = 7, the group permutes its
7 conjugate octahedral subgroups, so it has a permutation representation of
degree 7.
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Dedekind’s paper [1878] was devoted to establishing a theory of modular func-
tions without recourse to the existing theory of elliptic functions, and central to
it was a function val : H → C (from the German Valenz ) which takes each value
once and only once on the interior of R (and “half” its boundary) and for which

val(z) = val
(
az + b

cz + d

)
.

Dedekind obtained it by taking the hypergeometric differential equation

x(1− x)
d2y

dx2
+ (γ − (α+ β + 1)x)

dy

dx
− αβy = 0,

where x and y are complex, and so choosing α, β, and γ that a quotient of the
two solutions maps C on to R or a copy of R under the action of SL(2;Z). Then
this function val is the inverse of this quotient.

Klein took over Dedekind’s val function and renamed it J . He also took over
(with due acknowledgement) Dedekind’s theory of modular transformations, in
which J(z) and

J̃(z) = J

(
Az + B

Cz +D

)
are related, where

(
A
C
B
D

)
is a 2×2 matrix with integer entries and determinant p

(or, more generally, any natural number). It is not hard to see that if we regard
as equivalent the elements(

A B

C D

)
and

(
A B

C D

)(
a b

c d

)
,

where
(
a
c
b
d

)
∈ SL(2;Z), then there are p+ 1 inequivalent

(
A
C
B
D

)
of determinant

p. So the equation relating J and J̃ is a polynomial equation of degree p+1: the
modular equation. Klein’s contribution lay in making the groups explicit, and,
more importantly, in introducing the Riemann surface of J̃ spread out over the
complex J-sphere. Thus when p = 5 a sphere is obtained, corresponding to the
role of PSL(2;Z/5Z) as the icosahedral group, and we have seen detail how Klein
treated the next case, p = 7. Indeed his famous book on the icosahedron [Klein
1884] is a showcase of his ideas on mathematics at the time, and his treatment
of the quartic curve marks a high point in his style.

Rational functions in J are quotients of polynomials in J , and form a field
C(J). Rational functions in J̃ live on the Riemann surface for J̃ , and form a
field extension of C(J) whose Galois group is the group of the modular equation.
This work of Klein’s is thus at the origin of the Galois theory of function fields.
Gordan’s jocular name for this kind of mathematics was, Klein tells us, hyper-
Galois theory [Klein 1922, p. 261]. The Galois-theoretic point of view is slightly
further developed in Klein and Fricke’s two-volume work on modular functions
[Klein and Fricke 1890–92].
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Dedekind had been the first in Germany to lecture on Galois theory, and the
first to stress the importance of the concept of an abstract group (in lectures
around 1858; see [Purkert 1976]), but he chose not to stress these ideas here, and
it was left to Klein and his students to develop them.

Finally, why did Klein not notice the connection with non-Euclidean geome-
try? There can never be a simple answer to this question, but Klein’s preferences
were for projective geometry, and for using group theory to get at the invari-
ant configurations (inflection points, bitangent points, and so on). In the paper
analysed here, and in his work on the icosahedron, he succeeded brilliantly in
his chosen task. The differential-geometric approach to non-Euclidean geome-
try advanced by Beltrami was less congenial to him, less central to his view of
mathematics. So he did not look for such aspects of his problem, and the simple
realization was left to Poincaré — to dramatic effect. Nonetheless, as Klein tells
us [1923, p. 584], it was during a sleepless night, March 22–23, 1882, that Klein,
in contemplating Figure 1, was able to grasp the full generality of Poincaré’s
ideas and so to formulate his own approach to automorphic functions and the
uniformization of Riemann surfaces.
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Eightfold Way: The Sculpture
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Abstract. This article covers some of my thinking while developing The
Eightfold Way and some of the physical processes I used in creating it. The
sequence of topics followed is:

My View
Ramanujan–Michelangelo
Geometry–Topology
Counting–Philosophy
Geometry Center–MSRI
Two Stones
Athena–Escher
Robot–Stewart platform

The pictures, the text, and the references can all be read independently of
each other.

Wheeled wheels of processes and thoughts form a sort of multidimensional
torus embedded in our time and space. In this paper we survey a few of these
satellites and their orbits about the sculpture called The Eightfold Way. This
amounts to making explicit part of the mathematical environment when I finished
this sculpture. I intend no mysticism here, only some shared furnishings of our
minds and hearts — shared cultivation of our neuron and capillary landscapes.

A typical Helaman sculpture has layers of titles, ranging from a colloquial ex-
pression such as “eightfold way” at the top to precise mathematical symbols and
syntax such as x3y + y3z + z3x = 0 deeper down. The last equation describes
the algebraic surface of Klein that inspired this sculpture. For some reason,
maybe because there was going to be a sculpture at MSRI, maybe not, at about
the end of May 1992, a lot of email correspondence on the Klein surface began
among Thurston, Asimov, Osserman, Brock, Gross, Sibley, Kuperberg, Bumby,
Clemens, Hirbawi, Mess, Grayson, Adler, Elkies, Riera, to list a few. The rich
mathematical folklore that exploded via the internet led eventually to the pub-
lication of this book.
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Dr. John Slorp, President of the Minneapolis College of Art and Design, once
observed: “The Eightfold Way is the perfect biomorphic form: it is sensuous
and intelligent at the same time.” But for most people educated in traditional
schools, mathematics comes across as anything but sensuous. My sculptures
attempt to bridge this gap.

My View

Mathematics is an art form, which need not remain invisible [Hill et al. 1989;
Simmons 1991; Cole 1998]. Some Math evokes art, some Art evokes math.

Art is a social event which the artist recognizes and sets up. People frequently
ask me how long it took to do a particular sculpture. I answer by recalling my
age at the time I finished that piece. Few people are satisfied with this humorous
answer, but it really did take that long. Perhaps people ask this question because
they wonder how long it would take them. This article answers the question and
reveals how I go about doing a mathematical sculpture.

Sculpture has to occupy physical time and space, and aesthetically I consider
time just as important as space. My sculpture involves the mathematical content
of a timeless discipline. As a first response to its timeless aspect, I work in
stone which took hundreds of millions or thousands of millions of years to form.
Secondly, I work with endless geometries like tori or surfaces without boundary
with no obvious beginning or end.

I have a practical motive for working in rock and stone. Stone, for all its
potential beauty and age is common and worthless. These days it has small
military value (though this was not always so; compare, for example [Avery 1966;
Homer n.d., Book 16, lines 757-780; Holinshed 1587]). Metal, on the other hand,
is still essential in warfare. A few thousand years ago the Romans appropriated
the bronze sculptures of Athens to make war, and only a few decades ago the
Nazis confiscated the bronzes of Paris to support their war. I prefer stone over
iron, steel, and bronze. Why not use iron? Today we are iron rich, there is iron
everywhere. But metal is still vulnerable — wait until a war in space creates a
greater appetite for all metals. A stone sculpture without military value may
extend the life of my art as social event.

I don’t think that my choice of stone bears on the philosophical question of
whether mathematical objects actually exist in some Platonic universe. The
process of getting aspects of mathematical objects into our physical universe
dramatizes fundamental things about this universe. For example, I carve by
subtraction from an quarried piece of some geological formation. Subtraction
makes the piece smaller and smaller. The chips and dust I make are not small
compared to atoms and wavelengths of visible light. We do not live in a purely
mathematical continuum universe; certainly continued subdivision breaks down.
Our universe on a smaller scale is undulant with particles and lumpy with waves.
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Slide #21

Figure 1. Top view of the Eightfold Way and the hyperbolic disc, taken from

an upper window in the MSRI building.
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I haven’t thought seriously about doing sculpture on this scale. For now I am
sticking with stone.

Mathematical theorems occupy neither physical time nor space but share the
characteristics of a communication tool. Mathematics as a conceptual language
has its own aesthetic. The language of mathematics has three remarkable fea-
tures: abstraction, condensation, and prediction.

In mathematics we consciously choose the level of abstraction. Consider for
example the idea of the group of symmetries which underlies the Eightfold Way.
This group of symmetries can be thought of at two levels of abstraction: algebraic
or geometric.

For condensation consider that vast tables laboriously computed (for example,
[Spenceley et al. 1952; Luke 1977]) have been replaced by a single equation or
algorithm encoded in silicon. Kepler replaced Tycho Brahe’s tables of planetary
orbits with simple equations of ellipses. Newton reduced Kepler’s equations to
simple derivations from the inverse square law.

Prediction is possible if some correlation can be established between math-
ematical abstractions and a physical situation. Engineers study hundreds of
models for every airplane, bridge, or boat before construction. Physical model
construction is expensive and time consuming. Mathematics provides a kind of
ghost realm, which coupled with computer graphics, makes modelling quick and
inexpensive. As a sculptor I work with this cheap ghost real estate and find the
mathematical ghost language very helpful in designing sculpture. It may help
that the sculpture has mathematical content, although sometimes this content
creates additional difficulties in the form of new problems to solve [Cox et al.
1994; Ferguson and Rockwood 1993; Ferguson et al. 1996].

The usual access to mathematical ghost material is through the imagination
or the use of computers. What you see on the two-dimensional computer screen
is a very different thing when you have had studio hand eye experience. It is
like the difference between watching underwater films without scuba experience
and then watching underwater films having had scuba experience. There is no
comparision. Computer graphics does not replace studio experience.

There has been a philosophical prejudice in mathematics against the use of
pictures to communicate mathematical ideas. Lagrange was not the first to brag
that his book contained no deceptive figures or drawings. It has been pointed
out, however, [Barwise and Etchemendy 1991] that more people have probably
been deceived by specious linear arguments than by two-dimensional pictures.
(See also [Barwise and Etchemendy 1996].) Some middle eastern religions were
quite explicit in barring images. These anti graven image attitudes also colonized
thinking in Puritan America and persist in some quarters even today. Curiously
enough there is a historical record of a reversal in conservative religions in which
certain properly clothed people forms may be acceptable but abstract visual form
is considered unquestionably questionable. Robert Hughes in his treatise on art
in America [Hughes 1997] argues these matters compellingly. Such attitudes
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have been part of our recent past, yet the visual image, suitably qualified, enjoys
a rebirth in all the sciences, particularly mathematics.

In the previous century many drawings of functions and dramatic plaster
models of mathematical forms were made; see [Jahnke and Emde 1945; Fis-
cher 1986]. Today, computer images replace the dramatic plaster models. Bill
Thurston has made the observation that computer graphics enables mathemati-
cians, who typically are not trained to draw well, to draw computer pictures to
communicate their ideas visually. Alfred Gray fills his book [1993] with images
which took many person years to create before computers. The images of Gray’s
book come from parametric equations which have been under design by mathe-
maticians for hundreds of years. Now they appear on the computer screen in a
few keystrokes by anyone who can type. However, the old plaster models have a
three-dimensional immediacy that transcends an image on a computer screen.

Mathematics is timeless, conjectural, and minimalist. How old is a theorem?
It seems timeless because once thought and concluded, it appears to have always
existed. Conjecture, one of the most creative acts in mathematics, can be stated
as simply asking the right question. Conjecture grasps limbs of the complex
tree of possible deductions, but runs deeper than that. Intuition becomes vital
because there are assertions which are true but not deducible within the ambient
system [Adamowicz and Zbierski 1997; Blum et al. 1998]. Mathematics is mini-
malist to the point of being invisible. Very few people get to see the theorems.
Often a lot of hard work is involved in seeing or understanding a theorem. Math-
ematicians tend to communicate their most sublime creative acts to only a few
of the mathematically trained. Part of the reason for this solipsism lies in the
inherent character of the discipline. First, it is a discipline, hence the hard work.
My algebraic topology professor, Tudor Ganea, used to say that “mathematics
progresses by faith and hard work, the former augmented and the latter dimin-
ished by what others have done.” Second, the mathematician strips away every
nonessential idea. This makes her or him a minimalist of ideas. Furthermore,
she or he may create a new language to assist in this reduction [MacLane 1971].
Who can speak such ex nihilo language?

I think of one of my sculptures as moving across time and space, an accretion
of secondary aesthetics, anatomy, concepts, history, mathematics, philosophy,
and process. Suppose someone digs up my sculpture in 1000 years, or 10,000, or
even a million years. Can an interesting chapter of our nineteenth to twenty-first
century mathematics be derived from it? We live in a golden age of mathematical
creativity which does not necessarily have to continue. I prepare my sculpture
to evoke deep thought in future 10t time.

As I travel around the country lecturing and exhibiting my sculpture, I am
approached by various mathematicians who shyly confess their artistic side. I
enjoy encouraging them. When I began doing mathematical sculpture three
decades ago, I had no one to talk to, no guide. Art was art and science was science
and the two didn’t converse [Snow 1959]. In graduate mathematics classes I knew
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better than to reveal that I took graduate sculpture classes and vice versa. On
the rare occasions when such facts leaked out there was usually some display
of hostility from one side or the other. A lot has changed in thirty years for
the better, and I have probably helped change the old attitudes, but my work
is just a beginning. More theorems in sculptural form would advance public
appreciation and understanding of mathematics.

By writing this I hope to expose a path for others by providing a couple of
forms of encouragement. First, a description of processes that a budding math-
ematical sculptor could in principle follow — a guide. Second, to make it seem
easy — this is a lie, but one I have believed myself frequently and persistently. I
excuse this mind game because I have found that most of what we believe isn’t
true and that verity doesn’t stop us from acting in either creative or destructive
ways and then justifying those ways by our beliefs. Most of what any person
believes is not regarded as true or even helpful by some others. That, how-
ever, doesn’t stop us from acting effectively and passionately on our beliefs and
thereby accomplishing worthwhile and inspiring things. Mathematics is part of
my belief system [Davis 1994].

Ramanujan–Michelangelo

Mathematicians have a highly developed, if solipsistic, aesthetic of their own,
which they seldom share. They seem pretty shy or emotional about this [Cannon
1991; 1996]. However, they sometimes express this aesthetic with analogies out-
side their own field. G. N. Watson offers a particularly striking and mystifying
example; he was an analyst after the school of G. H. Hardy, the English mathe-
matician who had a remarkable and close relationship with Srinivasa Ramanujan
[Newman 1956, vol. 1, pp. 366–376]. Watson’s example appeals to me because
in academic life, I was a computational number theorist [Ferguson and Forcade
1979; 1982; Ferguson et al. 1998], and cut mathematical milkteeth in [Whittaker
and Watson 1927]. I will describe how Watson introduces a sculptural example,
coincidentally close to my early artistic milkteeth [Avery 1966; Beck et al. 1994;
Poeschke 1996].

Ramanujan loved to write down well poised specific cases of very general
mathematical identities, choosing aesthetically rich examples. He seldom gave
proofs of these identities and the way he came up with them seems mysterious to
most. Watson spent a good part of his mathematical work proving Ramanujan’s
identities and confessed that the following integral series identity of Ramanujan
thrilled him.∫

0≤x<∞
e−3πx2 sinhπx

sinh 3πx
dx =

1
e2π/3

√
3

∑
n≥0

e−2n(n+1)π
∏

0≤k≤n
(1 + e−(2k+1)π)−2

Do you get a buzz from this? I certainly did; enough so that I had to verify
this identity for myself. For starters, the left hand side has a continuous integral,
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the right had side has a discrete sum. Watson compares his thrill to the time
he stepped into the Medici Chapel in Florence and saw the tomb of Giuliano
surmounted with Night and Day and the orthogonally placed tomb of Lorenzo
surmounted with Dusk and Dawn. There are identities there too: Night and
Day — female and male figures, Dusk and Dawn — male and female figures. The
angular male summands of the right hand side of Ramanujan’s identity are in
counterpoint with the rounded female integrand of the left hand side. The inte-
grand drawn as a function over the domain −1

3 < x < 1
3 could well be a template

for parts of Night and Dawn.
When Claire and I stepped into the Medici Chapel early one morning in

Florence, I did not think of Ramanujan’s identities, but I was definitely aroused
and stirred in new ways. I reacted to the work of both masters whose seamless
work looks deciptively easy with the exhilarating thought that I could do this.
But while I could prove or duplicate or participate in either in a constructive
way, coming up with either work originally constitutes another matter entirely.
Both are priceless gifts to our civilization, but we ourselves choose to prize the
priceless. This choice has to be based upon discipline and hard work.

The integral series identity is a coupling of two things, computationally rep-
resenting very different algorithms, but actually the same. Both sides of this
identity give the same real number, an infinitude of decimal digits beginning
with

0.06532958595187866756820037871441595811555343284066915628840323 . . .

The duality, the coupling of dissimilar things which unite in some way is a
strong formal theme in many works of art and science. The Night and Day,
Dusk and Dawn, first female and male, then male and female nude figures is an
explicit duality. Each represents different activities, sleeping and awake, dozing
and arousing. These nudes provide a very human and very alive counterpoint
to the dessicated corpses inches away under their forms. Yet the nudes are
dead stone. Their aliveness centers wholly in the observer, just as Ramanujan’s
identity lives in an acutely sensitive reader, without whom his work remains dead
ink on a page. Watson senses within himself a moving relationship between the
creation of a poor Indian clerk from Kumbakonam near Madras and the creation
of a semi-orphaned Italian stone cutter from Settignano near Florence. That
Watson shared this duality confirms my aesthetic perception of mathematics and
sculpture as relatible forms. Chandrasekhar, a mathematical physicist, reported
on Watson’s feelings in his book on truth and beauty [Chandrasekhar 1987], by
devoting a part of a page to the integral-series identity of Ramanujan and two
whole pages to the male-female images of Michelangelo.

In The Eightfold Way I used a number of formal dualities similar to those
in the Ramanujan–Michelangelo relationship. To illustrate the pairing of two
areas of mathematics, geometry and topology, I couple a black two-dimensional
platform with a white three-dimensional tetrahedroid. In a later work I couple
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three-dimensional red and black Klein bottles even more explicitly so that they
orbit each other over a platform of two-dimensional multiple images of themselves
[Blankstein 1998; Cipra 1997]. [Senechal 1996] contains an illustration of another
two-dimensional platform and correlated three-dimensional sculpture subsequent
to The Eightfold Way.

Geometry–Topology

Mathematical elements of topology and geometry, united by group theory
comprise environmental influences upon The Eightfold Way. The white Carrara
marble tetrahedroid is a topological statement. This is not, strictly speaking, a
tetrahedron. I carved it in a qualitative free form process known as direct carv-
ing, paying attention to the combinatorics and topology but not rigid or mea-
sured geometry. By contrast, the black and green serpentine hyperbolic disc tiled
platform base is a geometric statement. This is quantitative, everything is mea-
sured carefully to preserve the rigid geometry. Indeed, I carved this part using
a computer driven water-jet robot, driven by a straight line program foloowing
coordinates of explicit numbers. The black serpentine prism creates a connect-
ing homotopy from the regular 120-degree hyperbolic geometric heptagon in the
base platform to the topological palm of a hand shaped heptagon supporting the
tetrahedral form. This junction prism provides the transition from quantitative
accuracy (one-thousandth of an inch in this case) to qualitative flowing elusive
forms.

The expressive relationship between the two, the topology and the geometry
was very important to me. I was pleased when I installed the heptagonal prism
or pedestal upright in the center of the hyperbolic disc and Bill Thurston came
out and saw it for the first time, remarking, “that really is Topology”.

By the expression quantitative in a sculpture, I mean that overall accurate
measurements are important: exact angles, exact lengths. I regard the expression
of a distance function and the specific point to point length relationships as
essential to the reading of the form. Rigid relationships are important, but not
necessarily the physical scale, in this context [Apéry n.d.; Sequin n.d.]. Once
an object is made we can measure it and it becomes quantitative. But here I
am speaking about the original process leading to the design and creation of the
final object.

By the expression qualitative in a sculpture, I mean that specific measurements
were not an important part of the process of creating it. The expression of the
topological or combinatorial features, however, are paramount. The form idea
is invariant under smooth deformations. I make quantitative choices in smooth
deformations for reasons other than the mathematical reading of the form. An
observer of sculpture tends to want to touch qualitative but not quantitative.
Marble provides a medium for qualitative expression, as it polishes to a reflective
sheen which pleases the eye and pleasures the touch. Running a hand over the
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grooves and surfaces of The Eightfold Way provides an unforgettable sensual
experience.

One general theme reflected in this sculpture is that rigid geometry has an
underlying topology and vice versa: a way to look at topology is to look for an
underlying rigid geometry. This theme arose repeatedly in the last couple of
centuries in mathematics, from Euler to Poincaré, Klein, and Fricke. It recently
has been developed extensively in the work of William Thurston and others; see
[Thurston 1997; Ratcliffe 1994], for example.

The Eightfold Way directly addresses the symmetry of surfaces: A sphere
with g > 1 handles cannot have infinite symmetry, whereas a sphere g = 0 and
a torus g = 1 both have infinitely many symmetry preserving transformations.
Hurwitz’ Theorem [1893; 1987] gives an upper bound on the symmetry: the
group of automorphisms of a surface of genus g > 1 is bounded by 84(g − 1).
The surface offered by the marble has genus g = 3 which in this case is a
tetrahedral form with four faces, each face penetrated by the ambient space so
that all penetrations meet in the middle.

This tetrahedral configuration appears to have four “handles” corresponding
to the four edges of the tetrahedron. That these four are really three handles
could confuse non-mathematicians. Claire’s immediate response was, “Oh, that’s
easy, it’s just like having a baby, you make a great big open smile here and then
you see this head with two eyes and a mouth”. (Claire knows the topology of
having babies by heart, inside out and backwards.)

To make sense out of Claire’s response, take a piece of soft clay and deform
it into a tetrahedron, press holes into the four sides so they all meet in the
middle, then without tearing deform open one of the triangular holes and flatten
everything until three holes are visible. Another way to see this is to make three
cuts through three limbs until the form becomes a ball with knobs and no loops.

The automorphism or symmetry group of a surface of genus three can have
as many as 84 · (3− 1) = 84 · 2 = 168 = 24 · 7 elements. I hear a lot of talk in the
software world about deadlines being met by a 24 · 7 effort of twenty-four hours
seven days a week, a never ending symmetry in time. Everyone experiences
the stretched out symmetries of 24 hours in a day, 7 days in a week, and 168
hours in a week. The choice of the prime factors 2, 3, 7 in our organization of
time keeping is ancient and interesting in its origins of oversimplifying of natural
events [Neugebauer 1975]. The 2 is structural, diurnal, day and night, but why
the 3 and 7?

What does such symmetry mean in a spatial physical or sculptural context?
The mathematical definition of symmetry cannot be taken literally because of
fundamental physics usually expressed by Heisenberg’s uncertainty principle. It
is impossible to manufacture a large object with precisely matching parts or
exact symmetry. We come mechanically, molecularly, or even visually close; we
come dramatically close in the case of cutting diamonds. We don’t touch the
symmetry of diamonds, we keep them small and wear them instead. If they were
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measured in pounds and feet instead of carats and millimeters their ever present
imperfections would be grossly evident.

Symmetry in our world approximates perfection at best and a deception at
worst. In the case of The Eightfold Way, the literal group of symmetries of
the polished marble surface itself has only one element. The group of symme-
tries is trivial which means no symmetry at all. By doing sculpture in physical
materials invariably all the symmetry gets broken, so symmetry has to be im-
plied. Broken symmetry implies that a symmetry in theory is there to be broken
[Morrison 1988]. By implication, The Eightfold Way surface articulates all 168
automorphism elements. More handily and literally, the generators can be read
out of it.

Two- and threefold symmetries are implied by the tetrahedral form. The
heptagon covering implies sevenfold symmetry. Each heptagon vertex forms a
triple point or triskelion with the edges of its three neighbor points. The grooves
or ridges of the three edges are curved to meet the neighbor point. There are
56 points and 84 edges to make up 56 triskelions in all. In carving this marble,
I used a small plexiglass equilateral triangle form as a pattern to keep these
triskelions under some equianglular control. This was a loose qualitative 120-
degree consideration which rhymes with the more exact quantitative 120-degree
triple points of the base platform.

This same symmetry reads more literally in the quantitative two-dimensional
base platform. There the triple points are embedded in a system of infinitely
many triple points. An infinite discrete group associates with this platform. This
infinite group acts by hyperbolic transformations on the hyperbolic plane and has
a fundamental domain of exactly 24 heptagons. In this case, there are 23 darker
heptagons grouped around the 1 dark polished stone heptagonal prism in the
center of the hyperbolic disk. The triskelions have been cut to have metrically
accurate angles of 120 degrees. The discrete group transforms the fundamental
domain in such a way that certain edges are identified. The transformations
sew up the 24 heptagon domain into a surface of genus three, viz., into the
marble surface lying above the fundamental domain. The boundaries of the 24
white marble heptagons carved into the tetrahedral form are articulated as either
ridges or incisions. The incisions or cuts define the doubled outside boundary
of the lower fundamental domain. The ridges on the marble also (compared to
the incisions just described) form edges of heptagons. These ridges correspond
to the geodesic arcs in the hyperbolic plane which lie inside the fundamental
domain or cluster of darker contiguous heptagons. The day I installed this piece,
Bill Thurston came out and started pasting notated tape on the white marble
heptagons and connecting them with string to the corresponding black serpentine
heptagons. The sun got too hot or something interrrupted this project. Some of
the photographs taken at the time show these tapes.

If the viewer “reads” the sculpture a certain way the reason for the title
“Eightfold Way” becomes quite clear. To “read”, select an edge somewhere on
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Plate 1. The Eightfold Way seen from the MSRI library (facing East).
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Red/green/white circle

Plate 2. Thurston’s rendition of the heptagon tiling.



Eightfold Way: The Sculpture

Slide #6

Plate 3. Water-jet robot cutting out one of the serpentine block for the hyper-

bolic tiling. This set-up, part-holding, and cutting process had to be done over

232 times.

Slide #8

Plate 4. Full set of stone tiles as cut by the water-jet robot. Note the dark

cluster in the middle and the corona stones on the rim. The cluster “sews up”

into the tesselated tetrahedroid.
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Slide #17

Plate 5. The artist doing finishing work during the installation in August 1993.

Bill Thurston and Joe Christy stand behind.

Slide #25

Plate 6. Cathedral view from inside The Eightfold Way.
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the white marble tetrahedral form. Go along this edge to the fork in the road
and take the left fork. Go to the next and take the right fork, then the left
fork, then the right fork, left fork, right fork, left fork, right fork. If the viewer
counted carefully, she is back on the starting edge. There were eight turns at
eight forks in the road, hence the title.

The left right path is a cycle because it returns. Cycles like this are called
Petrie nets. In general, a Petrie net in some fixed polyhedron is a skew polygon
where every two but no three consecutive sides belong to the same face of the
polyhedron. Petrie nets were named by H. S. MacDonald Coxeter after John
Flinders Petrie [Coxeter 1973], the only son of the great founding archaeologist
Sir William Matthews Flinders Petrie, who studied pyramids in Egypt [Drower
1985]. These Petrie cycles correspond to powers of products of generators (com-
mutators) of the 168 element group of automorphisms. There 21 such cycles
possible among the 56 triple points, since each path returns after eight alter-
nating turns to the inital choice. In reading this sculpture, we visualize the full
symmetry genus three surface with more than our eyes, we have our fingers touch-
ing the stone along these eightfold paths. The human haptic sense of around and
through becomes a vital supplement to seeing, perceiving and certainly enjoying
a symmetry from more dimensions than we usually experience.

By coincidence, the group of 3 × 3 invertible and commutator matrices with
entries over the two element field F2 consisting of {0, 1} has exactly 168 elements,
(23− 1)(23− 2)(23− 22) = 7 · 6 · 4 = 7 · 24 = 168. This set of elements is a group
denoted by GL(3, 2). There are 21 elements of order two and 56 elements of
order three in this group. Does this correspond to the 21 Petrie cycles and the
56 vertices?

There are three abelian groups of order 168, and two nonabelian groups of
order 168 of which only one is a simple group, viz., this GL(3, 2) is given by
generators as 〈a, b | a2 = b3 = [a, b]4 = (ab)7 = 1〉, where [a, b] is defined to
be the commutator [a, b] = aba−1b−1. The relation [a, b]4 = 1 is precisely the
origin of the eightfold way path. Specific generators that satisfy these relations
for GL(3, 2) are

a =

 0 0 1
0 1 0
1 0 0

 , b =

 0 1 0
1 0 1
1 1 0

 .

This group GL(3, 2) has the polynomial

η(t) = 1 + 21t+ 56t2 + 42t4 + 48t7,

where the coefficient of tn is the number of elements in the group of order n;
moreover η(1) = 168, η(−1) = −2 · 21.
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Counting–Philosophy

This sculpture involves counting. New environments sometimes make count-
ing difficult. It is easy to lose track along a given eightfold path so concentration
is required. Counting was a major cultural and scientific achievement. Our sys-
tems of counting are very old — we have no real idea just how old. “No class
of words, not even those denoting family relationship, has been so persistent as
the numerals in retaining the inherited words” [Buck 1949, Chapter 13; Pappas
1994, pp. 145, 191]. Once one has learned to count, it seems the integers were
there all along. Are they infinitely old?

As I carve these counting opportunities in stone, I wonder if maybe the stone
is older than our counting. In fact, the age of the stone I carve is some fraction
of a billion years. My process of direct carving seems to be moving back in time,
as I reveal layer after layer of stone, deeper into our earth or solar system past,
time and space coagulate and congeal. Mathematics seems timeless, and stone
seems timeless. This is one reason I think stone is a natural material to express
mathematical ideas.

Cultures that count cover the surface of the earth. World languages have been
organized by linguists along continental and island structures where people have
settled, isolated, and preserved their old counting ways. I believe it is possible to
count orally to eight in exactly twenty one language groups, a different language
group for each Petrie cycle and at the same time pretty much cover our globe.
There seem to be 84 fairly different languages available for this purpose. On the
other hand our world collection of visual number symbols does not seem to be
as rich as our phonetic symbols. However, there is a set of Mayan heads that
represent the first eight counting numbers. These were carved in stone so it
seems I am not alone in carving numbers in stone.

The expression “Eightfold Way” has been recycled from similar titles. This
may be appropriate given a sermon by the Buddha to potential disciples in a deer
park near Benares or Varanasi [Kitagawa 1971; Levenson 1996; Powell 1995]. He
summarized the practice of the Eightfold Path as the Three Learnings. This
invites a confluence with my sculpture. The edges of each eightfold path on the
sculpture are joined at each stage by a vertex of valence three. Each triple point
in three dimensions above and in two dimensions below can be thought of as
the Three Learnings organizing the path: moral precepts (s̄ila) encompassing
speech, action, livelihood; meditative practive (dhyan̄a) encompassing effort,
mindfulness, concentration; initially faith and ultimately attainment of wisdom
(prajn̄ā) encompassing understanding (view) and thought.

The triple points, and maybe old style triskelions, themselves are anatomical
especially among peoples who recycle the bones of their dead; for example, skull
offering bowls [Nomachi 1997, p. 147], kapala, from life in arid, rocky mountain-
ous plateau regions (to dig is hard and unprofitable) include various anatomical
references. Consider the sagittal and coronal sutures, anterior and posterior
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fontanelles. See [Levenson 1996, pp. 54-55] for eightfold path pictures as well
as the triskelion images of buddhist skull bowls showing the common anatomi-
cal triple points in the skull, anterior: sagittal suture and two coronal sutures,
triple junction; posterior: sagittal and two lambdoidal sutures. These type triple
points also occur in the wheel of the law images [Netter 1996; Gray 1901; Richer
1890]. The human skull, cleaned, is a natural visual source of the triskelion form
[Chumbawamba 1997].

The Eightfold Path was a paradigm designed for novitiates, a learners’ course
for beginners. At a certain stage of development there are ten: right concentra-
tion leads to perfect insight and perfect deliverance (two more), the end of the
noble path. A sculptural analogy would be that at the end of eight edges is a
triple point: after right concentration or meditation, one is faced with two new
edges bordering on an entire heptagon. This leaves the linear or one-dimensional
path to a field of two dimensions or infinitely many paths and perhaps insight
and deliverance.

Sand paintings of the Eightfold Path involve arcs of circles in a disc arrange-
ment suggesting a connection with the hyperbolic disc [Levenson 1996, p. 22].
Indeed there are mirrors that I have seen at the Art Institute of Chicago where
the back of the mirrors have hyperbolic-like arrangements of arcs of circles. They
are made with Dragon arabesques, Eastern Zhou Dynasty, Warring States period
or early Western Han Dynasty, 3rd/2nd century B.C. Could these have Eightfold
Path origins?

Religious or theological systems of thought tend to be very abstract systems of
thought. Perhaps they represent some of our earliest mathematical forms. Much
of history, especially the history of conflict reflects systems of thought. Even
though they are based on very different, in some cases mutually inconsistent
axioms, they have provided ample opportunity to go to war. On the other hand, I
myself commit considerable violence in the process of carving stone. My abstract
systems of mathematical thinking clash with the geology and mineralogy of the
stone as I reform it in my own images. I war on my stone with hammers, chisels,
diamond saws, grinders, and I have made the time honored excuses and impose
my abstract thoughts with compelling violence.

The phrase “The Eightfold Way” is also the title of a book by Gell-Mann
and Ne’eman [Gell-Mann and Ne’eman 1964], referring to an earlier paper by
Gell-Mann where quarks where introduced theoretically by assuming three base
states considered to transform according to the eight-dimensional group SU(3).
(See [Lichtenberg 1978, pp. 166–171; Schensted 1976, pp. 218-228] for an expo-
sition.) One of the systems of weight points for an irreducible representation
of SU(3) corresponds to an octet of baryons including the proton and neutron.
The dynamics of elementary particle interaction (scattering) is not well under-
stood, so even approximate symmetries are vital to making predictions. Unitary
transformations are associated with conservation laws, and the matrix group
SU(3) provides approximate symmetries. The eight comes from SU(3) and the
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representation dimensions beginning with 1, 8, 10, 27, where the 8 cooresponds
to the most frequent higher mass of the vector baryons or mesons. Just to have
some idea of how approximate this symmetry is from a mass perspective, con-
sider the variation in the masses of the baryon octet, (p, n,Λ,Σ+,Σ−,Σ0,Ξ0,Ξ−)
with masses (938, 940, 1116, 1189, 1192, 1314, 1321). Other than the presence of
the two 3 × 3 matrix groups GL(3, 2) and SU(3) any relationship between the
physics eightfold way and the sculpture eightfold way remains unexplored.

Geometry Center–MSRI

A key fact behind the existence of any larger sculpture is funding. Elwyn
Berlekamp had facilitated some funding for an unspecified MSRI sculpture from
the Mitsubishi Electric Research Laboratories in Cambridge, Massachusetts.
This vaguely had something to do with Kaplansky’s retirement. Kaplansky was
then Director of MSRI. The sculpture was originally going to be a development
of the circle of theorems around the (2, 3, 7) pretzel knot. This knot had begun
its mathematical life with Seifert [1934, Satz 6, p. 589] computing its Alexander
polynomial, then later came number theory connections with Lehmer [1933] and
much since [Reid 1991; Riley 1975]. My granite (2, 3, 7) pretzel knot sculpture
has yet to see the light of day. Kaplansky’s mathematical work has resisted
sculptural expression so far.

I have a note from September 1990 about a chat with Bill Thurston, who said
he would bring up the idea of one of my sculptures at MSRI. Then at the AMS–
MAA meeting in Baltimore in January 1992 I talked with Lenore Blum, Deputy
Director at MSRI, about the suggestion and she like the idea. The 18-month
gap between these two events is typical of developing my sculpture. One has to
be patient.

In March 1992 I FedExed a video and some posters to Bob Osserman, also
Deputy Director at MSRI. We discussed some of Kaplansky’s work and also
the Lehmer conjecture. Later in the month Arlene Baxter, manager at MSRI,
designer of the MSRI brochure, sent some photographs of possible sites for a
sculpture. Bill was gone when I visited MSRI a few weeks later, but I sketched a
brief idea on Bob’s blackboard. This was a concept based on my findings at the
Geometry Center in Minnesota during the great Halloween blizzard of a year or
so before.

After Al Marden, director of the Geometry Center, saw Knotted Wye I at my
exhibition at Ohio State University, in August 1990, he said they really needed a
sculpture like it at the Geometry Center at the University of Minnesota. He felt
that many people at the University there did not understand mathematicians.
He had observed that people thought they were just computer hackers because
the Geometry Center used heavy computer graphics as a research tool for gaining
insight into geometry. He thought if they had a sculpture like Knotted Wye I that
people would understand through it that they were mathematicians — artists of
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a certain kind. Creative mathematicians tend to think of their science as an art
form, perhaps the ultimate conceptual art form (even if canonized academically
in some ways).

How did I get involved with Bill Thurston and the topology and geometry
themes of The Eightfold Way? In 1991 Don Davis at Lehigh University invited
me to give a math sculpture talk. This was followed by another talk at the Five
Colleges Geometry seminar at the University of Massachusetts at Amherst spon-
sored by Donal O’Shea and Lester Senechal of Mount Holyoke College. When
Claire and I give such talks, I usually haul along some examples of smaller sculp-
tures. This time I included the first Knotted Wye. (This knotted wye hyperbolic
theme had been mentioned to me by Bill Thurston at the AMS-MAA meeting
in Boulder, he did a clay sketch which Gary Lawlor, a post-doc at Princeton,
brought down to me while visiting us in Maryland.) On the way back we stopped
in Princeton and I showed Bill the bronze Figureight Knot Complements, a Wild
Sphere, as well as the Carrara marble Knotted Wye (it didn’t have a number
then; cf. [Ferguson 1994]). At that time Bill mentioned a PSL(2, 7) symmetry
group surface problem and suggested that perhaps there was a sculpture there.
This was the first hint of what eventually developed into The Eightfold Way.

The primes 2, 3, 7 of the pretzel knot reappear as the only prime factors of the
order of the group PSL(2, 7). The connection of PSL(2, 7) with the Klein surface
became more interesting to me sculpturally on the occasion of the dedication of
one of my Knotted Wye II [Ferguson 1994]. This 1500-pound Carrara marble
was preceded by the smaller Knotted Wye I mentioned above. Both are direct
carvings. Their configuration can be decoded from a verbal description of the
planar knotted graph presentation. The first link goes over, under, over, under,
the second link under, over, and the third link over, under, over, under, going in
each sequence from the first vertex to the second vertex. This knotted graph fits
into the family of Kinoshita–Wolcott knotted graphs of k,m, n full twists; see
[Farmer and Stanford 1996]. It appears in open ended but equivalent form in
Ashley’s Book of Knots [1944] as the wall knot and the further development of
Matthew Walker’s knot. There is an associated yarn of how the knot saved this
sailor Walker from certain hanging. The judge was a former sailor and said he
would let Walker off if Walker could tie a knot the judge had never seen. Matt
tied his knot like a small fist in the middle of six fathoms of rope. The judge
was impressed enough to give the sailor his freedom.

The dedication for Knotted Wye II illustrates the desire people have to expe-
rience mathematics in a direct way. As soon as the dedication was over there was
a collective breath and the audience rushed forward to touch the marble carving.
They climbed all around it, and held hands through the sculpture’s limbs. These
were adults, their spontaneity, lack of selfconsciousness, and involvement made
it a delicious moment for me.

Knotted Wye II will communicate mathematics for many generations, sitting
as it does on four oak cuboids. This is another instance of rigid geometry under-
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lying the fluid topology, a precursor of the “Eightfold Way” concept described
above. This work was first installed in the Geometry Center but has since been
moved to the Mathematics Library at the University of Minnesota. It is the first
1500-pound theorem in the Frederick Weisman Museum of Fine Art Collection.

One of the interesting discussions that week at the Geometry Center was
about the Klein surface and PSL(2, 7). John Horton Conway showed me an
amazing PSL(2, 7) contiguity relationship for the Klein surface. He grabbed a
scrap of paper and scribbled down the PSL(2, 7) relations, group elements, the
appropriate conjugacy classes and what I called the eightfold way relationship. It
took me several years to convert this two-dimensional scribble, its implications,
and some of its mathematical context into the eightfold way sculpture.

For most of this week Margaret Thurston was sewing up a patchwork of regular
heptagons into John Conway’s incidence scheme. Margaret’s stuffed heptagons
were still at the Geometry Center when we visited in the Fall. We were scheduled
to give a slide lecture to a large group of high school math teachers and math
students from all over Minnesota (The Humpty-Up program of Harvey Keynes).
The Great Halloween blizzard of 1991 closed the airport and marooned us in a
hotel, but I managed to wade to the Center through four feet of drifting snow.
There I found Margaret’s extraordinary stuffed object and started thinking about
it. I found the heptagons were somehow wrapped around a tetrahedral skeleton
which suggested two- and threefold symmetry. I made a foam version and carved
some figureight knot complements in styrofoam. I left knot complements there,
but brought the tetrahedral foam with its tesselation of heptagons back.

In May 1992 Bob Osserman showed my blackboard drawing to Bill Thurston
who talked to John Horton Conway about PSL(2, 7) as an MSRI sculpture. Bob
came out in visited us in early May 1992. By this time I had a full scale size
tetrahedroid carved out of white styrofoam with incisions to indicate the tessela-
tion. By May eighth I settled on a hyperbolic prism to support the tetrahedroid.
I wanted this piece to be approachable by an average size person and easily
touched. Meanwhile, in our communications, Bob was pressing for a circular
area maybe filled with sand in which to stand the sculpture. I had no plans to
include a hyperbolic disc, this was where the Gauss problem came in.

The problem was Gauss, Gauss was the name of MSRI’s resident cat. If
the circle were filled with sand or raked white gravel Gauss might chose to
appropriate the site as his personal cat box. This would discourage people from
stepping close to the piece. I wanted to encourage people getting close enough
to reach in and around the sculpture to follow the tesellation ridges and grooves.
What to do? Gauss the Cat had to be respected. Gauss the Cat’s namesake,
Carl Frederick Gauss, had actually invented hyperbolic geometry perhaps even
before Bolyai or Lobachevsky. It eventually occurred to us that if the Poincaré
disc model in stone replaced the proposed sand or gravel then the Gauss problem
would be solved. Gauss the Cat showed no proprietary interest in the Poincaré
disc model of hyperbolic plane geometry and there would be no problem with
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Slide #1

Figure 2. John Horton Conway’s page of notes describing his PSL(2, 7) action

on the Klein surface.
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Slide #2

Figure 3. Conway’s sketch of heptagon contiguity associated with the PSL(2, 7)

action. The heptagon∞B became the joint between the white marble and black

serpentine.
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Slide #3

Figure 4. Michael Ferguson (our youngest son) wearing Margaret Thurston’s

stuffed version of the Eightfold Way tetrahedron. She had made a multicol-

ored version in 1991, which Helaman studied during the Halloween Blizzard in

Minneapolis.
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people standing on the hyperbolic tiling. The hyperbolic platform required some
pretty extensive logistics. The heptagonal prism of 120-degree angles had to fit
the real size of the conformal Poincaré disc that would mathematically scale with
the rigid central hyperbolic regular heptagon. The next difficulty was cutting
the hundreds of heptagonal tiles in stone to a few thousands of an inch precision;
I solved that problem by cutting with a water-jet.

Serpentine–Marble

The black stone in the hyperbolic platform base of The Eightfold Way is
serpentine, a magnesium silicate mineral related to granite, a compacted mineral
talc with a very small rhomboid crystal size. Also called steatite, serpentine
comes in a wide spectrum of quality and hardness. The softer steatites, which
may contain asbestos type fibers, are called soapstones. Some of the oldest
artifacts known were carved from soapstone. Because this mineral is impervious
to heat and chemicals, it is used to line steel furnaces, build efficient wood and
coal stoves, and make laboratory table tops. Some varieties are as hard as granite
but with a finer grain. I wanted one of these hard types a vein of which occurs
in the Blue Ridge mountain area of Albemarle County in Virginia. Early May
Claire and I brought a thirty four hundred block from a stone yard there. I cut
the fluted heptagonal prism out of this block. The age of this serpentine has
been estimated to be between 400 and 500 million years old.

The white stone for the tetrahedroid from posed an interesting size problem.
I needed enough stone to rough carve a tetrahedron 2

√
2 feet on a side. Did

this need to be a block of white marble 2
√

2 feet thick? I could not find among
my stone suppliers any cube that thick. Fortunately a two foot thick block
would suffice! A very convenient feature of tetrahedrons is that they are not as
thick as they seem from the edge length. I was first impressed by this listening
to a talk in 1966 by Tracy Hall, the first person to synthesize diamonds in the
laboratory [Hall 1986; Nassau 1980]. His technique, standard production process
now, was to use a tetrahedral press with high pressure rams focussed on a regular
tetrahedron. In his talk he showed how he tightly pinched a cylinder or straw,
each successive pinch orthogonal to the next, giving a string of tetrahedrons. A
seemingly too big tetrahedron slides through a seemingly too small straw. Baby
heads are sort of tetrahedral and they get through an impressively small birth
canal, in similar fashion. A tetrahedron of edge length 2

√
2 can be carved out

of a 2 × 2 × 2 cube of marble, so I really only needed a block two feet thick.
After checking on availability up and down the east coast I did find a suitably
thick block of white marble from importer Harold Vogel of Manassas, Virginia.1

I went down, split out my 2 × 2 × 2 foot cube and brought that back in my

1It is an Italian Carrara marble. I incorrectly described in [Ferguson 1994] as Imperial
Danby Vermont marble because of its similarity in carving to the latter stone.



EIGHTFOLD WAY: THE SCULPTURE 153

Slide #4

Figure 5. Silvio Levy used Mathematica to make a 6-page collage of the heptag-

onal tiling of the Poincaré disc, containing about 600 tiles. Much annotated by

the artist, this drawing served as a model for the stone cutting. About half the

tiles — all but the outer layer — made it into the sculpture; they are represented

by 18 classes, each of a slightly different Euclidean shape. (See Plate 3 for the

cutting of the tiles.)
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4× 4 truck with augmented undercarriage. The age of this marble from Italy is
around 200 million years.

In October 1992, I visited MSRI and worked with Silvio Levy on finalizing
the tile data for input to the completely different PC system which controlled
the water-jet I was planning to use to cut the hyperbolic tiles. I had worked out
my own Mathematica programs for tiling the Poincaré disc with regular 120-
degree heptagons. Silvio had been through something like this before when he
generated an automatic version of the type of Escher’s Circle Limit III [Levy
1994; Escher 1989, p. 43; Escher 1982, pp. 97, 320]. He quickly adapted the
Geometry Center word generation programs to extract the Postscript form data
I needed for the water-jet programs. After the conference I went to supervise
the water-jet cutting.

Architect Bill Blass produced the final concrete patio drawings in July 1992.
Since this sculpture was being installed over the Hayward fault zone I worked
out the structural issues with engineer Nellie Ingraham. We agreed finally on five
internal solid steel rods. This required an extensive system of holes to be drilled
in the fluted heptagonal serpentine prism and the matching marble. Physically
matching the heptagonal hand of the white marble to the corresponding heptag-
onal hand of the black serpentine was a problem that had to be solved before
these holes could be drilled.

Slide #7

Figure 6. To debug the water-jet program a full set of wooden blocks was cut

and then assembled.
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Slide #9

Figure 7. Hyperbolic “circle limit” of heptagons tiling installed and curing at

MSRI. The earthquake stabilization hole in the middle is not yet drilled into the

concrete pad and footings.
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Athena–Escher

The base platform of The Eightfold Way makes a direct visual connection
with the circle limit woodcuts of Escher [Escher 1989; 1995; 1992], as mentioned
above. Remarkably enough, Escher had solved the problem of having limit tilings
converge to a boundary triangle or a boundary square, but was stopped at a circle
boundary. His dilemma was solved when he discovered hyperbolic geometry by
making the acquaintance of H. S. MacDonald Coxeter and his work [Coxeter
1957; 1979]. Escher’s wonderful circle limit woodcuts came after that and an
unthinkable amount of painstaking labor. See also [Coxeter 1998; Emmer 1980].

Developing the circle limit of heptagons of The Eightfold Way was very dif-
ferent from Escher’s technique of creating woodblocks for his prints. We have
computer technology today that Escher would I believe have been delighted to
use. I did use a computer directed water-jet to cut wood blocks of the heptag-
onal disc tiling and I did make canvas prints of the hyperbolic tesselation. It
is certainly possible to take rubbings suitable for framing off the stone hyper-
bolic platform of The Eightfold Way. I personally encourage people to do those
rubbings, they are easy to do. The stone tiling itself was so difficult to create
that visitors lifting off versions of it to take home will share the joy of the thing.
Escher drilled holes in his circle limit wood blocks to prevent more impressions
from being made. There are no limits to the number of impressions to be taken
from the circle limit of heptagons of The Eightfold Way.

It was important to specify exactly in computer form the hyperbolic tiling
blocks. Since the 231 precision water-jet cut stone blocks or tiles were to form a
tesselation of the Poincaré conformal disk model of the hyperbolic plane, Math-
ematica and other programs were written to develop inputs for the controller
computer of the water-jet. A robot, the water-jet system responds only to a
meticulously prepared set of instructions. To accomodate the circle at infinity or
boundary of the disc there are 14 disc rim or corona stones. Interior to that are
217 hyperbolic heptagon stone blocks. Each heptagon has seven interior angles,
each of 120 degrees. The 217 tile ensemble has 23 dark and 194 light serpentine
heptagons surrounding a center prism with an exact conformal heptagon base.
The tiles were set in May 1993 by Lajos Biczo. (Given the role of Janos Bolyai
in the early history of non-Euclidean geometry [Greenberg 1993], it was appro-
priate to have someone of Hungarian heritage set this non-Euclidean geometry
disc.) Joe Christy of MSRI facilitated the setting of the tiles and protected them
while the grout cured. The rest of the sculpture could not be installed until the
curing process was complete.

One of the tiles, the center tile, is actually a prism. It relates not to Escher but
to Athena. kaläs k��gajìs (read “kalós kagathós”), the beautiful and the good,
a Greek saying applied to people whose outer beauty reflected internal moral
goodness. I want my sculpture to outwardly reflect the internal integrity and
consistency of mathematical theorems. A reflexion of this theme appears more
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Slide #5

Figure 8. Styrofoam maquette showing∞B heptagon matching by SP-2, tetra-

hedron ∞B input, prism base ∞B output. This was to check the digitizer vs.

inverse digitizer software of the SP-2 written in C by Sam Ferguson.

Slide #10

Figure 9. The 200 million year old white marble cubical block at a stage of

being carved into its tetrahedral form.
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Slide #13

Figure 10. SP-2 fitted maquette. A cloud of points for the surface of ∞B in

the previously carved stryofoam tetrahedroid was rotated and became a virtual

image target to create the other side of ∞B in the stryofoam base. This was to

check the procedure before carving the stone version.

literally, in that I have included in the heptagonal prism a three-dimensional
quotation from a fifth century Greek work which occurs in a series of twelve high
relief metope over entrances to the temple of Zeus at Olympia. These sculptures,
dated about 460 B.C., feature the labors of Herakles, the legendary founder of
the Olympic Games, known to the Romans as Hercules. The specific metope,
now in the Archaeological Museum at Olympia, was taken from the west end
of the temple at Olympia and featured Herakles receiving the golden apples of
the Hesperides from Atlas [Buitron-Oliver 1992, Plate 9, p. 96]. Athena attends
Herakles, helping him hold up the skies while Atlas fetches the four golden apples
from the tree of life, this being the last of the twelve labors of Herakles. Athena
ruled wisdom and literature, arts and crafts, a war goddess; see [Buitron-Oliver
1992, Plate 7, pp. 92–3] for the Statue of Athena, Acropolis Museum, Athens,
a marble from 480 B.C. Athena wears a peplos, a thick woolen garment belted
at the waist with vertical parallel folds, right leg showing through front, left leg
back. Unlike men, women were not represented nude.

The white marble of The Eightfold Way is open to the California sky, upheld
by a serpentine prism of vertical parallel folds, echoing the traditional form of
Athena in her peplos engaged in the task of helping Herakles support the heavens.
One of the curves rising from the heptagon is a quotation from a fold in Athena’s
peplos near her neck. Plate 9 of [Buitron-Oliver 1992] is not so clear; I made a
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Slide #11 Slide #15

Figure 11. Left: The 450 million year old black serpentine prism block with

base end marked as a regular heptagon. The other end will be the ∞B space

heptagon homotopic to this heptagon. This stone is an unremarkable grey before

polishing. Right: The white marble and black serpentine are finally together in

the studio after the various matching holes have been drilled for the steel rod

reinforcements for stabilization during an earthquake.

sketch from the original. This quote I felt appropriate to The Eightfold Way in
the way it involves rigid verticals emphasizing the weight of the two-, three-, and
sevenfold symmetry of the tetrahedral form, a quotation from the geometrical
period of those early historical times.

Robot–Stewart Platform

The precise serpentine geometry counterpoints the free marble topology in
more than form, also in process, a robot water-jet for the former, a Stewart
Platform computer system for the coupling. The top of the serpentine prism
exactly matches one of the 24 topological hexagons carved into the surface of
the tetrahedral form. How could this matching be done? This kind of matching
of two stones has been done before, the Incas and the Italians each have their
own tricks, we have a new one.

The abrasive Colorado River carved the Grand Canyon out of solid rock. I
mused about capturing that sort of power in my studio. Looking over the south
rim at the tiny filament of water glistening in the sun far below was about the
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Slide #12

Figure 12. One of the three pairs of sensors of the Stewart Platform SP-2.

A computer monitors the lengths of the six high tensile strength aircraft cable

emerging from the semi-toroids coupled to the string potentiometers.

Slide #16

Figure 13. Regular heptagon base end of the prism being prepared to fit in the

hyperbolic platform disc. The end matches the missing central heptagon of the

already installed platform.
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Slide #18 Slide #22

Figure 14. Left: Bill Thurston and Joe Christy attaching tapes to the spatial

heptagons above for connecting strings to the regular heptagons below. Right:

Close-up of the marble cloud and supporting serpentine prism with a view of the

Athena quote.

filament size I saw close up in a water jet. The noise of the water jet seems
to compress millions of years of erosion into a few seconds of roaring tornado
sound, churning the catch chamber below into white water. This violent roar
comes from a filament of water issuing from a diamond orifice under 55,000
pounds per square inch pressure. When I used a water-jet to cut the stones
for The Eightfold Way, the water-jet was still somewhat of an experimental
device. Since that time it is a common industrial tool, used to cut all manner
of materials from textiles to five inch thick steel. These devices are not suitable
for carving, they are through cut devices which explode from one side of the
material to the other. They are also robots in the strict sense that they respond
to a predetermined straight line program which allows no variation. All motions
have to be calculated in advance. A complete set of 232 blocks were “dry run”
out of 3

4 -inch plywood. This set of hyperbolic tiles was cut first and assumbled
before cutting the serpentine stone. The final stone, counting the prism, was 24
black and 208 green serpentines. The Virginia green in this case was actually a
bit harder stone than the black. (Greens from other parts of the country tend to
be softer.) The greens tended to be the smaller stones, all the heptagons were
cut to great accuracy with seven circular arc geodesic edges and seven 120-degree
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Slide #19

Figure 15. Close up of some of the incision and excision boundaries of the spatial

heptagonal tiling of the thetrahedroid. Note the identification tapes of Thurston

and Christy.

interior angles. The cutting itself took about a week for both the debugging run
with plywood and the actual cutting of the stones. One of the most difficult
parts of the cutting process was how to hold the part to be cut. Part holding
became more challenging for the smaller heptagons in both the wood and the
stone.

By contrast to the water-jet, the Stewart Platform system in my studio, SP-2,
is not a robot but an information machine [Albus et al. 1993]. The cutting tool
can be moved freely to any accessible point where information is provided as
to the location of a virtual image. There is no straight line program relative
to the cutting process, work is interruptible at any time and point and can be
continued. The operator solves all the trajectory problems as they arise, they
do not need to be computed in advance.

The mating of the white and black heptagons was accomplished by the sec-
ond generation of the Stewart Platform virtual image projection system, SP-2,
was used in the creation of The Eightfold Way. SP-2 has six instead of three
cables with all six lengths monitored by sensors arranged in Stewart platform
format [Albus et al. 1990; 1993]. The operator interactively flies the triangle
(much as if flying a helicopter). Tool tip position (x, y, z) coordinates and tool
orientation (pitch, roll, yaw) are computed from the six cable lengths. Carving
the Eightfold Way included matching two stone parts, a hand shaped heptagon
in the serpentine with a matching rounded heptagon on the tetrahedral marble
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Slide #27 Slide #23

Figure 16. Left: Spatial heptagon tesselation boundaries, part of a Petrie cycle,

for tracing left, right, left, right, left, right, left, right and returning — or for

that matter right, left, right, left, right, left, right, left and returning. Right:

Matching white and black heptagons with whimsically mirror imaged pair of

Helaman Ferguson signatures.

form. The SP-2 helped. First the concave heptagon was carved in the marble.
This heptagon was then touched with the tip of the inactive air drill to input
a cloud of points in no particular order close enough together. The three regis-
tration points were relocated in reversed order to carve the convex hand in the
serpentine to hold the marble at its concave heptagon.

The SP-2 or Stewart Platform Number Two, or the VIP or Virtual Image Pro-
jection refers to one inverse digitization process which I have developed jointly
in a CRADA (Cooperative Research and Development Agreement) between my
studio and NIST (National Institute of Standards and Technology). This inverse
digitization, goes from either parametric equations or a data base in the com-
puter, into physical materials. My aesthetic choice is direct carving in the final
material, e.g., subtractive carving of natural stone. The present form of this
computer instrument has been strongly influenced by that aesthetic choice. The
concepts are simple and powerful and can be adapted to other forms, as was the
case with my series of minimal surface sculptures Costa II and Costa III.

The SP-2 itself is mathematical engineering based on a theorem of Cauchy
from over a century and a half ago. Cauchy discovered many theorems referred
to nowadays as Cauchy’s Theorem. This one states that a convex polyhedron is
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Slide #24

Figure 17. Spatial heptagons crowding together to tesselate the inside the

tetrahedron.

Slide #26

Figure 18. Triple point or triskelion, this one all incision edges. This corresponds

to a boundary point of the cluster. Which one?
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determined if the lengths of its edges are known. Cauchy applies to the polyhe-
dron being an octahedron of eight triangular faces, twelve edges and six vertices,
the dual of a cube. The SP-2 which hangs in my studio includes two rigid equi-
lateral triangles, one on the ceiling 13 feet on a side and one triangle suspended
in midair 3 feet on a side. The other six edges are made of high tensile strength
fine cable of variable length feeding under tension into six length sensors. These
six lengths are then available to the computer (a MacII soon to be replaced by
a G3) through an analog to digital interface. Since the six edges of the two rigid
triangles are known exactly, the other six variable lengths, when known at any
instant completely determine the octahedron. They determine implicitly the po-
sition and orientation of the suspended and moveable triangle, in particular the
position and orientation of any tool fixed to that triangle.

A complex mathematical model originally developed for NASA for the space
shuttle has been adapted for this engineering setup. The current software in-
cludes a C language implementation of this model which takes the six lengths
imput and computes six coordinates which are three for the location of the tool
tip and three for the orientation of the tool. This computation is done in real
time on the Mac II.

It is helpful to compare the Stewart Platform system SP-2 with the tradi-
tional pointing machine. An accurate but not helpful comparison would be that
a pointing machine is to the SP-2 as a hand cart is to the helicopter. Point-
ing machines for sculpture have been around for hundreds of years. Pointing
machines, whatever their variety, refer to an existing object, a solid model or
maquette, which is to be copied or enlarged. These pointing machines are slow
and laborious to use, but quite effective. On the other hand, the SP-2 does not
need a physical model to work from, the image can be in the computer as a
data base or as equations. Digitization is a process for getting physical image
coordinates into a computer data base. The SP-2 can be run in reverse, as a
digitizer. A helpful description of the SP-2 is that it is an inverse digitizer. The
heptagonal hand of the white marble was digitized, once the data was in in the
computer, the heptagonal surface image in three dimensions was rotated around
(in the computer) and then that virtual image was projected back into three
dimensions, this time cut directly in the black serpentine.

Explicit quantitative sculpture includes a quantitative creation (mathemati-
cal) prior to the physical creation. The physical artifact then partakes in various
ways of the original quantitative creation, but tends to be convolved with geo-
logically or physically interesting natural materials. Technology is just emerging
to make such sculpture possible in person hours instead of months or years. It
should be kept in mind, even possible at all, due to the inhumanly huge numbers
of calculations involved, once impossible, now possible.
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Location

The Eightfold Way is permanently installed on the southeast patio of the
Mathematical Sciences Research Institute (MSRI), at 1000 Centennial Drive,
approximately 1300 feet (400 meters) above sea level (see http://www.msri.org).
This land, part of the upper Berkeley hills, belongs to the University of Cal-
ifornia, although MSRI is an independent entity. Centennial Drive winds up
from the Berkeley campus past the Lawrence Berkeley National Laboratory and
the Lawrence Hall of Science to the Space Science Laboratory and MSRI. On
the slope from the Lawrence Hall to MSRI there are parking lots; the sculpture
patio, however, faces the other way, onto a fold of the hills, with a lovely view
of mountainside, Oakland, and part of the San Francisco Bay (see Plate 1 and
Figure 7). A wide trail, popular with joggers and walkers, leads from MSRI
along a level curve of the hills; narrower trails crisscross the hillside through the
scrub and scree.
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In fond memory of my friend and teacher Michio Kuga.

Abstract. We define bicycles and present the Bicycle Conjecture, which is
false in general but which we believe is neverthelesss quite useful, and derive
from it specific open conjectures about some explicit conjectural generators
of the bicycles of invariants of components of the Weil representation of
SL2(Fq) ·Aut(Fq) and Sp2r(Fp). Construction of these generators depends
on our result that the Weil representation has a unique invariant 3-tensor
and our explicit computation of it, and on results on intertwining operators
given in an appendix. We then give a tentative definition of the notion of
“geometric construction” based on covariants. In spite of its limited scope,
it is adequate for the purposes of this article. We prove that the modular
curve X(p) can be constructed geometrically from that 3-tensor provided p
is a prime ≥ 11 and 6= 13. This uses our determination of the automorphism
group of the invariant 3-tensor. The conjectural generators for the bicycle of
invariants of SL2(Fq)·Aut(Fq) are inspired by and generalize the generators
given in the Klein–Fricke treatise for the ring of invariants of the three-
dimensional representation of PSL2(F7). That includes, in particular, the
quartic invariant defining the Klein curve.

1. Introduction

The work described in this article was motivated by a desire to understand
from a general point of view the results of Felix Klein on the equations defin-
ing modular curves of prime order, especially his remarkable discovery that the
modular curve X(11) is the singular locus of the Hessian of the cubic threefold

v2w + w2x+ x2y + y2z + z2v = 0.
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This same desire has motivated much of my work over the years (see references
in the bibliography), including the computation in [Adler 1981; 1992b] of the
ring of invariants of a five-dimensional complex representation of PSL2(F11) and
the joint work [Adler and Ramanan 1996] on moduli of abelian varieties. At the
same time, these efforts have led to other problems of interest in their own right.

In this paper, we make our first attempt at a synthesis of what we have learned
from our efforts. We begin in Section 2 with some general considerations about
rings of invariants introduced in [Adler 1981; 1992b], specifically the concept of a
bicycle. A bicycle is a ring equipped with an additional structure of left module
over itself. The ring of invariants of a self-adjoint group of operators or, more
generally, of a weakly self-adjoint group, as in Definition 2.1, is an example of a
bicycle. This fact enables one to generate rings of invariants from a small number
of generators using bicycle operations. After introducing the notion of a bicycle,
we then state a general conjecture (2.4), called The Bicycle Conjecture, about
the bicycle of invariants of a finite group. As an example in Section 2.7 shows,
the conjecture is false in general. Nevertheless, we believe that it provides a
powerful tool for computing rings of invariants. The papers [Adler 1981; 1992b],
show how this can work.

One weakness with the Bicycle Conjecture is that it requires one to begin with
some already computed invariants. Producing explicit invariants can often be
quite difficult by direct computations. Therefore it is useful to know of families
of representations of finite groups for which one can produce such invariants by
pure thought. We begin in Section 3 with a brief discussion of the invariants of
a complex three-dimensional representation of SL2(F7). These were computed
by Klein [1879a] and his ingenious construction of proposed generators in that
case already exhibits many features of the general case. Indeed, by adapting the
tricks Klein originally used, much of the work is already done for us. In Section 4,
we refer to the results of [Adler 1992a; 1994], in which an explicit invariant 3-
tensor Θ was constructed for the Weil representation of SL2(Fq), where q = pr

is an odd prime power. Starting with this 3-tensor, one can construct other
invariants by considering its covariants [Dieudonné and Carrell 1971; Grace and
Young 1903], when it happens to be symmetric, and also by considering certain
intertwining operators of the second tensor power of the Weil representation of
finite symplectic groups. Thus, we have some explicit invariants and we specialize
the Bicycle Conjecture to the case of these invariants. The result is then a very
specific conjecture (4.2), called the Θ Conjecture, regarding the generators of
the bicycle of invariants of the SL2(Fq) · Aut(Fq) in the component of its Weil
representation of dimension (q + ε)/2, where ε is the quadratic character of −1
in Fq. We do not know of any explicit invariants of SL2(Fq) which are not
invariants of the larger group SL2(Fq) · Aut(Fq).

In Section 5, we present a similar conjecture regarding the ring of invariants
of the finite symplectic group Sp2r(Fp) when −2 is a quadratic residue mod-
ulo p. In this case, we can give an explicit quartic invariant Ω for the group
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as well as certain invariants which we express as explicit covariants of Ω. By
applying the Bicycle Conjecture to these invariants, we obtain conjectural gen-
erators (Conjecture 5.2) for the bicycle of invariants of Sp2r(Fp) (or at least
those of even degree) on the component of the Weil representation of dimension
(p + 1)/2. This conjecture is called the Ω Conjecture. From it, we can deduce
other specific conjectures.

Having shown the utility of covariants in formulating explicit conjectures re-
garding the generators of bicycles of invariants, it is natural to ask how powerful
a tool covariants provide. More precisely, given one invariant f of a finite group
G, which invariants of G arise as covariants of f? Thanks to the excellent help
of Gerry Schwarz (Theorem 7.1) and of David Vogan (Theorem 7.3), we have
some answers to such questions and we present them in Corollary Theorem 7.5,
Corollary 7.6 and Theorem 7.7.

In Section 6, we draw attention to some of the philosophical implications of
questions and results of this type. More precisely, if we follow Klein in describing
geometry as that which is preserved by a group action, then we have the right
to ask: if that is what we mean by geometry, what do we mean by a geometric
construction? For the case of classical projective geometry, we tentatively define
the notion of geometric construction in terms of covariants. Very likely, ours is
not the best definition and we give some criticisms of it as well in Section 6.
However it does serve our purposes in this paper. These considerations also
allow us to compare the geometry imposed on complex projective space by G

with classical projective geometry.
As a result of the concepts introduced in Section 6 and the results of Gerry

Schwarz and David Vogan mentioned above, we are able to give a qualitative
generalization of the theorem of Klein about X(11) mentioned in the first para-
graph of this section: we prove (Theorem 7.8) that when p is a prime ≥ 11 and
6= 13 there exists a geometric construction of the modular curve X(p) from the
invariant 3-tensor Θ. More precisely, if −1 is a square modulo p, then one can
construct Klein’s A-curve of level p from the restriction of Θ to the even part of
the Weil representation of SL2(Fp), while if −1 is not a square modulo p then
one can construct Klein’s z-curve from the restriction of Θ to the odd part of
the Weil representation. Clearly, one cannot formulate such a theorem without
asking what one means by a geometric construction.

In view of the importance of the Weil representation in our work, we include
an appendix (Section 8) describing the Weil representation and the fundamental
intertwining operators used in Sections 4–7. This appendix may be regarded as
a sequel to [Adler 1989].

2. Group Representations and Bicycles

Let k be a field and let V be a finite-dimensional vector space over k. The
k-linear functions from V to k form a vector space which we denote V ∗ and
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which we call the dual space of V . There is a natural pairing [ · , · ] : V ×V ∗ → k

defined by evaluation of elements of V ∗ at points of V , that is, by the rule

[v, v∗] = v∗(v)

for all v ∈ V and all v∗ ∈ V ∗. We will write k-linear operators on V as operators
on the left and k-linear operators on V ∗ on the right. If α is an endomorphism
of the vector space V , there is one and only one endomorphism α∗ such that

[αv, v∗] = [v, v∗α∗] (2.1)

for all v ∈ V and all v∗ ∈ V ∗. Denote by S[V ] the symmetric algebra on V and
by S[V ∗] the symmetric algebra on V ∗. Every invertible k-linear transformation
α of V extends uniquely to an automorphism of the graded k-algebra S[V ]. We
will denote that automorphism S(α). Similarly, we will denote by S(α∗) the
unique extension of α∗ to an automorphism of the graded k-algebra S[V ∗]. As
in the case of operators on V ∗, the operator S(α∗) will be written on the right.
If v∗ is any element of V ∗, the mapping v∗ : V → k extends uniquely to a
derivation Dv of the symmetric algebra S[V ]. Furthermore, if α is any invertible
k-linear transformation of V , the identity (2.1) implies that

Dv∗α∗ = Dv∗ ◦ S(α). (2.2)

Furthermore, the operators Dv∗ with v∗ ∈ V ∗ commute with each other and
generate the algebra, denoted D(V ), of differential operators with constant co-
efficients of S[V ]. The mapping v∗ 7→ Dv∗ extends uniquely to an isomorphism
D of S[V ∗] onto D(V ). The image of an element f∗ of S[V ∗] under D will be
denoted Df∗ . The identity (2.2) then extends to the identity

Df∗S(α∗) = Df∗ ◦ S(α).

Let ρ be a representation of a group G as invertible k-linear transformations
on V . Then the dual representation ρ∗ of G on V ∗ is defined by ρ∗(g)v∗ =
v∗ρ(g−1)∗. In particular, V ∗ is a left G-module with respect to ρ∗. Let σ

be an automorphism of G. Then the composition ρ ◦ σ of ρ with σ is also a
representation of G on V . We denote that representation by ρσ .

Definition 2.1. By a weakly self-adjoint representation we will mean a quin-
tuple (G, ρ, σ, τ, φ) where G is a group, ρ is a representation of G on a vector
space V over k, σ is an automorphism of G, τ is an automorphism of k and
φ : V → V ∗ is a τ -semilinear isomorphism of the vector space V onto its dual
space V ∗ such that

φ(ρσ(g)v) = ρ∗(g)φ(v) (2.3)

for all g ∈ G and all v ∈ V , where ρ∗ denotes the dual representation of ρ and ρσ

denotes the representation ρ ◦ σ. Thus, φ is a τ -semilinear intertwining operator
between ρ∗ and ρσ . When it is not necessary to specify ρ, σ, τ and φ, we will
sometimes simply speak of G as being a weakly self-adjoint group.
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Suppose (G, ρ, σ, τ, φ) is a weakly self-adjoint representation. The isomorphism
φ extends uniquely to a τ -semilinear isomorphism S(φ) of the k-algebra S[V ]
onto the k-algebra S[V ∗]. The identity (2.3) then implies that

φ(S(ρσ(g)f)) = S(ρ∗(g))S(φ(f))

for all f ∈ S[V ]. Composing the τ -semilinear algebra isomorphism S(φ) with
the algebra isomorphism D, we obtain the τ -semilinear algebra isomorphism
D ◦ S(φ), which we will denote Dφ. If f, p are elements of S[V ] we denote by
f#φp the result of applying the differential operator Dφ(f) to the element p of
S[V ]. We then have

(S(ρ(g))f) #φ (S(ρ(g))p) = S(ρ(g))(f#φp)

for all f, p ∈ S[V ] and all g ∈ G.
In particular, we have the following two results.

Proposition 2.2. Let G, ρ, V, V ∗, φ, Dφ be as above. Suppose that f is an
element of S[V ] invariant under the representation ρ of G. Then Dφ(f) is a
differential operator on S[V ] commuting with the operators ρ(g) for all g ∈ G.

Proposition 2.3. Let G, ρ, V, V ∗, φ, Dφ be as above. Suppose that f, p are
elements of S[V ] invariant under the representation ρ of G. Then f#φp is also
an element of S[V ] invariant under the representation ρ.

Thus, in the situation we are considering, the ring S[V ]G of invariants for the
representation ρ is closed under the operation #φ. Using it, one can often rep-
resent invariant elements of S[V ] with considerable brevity. It also offers the
advantage that from a very small number of invariants, one can generate the
entire ring of invariants by means of the new operation #φ on invariant polyno-
mials. For example [Adler 1981; 1992b], in the case of the group PSL2(F11) in
an irreducible representation of degree 5 over the field of complex numbers, the
transcendence degree of the ring of invariants over the field of complex numbers
is 5 but we are able to generate it from an invariant of degree 3 and an invariant
of degree 5 using ring operations and the new operation #φ.

It therefore seems appropriate to begin the study of a new type of algebraic
structure consisting of a ring R and a homomorphism from R into the ring of
endomorphisms of the additive group of R. Thus, R is a ring with an exotic
structure of left module over itself. That module structure is a ring homomor-
phism from the ring R into the ring of endomorphisms of the additive group of R.
I call such a structure a bicycle. Therefore, we have associated a bicycle to the
quintuple (G, ρ, σ, τ, φ) which we will call the bicycle of invariants of G acting on
V . This bicycle does depend on σ, τ and φ as well, but in practice these will be
known from the context and we omit explicit mention to avoid circumlocution.
In the case of the bicycle of invariants, the exotic module structure is simply Dφ.
Hence, we may denote the bicycle of invariants by (S[V ]G, Dφ).
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The category of rings is naturally embedded in the category of bicycles via the
regular representations. What we have in the case of bicycles of invariants is a
class of examples of of bicycles which do not arise in this way. This class has other
special features which ought to be noted. First, in the bicycle of invariants of
(G, ρ, σ, τ, φ) the exotic module structure is an action of the ring on itself by dif-
ferential operators. Thus, it is appropriate to speak of it as a differential bicycle.

The notion of differential bicycle is quite general, since one has a notion of
differential operator on any commutative ring with unity: a differential operator
of order 0 on such a ring R is just multiplication by an element of R while, for
n > 0, an endomorphism of the additive group of R is a differential operator
of order ≤ n if its commutator with every differential operator of order 0 is a
differential operator of order < n. In particular, it makes sense to speak of the
degree of such a differential operator as being the smallest integer n for which
the operator has degree ≤ n. This defines a filtration of the ring Diff(R) of
differential operators on R but in general not a grading.

If the ring R happens to have a grading, one can speak of a different notion
of degree for a differential operator, which we will call the graded degree of the
operator. We will say that a differential operator D has graded degree n if, viewed
as an endomorphism of the additive group of R, which is a graded abelian group,
D has degree −n. It is not necessarily the case that a differential operator on a
ring with a grading has a graded degree. Nor is it necessarily the case in general
that the graded degree coincides with the degree of the differential operator in
case the graded degree is well defined. If a differential operator on a graded
ring is such that its graded degree is well defined and equals the degree of the
differential operator, we will say that the operator has good grades.

If S[V ]G is the ring of invariants and if we denote by M the underlying additive
group of S[V ]G with its exotic left module structure Dφ, then then we can view
M as a graded module by defining the grade in M of a form of degree d to be
−d. Hence, we introduce the concept of a graded bicycle by saying that a graded
bicycle is a bicycle (S,Φ) such that S is a graded ring and such that whenever x
and y are elements of S homogeneous of degrees m and n respectively the element
Φ(x)(y) of S is homogenous of degree n −m. Thus the ring of invariants of a
weakly self-adjoint group is a graded bicycle. Furthermore, if (S,Φ) is a graded
bicycle and also a differential bicycle, we will say that (S,Φ) is a differential
graded bicycle. We do not assume that for every homogeneous element x of S,
the differential operator Φ(x) has good grades. The ring of invariants of a weakly
self-adjoint group is a differential graded bicycle.

Although the formal definition of a bicycle as an algebraic structure is new,
the practice of converting invariants into invariant differential operators goes
back to roughly the middle of the 19th century. For example, in the classical
study of invariants of binary forms, one in effect uses the fact that the natural
representation of SL2(C) on C2 is symplectic and gives rise to a bicycle structure
on the invariants of binary forms of degree n.



INVARIANTS OF SL2(Fq) ·Aut(Fq) ACTING ON C n FOR q = 2n± 1 181

(Actually, the structure is richer in this case than just the bicycle structure.
One has, for example, transvection operators (f, g)k for every nonnegative integer
k and the bicycle operation f#g is proportional to (f, g)s, where s is the degree
of f .)

In the case of the ring of invariants for the simple group of order 660 in a five-
dimensional irreducible representation, we have given generators and relations
for the ring ([Adler 1981; 1992b]; see also Section 6 of this paper). But it would
be interesting to know how to give a presentation of the bicycle of invariants.

In connection with the bicycle of invariants of (G, ρ, σ, τ, φ), we may also
consider the following rings:

(1) the ring D1 of differential operators generated by S[V ]G and Dφ(S[V ]G);
(2) the ring D2 = (Diff(S[V ]))G of G invariant polynomial differential operators

on V ;
(3) the ring D3 = Diff(S[V ]G) of differential operators on S[V ]G;
(4) the ring D4 of all differential operators on the quotient field of S[V ] which

leave S[V ]G invariant modulo those that annihilate it.

It would be interesting to understand the relation among these four rings in more
detail. For example, in general D1 is not equal to D2, as shown by the following
counterexample ([Levasseur and Stafford 1995], after the proof of Theorem 5):
one lets G be a cyclic group of order 3 acting nontrivially on V = k = C
by multiplication by cube roots of unity. On the other hand, one does have
D1 = D2 in case G is a Weyl group acting by reflections [Levasseur and Stafford
1995, Theorem 5; Wallach 1993]. (I am indebted to David Vogan for bringing
the results of these two papers to my attention.)

In view of the ease with which the bicycle structure cuts across the lines
usually drawn by algebraic independence, it is tempting to make the following
conjecture:

The Bicycle Conjecture 2.4. Let (S[V ]G,#φ) be the bicycle of invariants
of (G, ρ, σ, τ, φ). Let P1, . . . , Pr be homogeneous elements of S[V ]G. Assume that
the intersection of the automorphism groups of P1, . . . , Pr is equal to G. Then
every element of S[V ]G can be obtained from P1, . . . , Pr using ring operations,
scalar multiplication and the new operation #φ.

Remark 2.5. Let m be the greatest common divisor of the degrees of P1, . . . , Pr.
Let M be a multiple of m Let H denote the cartesian product of the group G and
the group of M -th roots of unity. We can then extend the quintuple (G, ρ, σ, τ, φ)
to a quintuple (H, ρ′, σ′, τ, φ) where ρ′ sends an M -th roots of unity ξ to scalar
multiplication by ξ and where σ′ is the identity on M -th roots of unity. We can
then apply the Bicycle Conjecture to this extended quintuple. Let Q1, . . .Qs be
homogeneous elements of S[V ]G the intersection of whose automorphism groups
is H. Then every invariant of G whose degree is divisible by M is obtained from
Q1, . . . , Qs using ring operations, scalar multiplication and the new operation
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#φ. This follows at once from the Bicycle Conjecture and from the observation
that an invariant of G has degree divisible by M if and only if it is an invariant
of H.

Remark 2.6. One example of the Bicycle Conjecture would be the assertion that
the bicycle of invariants of the Monster in its faithful irreducible represention of
lowest degree is generated by the invariant quadratic form and Griess’ invariant
cubic form.

Remark 2.7. It is necessary to make some requirement on the automorphism
groups of the forms P1, . . . , Pr. Without it, one can easily obtain counterexam-
ples. For example, let G be the trivial group and let the set of Pi be empty. One
can also take G to be the trivial group acting on a one-dimensional complex vec-
tor space, letting r = 1 and P1 = x2. Finally, one can take G to be any subgroup
of the symmetric group Sn other than Sn itself and consider the representation
of degree n of G given by permuation of the coordinates of Cn. One can then
take P1, . . . , Pn to be the elementary symmetric functions of x1, . . . , xn and let
the bicycle structure be given by

f#g = f
(
∂

∂x1
, . . . ,

∂

∂xn

)
g.

The polynomials P1, . . . , Pn are invariant under Sn and so will all polynomials
derived from them by bicycle operations, so one won’t get all of the invariants
of G in this way.

As stated, the hypothesis of the Bicycle Conjecture is too weak. The conjecture
is false for the natural permutation representation of the symmetric group Sn.
Indeed, if for k ≥ 1 we denote by αk the sum of the k-th powers of the n variables
xi, 1 ≤ i ≤ n, then the bicycle generated by αi, αj, with gcd(i, j) = 1, i < j,
j > 2, is the polynomial ring generated by all αk with 1 ≤ k ≤ j. In particular,
it doesn’t contain αn if j < n.

One could strengthen the hypotheses by requiring that at least one or even
that all of the Pi have automorphism group G. It might also be that one needs
to assume the representation ρ is irreducible. One could also require that the
degrees of the Pi be greater than or equal to some lower bound. Finally, whatever
their degrees, one could claim only that the conjecture be true for generic choices
of the Pi’s. In the absence of any nontrivial example of a quintuple (G, ρ, σ, τ, φ)
for which one can prove the Bicycle Conjecture for every choice of P1, . . . , Pr
satisfying even the strictest conditions we might wish to impose, it is pointless
to make the conjecture more precise at this point. However, for definiteness, we
will retain the version stated above throughout this paper. (It is reasonable to
expect one of the variants of the conjecture mentioned here to hold and to expect
that the conjectural generators we propose here for the bicycles of generators of
SL2(Fq) · Aut(Fq) do in fact generate.)
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Problem 2.8. In view of the detailed knowledge we have about symmetric
polynomials, and more generally about Weyl group invariants, it seems plausible
that one could actually prove the Bicycle Conjecture if the polynomials Pi are
chosen to have sufficiently high degree (e.g. at least one of them > n in the case
of Sn) and to be generic.

In order to provide further tests of the Bicycle Conjecture, in Section 4 we will
present a more precise conjecture for the bicycle of invariants of the irreducible
representations of degree (q ± 1)/2 of SL2(Fq) ·Aut(Fq).

3. The Tricks of Felix Klein for PSL2(F7)

In this section we present the generators discovered by Felix Klein for the
ring of invariants of a three-dimensional complex representation of PSL2(F7).
Our reason for presenting this separately is that we will find that Klein’s tricks,
supplemented with some of our own, suffice to describe conjectural generators
for SL2(Fq) in one component of the Weil representation in general.

The first invariant discovered by Klein is the quartic x3y + y3z + z3x, which
we will denote f in this section, following Klein. Klein was motivated to find an
invariant of this degree because he knew that it would be the equation defining
an embedding of the modular curve X(7) of level 7 as a plane quartic curve.

The second invariant found by Klein is the Hessian of f , which he divided by
a superfluous constant and denoted ∇. Explicitly,

∇ =
1
54

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z

∂2f

∂y∂x

∂2f

∂y2

∂2f

∂y∂z

∂2f

∂z∂x

∂2f

∂z∂y

∂2f

∂z2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 5x2y2z2 − xy5 − yz5 − zx5.

Thus, one way to get a new invariant is to compute the Hessian of a known
invariant. To get the invariant C of degree 14, he bordered the Hessian ma-
trix with the partials of the Hessian and took the determinant, dividing by a
numerical factor:

C =
1
9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z

∂∇
∂x

∂2f

∂y∂x

∂2f

∂y2

∂2f

∂y∂z

∂∇
∂y

∂2f

∂z∂x

∂2f

∂z∂y

∂2f

∂z2

∂∇
∂z

∂∇
∂x

∂∇
∂y

∂∇
∂z

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Thus, another trick to obtain a new invariant from an old one is to border
the Hessian with the first partials of the Hessian. Finally, there is Klein’s trick
of taking the Jacobian of the 3 algebraically independent forms f , ∇ and C to
produce the invariant K of degree 21:

K = const ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f

∂x

∂∇
∂x

∂C

∂x

∂f

∂y

∂∇
∂y

∂C

∂y

∂f

∂z

∂∇
∂z

∂C

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, one can always try to produce new invariants from old ones by taking
Jacobian determinants. Note that whereas f , ∇ and C all have even degree, the
invariant K has odd degree. In general, if one has n algebraically independent
forms of even degree in n variables, one can take their Jacobian and obtain a
nonzero form. Moreover, if n is odd, as it is in our case, the Jacobian will have
odd degree. Thus, Klein’s trick is also a trick to obtain an invariant of odd
degree from invariants of even degree.

Part of the beauty of Klein’s generators lies in the fact that they have in-
teresting geometric interpretations. The curve f = 0 in P2(C) is, as noted,
the modular curve of level 7 embedded by a natural basis for its holomorphic
1-forms. The curve ∇ = 0 is the locus of all points in the plane whose polar
conics with respect to the quartic f = 0 are singular. The curve C = 0 is the
locus of all points in the plane whose polar lines with respect to the Hessian
∇ = 0 are tangent to their polar conics with respect to the Klein curve f = 0.
Furthermore, the curve C = 0 meets the Klein curve at the points of contact
of its 28 bitangents. The curve K = 0 is the locus of all points whose polar
lines with respect to f = 0, ∇ = 0 and C = 0 are concurrent. It also may be
described in the following way: the group PSL2(F7) has 21 elements of order 2.
Each such involution fixes a projective line in P2(C) as well as a point. Thus,
the 21 lines associated to the 21 involutions form a reducible curve of degree 21
invariant under the group. Since there is only one invariant curve of degree 21,
it must be K = 0. In particular, K is the product of 21 linear factors.

Klein also knew how to write the quartic f as a 4 × 4 determinant whose
entries are linear forms in x, y, z. This fact may be expressed by saying that one
may associate to f a net of quadrics in projective space and the Klein curve is
the locus of singular quadrics. The locus of the singular points of the singular
quadrics is a twisted curve of degree 6 and genus 3 isomorphic to the Klein curve.

Henceforth, we will freely use the notation introduced in the Appendix (Sec-
tion 8). The reader is strongly advised to read the leisurely discussion there
before proceeding, if only to gain passive knowledge of the relevant notation.
However, to the more adventurous readers who prefer jungles to sidewalks, we
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offer the list of notation below as a machete. To facilitate such an index, groups
of paragraphs of Section 8 have been numbered. Some notation is listed more
than once, signifying that it has been redefined, specialized or generalized. This
is especially the case for the Weil representation which is defined according to
[Weil 1964] in 8.9 and denoted rΓ, adapted to the case of finite symplectic groups
Sp2n(Fp) in 8.12 and denoted r′, composed with automorphisms σν for ν ∈ F×p in
8.16 and denoted r′ν , allowed to act on tensor powers of the version of 8.16 in 8.18
without change of notation, restricted to the subspaces V +

ν = V +, V −ν = V −

of even and odd functions in 8.21 and denoted ρ±ν , restricted to the symplec-
tic groups Sp2n(Fq) of odd characteristic in 8.25 and denoted r′ν with ν still a
nonzero element of Fp, and finally generalized to the case where ν is a nonzero
element of Fq in 8.28. Derived notation such as ρεν is not explicitly redefined
in each context and the reader is expected to be able to make the necessary
modifications without difficulty.

8.1 G, G∗, T, A(G), 〈 · , · 〉
8.2 T0, A0(G)
8.3.1 t0(f)
8.3.2 d0(α)
8.3.3 d′0(γ)
8.4 B(G)
8.5 L2(G), U
8.6 A(G), B0(G), π
8.7.1 t0(f)
8.7.2 d0(α), |α|
8.7.3 d′0(γ), Φ∗, |γ|
8.9 B0(G, Γ), rΓ

8.10 Sp(G), Sp′(G)
8.11 B1(G), (E), V +, V −, S+, S−

8.12 G, χ, φ, Sp′′(G), r′

8.14 G,
( ·
p

)
8.15 ν, σν , sν , s

8.16 r′ν
8.18 r′, r′ν, t0(f), d0(α), d′0(γ)
8.19 T

8.21 ρ+
ν , ρ

−
ν , V

+
ν , V

−
ν

8.24 Ta, b
8.25 r′, r′ν
8.26 A#(G), [ · , · ], tr, τ
8.28 σν , sν , r

′
ν

8.31 τa, 〈 · , · 〉, Q, Q+, Q−
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4. Conjectural Generators of the Bicycle of Invariants of
Aut(Fq) · SL2(Fq)

In this section, we will try to provide a general context for the various tricks
just studied. Let q = pr be an odd prime power and let ν be a nonzero element
of Fq. In [Adler 1992a; 1994] I showed (cf. 8.27–8.28) that there is a unique (up
to scalar multiple) 3-tensor on L2(Fq) invariant under the Weil representation
r′ν, and I wrote it down explicitly in general. We denote this 3-tensor by Θ. Let
ε be the quadratic character of −1 in the finite field Fq and let η be the quadratic
character of −2 in Fq . Then Θ actually arises from an invariant 3-tensor on V +

ν

if ε = 1 and on V −ν if ε = −1. If we abuse notation by identifying ε with its
sign, we can say that Θ arises from a ρεν -invariant 3-tensor on V εν . Further, Θ is
a symmetric 3-tensor if η = 1 and is an alternating 3-tensor if η = −1. We can
express this by saying that Θ is η-symmetric.

Regarding Θ as a 3-tensor on V εν , one can ask for the group of linear transfor-
mations of V εν which preserve Θ. In [Adler 1994], it was shown that for q ≥ 11
the automorphism group is generated by the group

ρεν(SL2(Fq) · Aut(Fq))

and the group of scalar multiplications by cube roots of unity, provided that q 6=
13. Here, Aut(Fq) denotes the Galois group of Fq over Fp and SL2(Fq) ·Aut(Fq)
denotes the semidirect product of Aut(Fq) and SL2(Fq). If q = 13, then the
automorphism group is the complex Lie group G2.

We now have 4 cases, according to the value of q modulo 8; these cases will
be denoted 1, 3, 5, 7.

Case 1: If q is congruent to 1 modulo 8, we have η = ε = 1. We can write q in
the form

q = 8n+ 1.

The dimension of V + is 4n + 1 and Θ is a cubic form on V +. On the other
hand, since q is congruent to 1 modulo 4, the representation of SL2(Fq) on V +

ν

is orthogonal. The invariant quadratic form Q+ is given explicitly at the end
of the appendix. According to the Bicycle Conjecture, we expect Θ and Q+ to
generate the bicycle of invariants.

We could also have used Klein’s tricks to produce the other conjectural gen-
erators, but it is clearly better to use the invariant quadratic Q+ as long as it
is handy. The same remark applies, mutatis mutandis, in the case q = 8n + 5
below.

Case 3: If q is congruent to 3 modulo 8, then we have η = 1, ε = −1 and we
can write q in the form

q = 8n+ 3.

The dimension of V − is 4n+ 1 and Θ is a cubic form on V −. The Hessian of Θ
is a form of degree 4n+1. If 3 doesn’t divide 4n+1 then the Bicycle Conjecture
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implies that the bicycle of invariants is generated by Θ and its Hessian. If 3 does
divide 4n+ 1 then the bordered Hessian has degree

(4n− 1) + 2(4n) = 12n− 1,

which is not divisible by 3. In this case, the Bicycle Conjecture implies that the
bicycle of invariants is generated by Θ and the bordered Hessian.

At the end of this section, we will describe a way of producing an invariant of
degree (q + 1)/4 from Θ by using certain intertwining operators.

Remark 4.1. We have tacitly assumed that neither the Hessian determinant
nor the bordered Hessian determinant is zero. We will make that assumption
without explicit mention in all that follows. However, it certainly needs to be
checked in any test of these conjectures. In cases 5 and 7 below, we will further
assume that the invariants Ψ and Ψ′ have automorphism group no bigger than
that of Θ. In the case where q is a prime p of the form 4m + 3, this follows
from the fact [Adler 1994] that PSL2(Fp) is a maximal algebraic subgroup of
PSLn(C) for n = (p ± 1)/2. If p is congruent to 1 modulo 4 and p 6= 13, then
the only algebraic subgroups of PSLn(C) that could contain PSL2(Fp) are the
orthogonal group O(p+1

2 ,C), if ε = 1, or the symplectic group Sp(p−1
2 ,C), if

ε = −1. Of these two possibilties, only the orthogonal group has any polynomial
invariants. Any homogeneous invariant for the orthogonal group is a power of
the invariant quadratic form and in particular has even degree. Since the degree
of Ψ is 4n+ 2, it is conceivable that it is a power of the quadratic form. So we
are assuming that this is not the case. However, as long as one is conjecturing,
one might as well conjecture that the automorphism group is well behaved even
when q is not a prime.

In the two preceding cases, we had η = 1, which meant that the 3-tensor Θ
was a cubic polynomial. In the remaining cases η = −1, which implies that the
3-tensor is alternating. We must therefore rely on different methods to produce
invariants. However, we can still use Θ for that purpose by means of various
tricks. By combining these tricks with those of Felix Klein, we can handle the
remaining cases without difficulty.

Case 5: If q is congruent to 5 modulo 8, then we have η = −1 and ε = 1 and
we can write

q = 8n+ 5.

In this case, Θ is an alternating 3-tensor on V +. Since we will now deal with
various Weil representations and we will want to keep track of them, we will say
instead that it is an alternating 3-tensor on V +

ν . We can then regard Θ as an
equivariant mapping from V +

ν to
∧2 V +

−ν . Since the dimension 4n + 3 of V +
−ν

is odd, we cannot obtain a nonzero invariant by composing with the Pfaffian.
However, we can instead use the fundamental intertwining operator T to map∧2

V +
−ν isomorphically onto Sym2 V −−2ν . Composing T ◦Θ with the determinant
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on Sym2 V −−2ν, we obtain an invariant Ψ of degree 4n + 2 on V − + ν. Since
q is congruent to 1 modulo 4, we know that there is also an invariant Q+ of
degree 2. If we assume that Ψ is nonzero and has automorphism group equal to
r′(SL2(Fq) ·Aut(Fq)) modulo scalars, then according to the Bicycle Conjecture,
we can generate every invariant of even degree on V +

ν from Ψ and Q+ using
bicycle operations. However, there are certainly invariants of odd degree and we
would like to get them too. It is enough, assuming the Bicycle Conjecture, to
get just one of them. We can do that by adopting the trick used by Felix Klein
to get his invariant K of degree 21 for PSL2(F7), that is, by taking a Jacobian
determinant. Indeed, once we have used bicycle operations to generate 4n + 3
algebraically independent forms of even degree starting with Ψ and Q+, we can
then take their Jacobian determinant to get a form of odd degree. Using it and
bicycle operations, we get the full bicycle of invariants.

We remark that the case q = 13 requires some additional concern since the
automorphism group of Θ on V + is the complex Lie group G2 in that case.
However, since the construction of the proposed bicycle generators involves the
use of the intertwining operator T, which is only invariant under the smaller
group SL2(F13), we don’t have to worry about G2. A similar phenomenon occurs
in connection with the case q = 7, which will be discussed below.

The remaining case where q is congruent to 7 modulo 8 requires more care but
requires no more than the 3-tensor Θ, the more general intertwining operators
Ta,b and the tricks of Felix Klein. We begin by using Ta,b to produce a “twisted”
version of the 3-tensor Θ. After that, we will turn to the details of Case 7.

By tensoring Ta,b with the identity operator on L2(G), we obtain an inter-
twining operator between

r′ν,ν,ν = r′ν ⊗ r′ν ⊗ r′ν and r′µ,µ,ν = r′µ ⊗ r′µ ⊗ r′ν ,

where µ = (a2 + b2)ν. We will denote this intertwining operator by Ta,b ⊗ 1.
Using the intertwining operator Ta,b ⊗ 1, we can regard the invariant 3-tensor
Θ as an invariant 3-tensor, denoted Θ′, for the representation r′µ,µ,ν or, what is
the same, as an equivariant mapping from r′ν to r′−µ,−µ. The existence of this
invariant 3-tensor can also be shown using the same proof given in [Adler 1992a,
Theorem 1] for the existence of Θ; even the computation is the same, up to the
order of the terms to be added. It is also possible to write the invariant 3-tensor
Θ′ down explicitly by suitably adapting the methods and results of [Adler 1992a].
As in that paper, we can write Θ′ in the form∑

κ(x, y, z)δx ⊗ δy ⊗ δz ,

where δt denotes the delta function at t for all t ∈ Fq , where κ(x, y, z) is a
complex number and where the summation runs over all elements (x, y, z) of F3

q

By acting on Θ′ with the element r′µ,µ,ν , we see that κ(µ, µ, ν) vanishes unless

µ(z2 + y2) + νz2 = 0.
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Let Q denote the space of binary quadratic forms with entries in Fq, which we
identify with their matrices. Let i, j be elements of Fq such that i2 + j2 6= 0.
Define the bijective linear mapping

λ : F3
q → Q

by

λ(x, y, z) =

(
νz+ ix+ jy jx− iy
jx − iy νz − ix − jy

)
.

The determinant of λ(x, y, z) is easily seen to be

ν2 − (i2 + j2)(x2 + y2).

Therefore, if we choose i, j such that i2 + j2 = −νµ, we see that the coefficient
κ(x, y, z) vanishes unless the determinant of λ(x, y, z) is zero. It follows as in
[Adler 1992a] that we can take the coefficient κ(x, y, z) to be given by

κ(x, y, z) =


0 if λ(x, y, z) has rank 2,
0 if λ(x, y, z) = 0,
1 if λ(x, y, z) is the square of a linear form,
−1 otherwise.

The quadratic form λ(x, y, z) is given by

(νz + ix+ jy)s2 + 2(jx− iy)st + (νz − ix− jy)t2.

We cannot expect the coefficients κ(x, y, z) to have nice properties under all
permutations of x, y, z since the quadratic form µ(x2 + y2) + νz2 doesn’t. But
it is reasonable to expect good behavior under interchange of x, y. Indeed, we
have

κ(y, x, z) =
(
−2µν
Fq

)
κ(x, y, z), (4.1)

where the coefficient of κ(x, y, z) on the right hand side is the quadratic character
of −2µν in the finite field Fq. If we take µ to be a square and ν to be a nonsquare
in Fq then the coefficient of κ(x, y, z) is the negative of the quadratic character
of −2 in Fq , that is, the symmetry properties of this “twisted” 3-tensor invariant
under switching x, y are the opposite of those of the original 3-tensor Θ. As for
the behavior of κ(x, y, z) under replacing one or more of x, y, z by their negatives,
we find that

κ(−x, y, z) = κ(x,−y, z) = −
(
−1
Fq

)
κ(x, y, z) (4.2)

and

κ(x, y,−z) =
(
−1
Fq

)
κ(x, y, z). (4.3)
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We may regard the r′µ,µ,ν -invariant 3-tensor Θ′ as an equivariant mapping
from r′ν to r′−µ,−µ. It now follows from (4.1), (4.2) and (4.3) that Θ′ gives rise
to an equivariant mapping

V −ν →
⊗2

η V
+
−µ

if ε = −1 and to an equivariant mapping

V +
ν →

⊗2
η V
−
−µ

if ε = 1, where
⊗2

η is defined by

⊗2
η =

{
Sym2 if η = −1∧2 if η = 1

Case 7: In the case at hand, we have q congruent to 7 modulo 8. Therefore we
have η = ε = −1 and we can write q in the form

q = 8n− 1.

The twisted invariant 3-tensor then gives us an equivariant mapping

V −ν → Sym2 V +
−µ.

Composing this mapping with the determinant, we obtain an invariant Ψ′ of
degree 4n on V −ν . In the special case p = 7, the invariant Ψ′ is none other than
Klein’s quartic

x3y + y3z + z3x,

up to a scalar factor. It is therefore not surprising that Klein’s tricks work in
this case as well to give us conjectural generators of the bicycle of invariants.
Indeed, the Hessian of Ψ′ has degree

(4n− 2)(4n− 1)

and the greatest common divisor of the degrees of Ψ′ and of its Hessian is 2.
Therefore, according to the Bicycle Conjecture, the bicycle of all invariants of
even degree of SL2(Fq) in V −ν is generated by Ψ′ and its Hessian. Since the
space V −ν has odd dimension, we can also get an invariant of odd degree by
using Klein’s trick of taking the Jacobian determinant of 4n − 1 algebraically
independent invariants of even degree.

We note here that in the case q = 7, the automorphism group of Θ on V − is
SL3(C), not PSL2(F7). However, since the construction of Klein’s quartic from
Θ involves the use of the intertwining operator Ta,b, which is not invariant under
SL3(C), we are cut down to the smaller group PSL2(F7). This is similar to what
happened in the case q = 13 with the group G2.
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The Θ Conjecture 4.2. The following table gives conjectural bicycle genera-
tors for SL2(Fq) acting on V εν :

q ≡ 1 (mod 8) Θ, Q+

q ≡ 3 (mod 8), 6≡ 1 (mod 6) Θ, Hessian(Θ)
q ≡ 3 (mod 8), ≡ 1 (mod 6) Θ, Bordered Hessian(Θ)
q ≡ 5 (mod 8) Ψ, Q+, Jacobian
q ≡ 7 (mod 8) Ψ′, Hessian(Ψ), Jacobian

Thus we have conjectural generators of the bicycle of invariants of SL2(Fq) in
V ε in every case. Unfortunately, our methods so far tell us essentially nothing
about the case of the other component of the Weil representation. In the next
section, we will try to improve the situation a little. We will merely close this
section with two simple remarks.

Remark 4.3. Our examination of the invariant 3-tensor Θ and the invariant
“twisted” 3-tensor Θ′ provides us with an essentially unique nonassociative al-
gebra structure on L2(Fq) invariant under SL2(Fq) ·Aut(Fq).

Remark 4.4. Our construction of Klein’s quartic from Θ shows, among other
things, how to write Klein’s quartic explicitly as a symmetric 4× 4 determinant
whose entries are linear forms on V −ν . Klein [1879a; 1890–92, vol. II, ch. V]
gave an explicit representation of his own quartic and studied the geometry of
the associated curve in projective space as well as the plane curve. This study
was taken further by H. F. Baker [1935] and especially by W. L. Edge [1947],
who made a detailed study of the geometry of the net of quadrics determined by
Klein’s determinantal representation. In view of the fact that this determinantal
representation is herein generalized to the case q = 8n−1, it appears that [Edge
1947] might be a source of considerable inspiration for what to prove in the
general case. We also note that Klein’s cubic form

v2w + w2x+ x2y + y2z + z2v,

which arises in our setting as the invariant 3-tensor Θ in the case q = 11, can
be expressed as the Pfaffian of an alternating 6 × 6 matrix whose entries are
linear forms in 5 variables. Indeed, in the general case q = 8n + 3, we can
regard the invariant 3-tensor Θ as an equivariant mapping from V −ν to Sym2 V −−ν .
Composing this equivariant mapping with the fundamental intertwining operator
T, we obtain an equivariant mapping from V −ν to

∧2
V +
−2ν. Composing this

mapping with the Pfaffian, we obtain an invariant of degree (q+1)/4 on V −ν . In
case q = 11, that degree is 3 and we have expressed our unique cubic invariant
as a Pfaffian, as promised. This Pfaffian representation therefore appears to
be on an equal footing, from our general point of view, with the determinantal
representation of Klein’s quartic. Explicitly, Klein’s cubic is the Pfaffian of the
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following skew-symmetric matrix:

0 v w x y z

−v 0 0 z −x 0
−w 0 0 0 v −y
−x −z 0 0 0 w

−y x −v 0 0 0
−z 0 y −w 0 0


.

Finally, we note that in the special case q = 11, every point of Klein’s cubic
threefold in projective 4 space P(V −ν ) determines a projective line in projective
5 space P(V +

ν ) and the locus swept out by these lines is defined by the unique
quartic invariant of SL2(F11) in V +

ν . As noted in [Adler 1997], the singular locus
of that quartic is birationally equivalent to the modular curve X(11).

5. Conjectural Generators of the Bicycle of Invariants of Sp(Frp)
on V +

ν

As in the preceding section, let p be an odd prime number and let r be a posi-
tive integer. If p = 3, we will assume that r > 1. We have the Weil representation
r′ν of Sp(Frp) on L2(Frp) and its tensor powers, which are also denoted r′ν . Ac-
cording to Lemma 8.23, the canonical intertwining operator T maps Sym2(V +

ν )
onto Sym2(V +

2ν). Since the dual space of Sym2(V +
ν ) is Sym2(V +

−ν), the canonical
interwining operator can be viewed as mapping Sym2(V +

ν ) onto its dual if −2
is a square modulo p. We will assume that this is the case. More precisely, we
can use the intertwining operator Ta,a where a is an element of Fp such that
2a2 = −1 to map Sym2(V +

ν ) onto Sym2(V +
−ν). We therefore obtain a linear form

on Sym2(V +
ν )⊗Sym2(V +

ν ) whose restriction to Sym4(V +
ν ) is a Sp(Frp)-invariant

quartic form Ω on the even part of the Weil representation.

Theorem 5.1. The quartic form Ω is nonzero.

Proof. As in the proof of Lemma 8.23, we may regard an element of Sym2(V +
ν )

as a function f(x, y) such that

f(−x, y) = f(x,−y) = f(y, x)

for all x, y ∈ Frp. We want to show that for some f ∈ Sym2(V +
ν ) we have

Ω(f) 6= 0

or, what is the same, that
(Ta,af)(f) 6= 0.

The linear form
β : Sym2(V +

ν ) ⊗ Sym2(V +
−ν)→ C

given by
β(f, g) =

∑
f(x, y)g(x, y),
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where the summation runs over all x, y ∈ Frp, is a nondegenerate pairing which
is invariant under the action of

Sym2(ρ+
ν ) ⊗ Sym2(ρ+

−ν).

Therefore we only have to check that for some f in Sym2(V +
ν ) of the form g⊗ g

with g ∈ V +
ν we have ∑

f(x, y)f(ax + ay, ax− ay) 6= 0,

where the summation runs over all x, y ∈ Fp. We will take f to be the function
which is 1 at (0, 0) and 0 elsewhere. We then have∑

f(x, y)f(ax + ay, ax− ay) = 1,

which proves that the quartic invariant is nonzero. �

We can write the quartic invariant explicitly as follows. Let Y ∈ V +
ν . Then the

invariant is∑
(Y ⊗Y )(x, y)(Y ⊗Y )(ax+ay, ax−ay) =

∑
Y (x)Y (y)Y (ax+ay)Y (ax−ay).

For example, the unique quartic invariant of SL2(F7) in 4 variables and of
SL2(F11) in 6 variables arise in this way. For the case p = 3 and r = 2, the
quartic invariant was discovered by Burckhardt [1893] and studied in detail by
various authors, such as Baker [1935] and Coble [1917]. In [Adler and Ramanan
1996] we generalized Burckhardt’s quartic to the case p = 3 and r > 1 and
proved that it was the unique quartic invariant for this representation. In this
case, the quartic can be written in the following way. For each element u of Fr3,
introduce a variable Yu with the provision that Y−u = Yu. It is the same to
introduce the variable Y0 and, for each one-dimensional F3 subspace λ of Fr3, a
variable Yλ. Then the invariant is given by∑

u,v∈Fr3

YuYvYu+vYu−v,

which can also be written as

Y 4
0 + 8Y0

∑
Y 3
λ + 48

∑
π

∏
λ⊂π

Yλ,

where the first summation runs over all one-dimensional subspaces of the F3

vector space Fr3, the second summation runs over all two-dimensional subspaces
π and where the product runs over all one-dimensional subspaces λ contained in
a given two-dimensional subspace π.

The Hessian of Ω will be denoted Υ. The form Υ has degree pr + 1. If the
Bicycle Conjecture could be applied in this case, we would obtain obtain the
following conjecture:
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The Ω Conjecture 5.2. If p be an odd prime and let r be a positive integer .
If p = 3 assume that r > 1. Let m be the greatest common divisor of 4 and
pr + 1. If pr is congruent to 1 modulo 8 then let M = 2. Otherwise let M = 4.
Then every invariant of ρ+

ν of degree divisible by M is obtained from Ω and Υ
by bicycle operations.

In case (pr + 1)/2 is odd we can get an invariant of odd degree from a Jacobian
determinant and use it to produce all invariants.

Implicit in the above conjectures is the assumption that Υ is not zero. As-
suming this to be the case, one also must be certain that the forms Ω and Υ
have no automorphisms in common other than those of Sp(Frp), modulo scalars.
That is verified in the following lemma.

Lemma 5.3. The automorphism group of Ω is generated by ρ+
ν (Sp(Frp)) and

by scalar multiplication by fourth roots of unity . Modulo scalars the group is
precisely PSp(Frp).

Proof. In [Adler 1994], it is shown that the group PSp(Frp) is a maximal
algebraic subgroup of the group of collineations of PN (C), where N = (qr±1)/2.
Therefore, since Ω has degree 4, every automorphism of Ω is the product of an
element of Sp(Frp) and scalar multiplication by a fourth root of unity. �

The Ω Conjecture give us conjectural generators of the bicycle of invariants of
even degree for Sp(Frp) on V +

ν . If pr is congruent to 3 modulo 4 then the center
of Sp(Frp) acts as −1 on V +

ν and all invariants are necessarily of even degree.
So if pr is congruent to 3 modulo 4, these two conjectures give us conjectural
generators for the full ring of invariants of ρ+

ν .
In the special case where r = 1, we are dealing with the group SL2(Fp).

If p is congruent to 3 modulo 4, the quadratic character of −1 modulo p is
ε = −1. In this case, the methods of the preceding section give us conjectural
generators of the ring of invariants (or those of even degree, at least) in V −ν . The
methods of this section give us conjectural generators of the ring of invariants
of V +

ν as well. Thus we have made some progress towards completing our list of
conjectures. In this section, we have also opened the door to the invariants of
finite symplectic groups in general in the Weil representation. It is desirable to
extend the conjectures to these cases as well.

We close this section by noting some typographical and other errors in [Adler
1994]. In the statement of Lemma 7.1 on p. 2354, the group denoted PSpm(R)
in (1) and (1′) should be denoted PSp2m(R). Similarly, in the statement of
Theorem 7.2 on p. 2355, the group denoted PSpm(R)·A in (1) and (1′) should be
denoted PSp2m(R)·A. On the same page, in the proof of Theorem 7.2, the groups
denoted PSpm(R), PSpr(Fp), PSpm(FR) and Spm(FR) should be respectively be
denoted PSp2m(R), PSp2r(Fp), PSp2m(FR) and Sp2m(FR). Also, the statement
of Theorem 8.2 on p. 2360 and the paragraph preceding it should read:
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If η is ±1, we will say that a tensor T is η-symmetric if η = 1 and T is
symmetric or if η = −1 and T is skew-symmetric. If ε = ±1, then by the
ε-part of the Weil representation, we will mean the even part if ε = 1 and
the odd part if ε = −1.

Theorem (8.2): Suppose q ≥ 11. Let ε equal the quadratic character

of −1 in Fq and let η equal the quadratic character of −2 in Fq . Let

n = (q + ε)/2. Denote by Θ the unique η-symmetric 3-tensor on the ε

part of the Weil representation of SL2(Fq). Then the group of collineations

which preserve the 3-tensor is isomorphic to PSL2(Fq) · Aut(Fq) unless

q = 13, in which case the group in question is G2(C).

Finally, I wish to correct my comments about the work of van der Geer in [Adler
1994]. Since the appearance of that article, I have received a copy of a letter
he has written in which he acknowledges my conversation with him about the
quartic invariant and its explicit form. He explains that he had obtained the
explicit form of the quartic invariant of Sp2n(F3) independently at about the
same time that Ramanan and I did. Accordingly, I would like to apologize for
my remarks in [Adler 1994]. I hope that this apology will serve to correct the
negative impressions that my comments may have caused about the character
and accomplishments of a mathematician in whose work I have found so much
to admire.

6. Geometric Constructions

According to Klein’s Erlangen Program, geometry is the study of the proper-
ties of a set X which are preserved by the action of a group G on the set X. One
important example is complex projective n-space with the group PSLn+1(C)
acting on it. We are familiar with this example, as it is quite standard. But
suppose G is a finite group and ρ is a homomorphism from G into SLn+1(C).
Then G also acts on Pn(C) and gives rise to a different notion of geometry on
the same set. It is quite instructive to try to articulate the difference between
these two geometries.

In these examples, we can already see that the definition of geometry given
above leaves certain important details unspecified. For example, in complex
projective n-space, one can spend all one’s time looking only at linear subspaces.
Or, one can be an algebraic geometer and consider all algebraic loci in complex
projective n-space. In either case, one has the same group acting but one is really
considering two different kinds of geometry. Thus, we have left unspecified the
kinds of objects one might want to focus on. In practice there will be various
types of objects one studies in the geometry. For example, in the projective
plane, one can study points, lines, triangles, conics and so forth.

Suppose G is a group acting on a set X and suppose that we have agreed on
the types of objects we will consider in this geometry. If T is a type of object,
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we will denote by T (X) the set of all objects of type T in X. Then G acts on
the set T (X). Suppose T1 and T2 are two types of object. By a construction of
objects of type T2 from objects of type T1, we mean a G-equivariant mapping
from T1(X) to T2(X).

Here we have to be careful, since in practice one has certain preferences as
to what kind of mappings one will allow. For example, in the case of algebraic
geometry in complex projective space, we would perhaps only allow polynomial
mappings or rational mappings. So in our definition of a geometric construc-
tion, we really mean to assume that we are dealing with a certain category of
mappings.

I would like to examine this notion of a construction more closely in the case of
complex projective space. For definiteness and for simplicity, I want to focus on
the question of constructing one hypersurface from another one. If d is a positive
integer and V is a complex vector space, we will denote by Sd(V ) the vector space
of forms of degree d on V . The set of hypersurfaces of degree d in the projective
space P(V ) of lines in V may then be roughly identified with the projective space
P(Sd(V )). I say roughly because a hypersurface does not uniquely determine
the form which defines it, at least if we regard the matter set theoretically. For
example, in P2, with homogeneous coordinates x, y, z, the forms x3y and xy3

define the same hypersurface but are not proportional. However, I am going
to overlook this difficulty and pretend that the set of hypersurfaces of degree d
in Pn is P(Sd(V )). The difficulty disappears if one regards a hypersurface as a
scheme instead of as a set, but I want to keep the discussion elementary.

Let d, e be positive integers and suppose that

F : P(Sd(Cn+1))→ P(Se(Cn+1))

is a geometrical construction of hypersurfaces of degree e from hypersurfaces
of degree d. Since we are doing algebraic geometry, that means we want the
mapping F to be a rational mapping or a polynomial mapping. One problem
with using rational mappings is that if one wishes to take the result of the
construction F and apply another construction to it, say F ′, the result may not
be defined. So geometric constructions don’t really give us a category. On the
other hand, by writing F out explicitly in terms of the coefficients of the general
form of degree d and clearing denominators, we obtain a polynomial mapping

F̃ : Sd(Cn+1)→ Se(Cn+1)

which lifts F . Since F is by definition equivariant for the action of SLn+1(C), it
follows that F̃ is a homogeneous mapping equivariant for the action of SLn+1(C).
In other words, F̃ is precisely what one classically called a covariant. More gen-
erally, ifW is any representation space for SLn+1(C), a homogeneous polynomial
mapping from W to Se(Cn+1) equivariant for SLn+1(C) would be called a co-
variant of degree e on W . The degree of the mapping is called the order of the
covariant. In the special case where e = 0, a covariant is called an invariant.
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We should also note that by using covariants, the difficulties of composing
geometric constructions disappears: one can always compose polynomials.

Classically, one also considered loci as being defined by their families of tan-
gent hyperplanes. Since a hyperplane is a point of the dual projective space,
this approach amounts to a study of loci in the dual projective space. Asking for
geometric constructions of these loci amounts to asking for equivariant mappings

Sd(Cn+1)→ Se(Cn+1∗).

Such a mapping is called a contravariant. Finally, one classically considered
relations between projective space and its dual which depend geometrically on
a given hypersurface. This leads one to study equivariant mappings

Sd(Cn+1)→ Se(Cn+1)⊗ Sf(Cn+1∗),

which are called mixed concomitants.
Now that we understand a little better what we mean by a construction in

classical projective algebraic geometry, let us examine the geometry imposed on
Pn by a representation

ρ : G→ SLn+1(C)

of a finite group G. People who studied this kind of geometry were concerned
not with all loci but only with loci invariant under the action of G. The reason
this was not done in the case of classical projective geometry is that the group
SLn+1(C) acts transitively on Pn and there are no invariant loci. But with the
finite group G, such loci exist in abundance and geometers have long delighted
in studying them.

Suppose T1, T2 are types of objects in this geometry. A geometric construction
of objects of type T2 from objects of type T1 is then a G-equivariant mapping

T1(Pn)→ T2(Pn).

As before, we need to specify the category of mappings we are using and again we
will side with the algebraic geometers in choosing rational or polynomial maps.
But more important is the following observation: since we are only interested
in invariant loci, the group G acts trivially on T1(Pn) and T2(Pn). Therefore
every mapping is equivariant. The notion of a geometric construction apparently
loses all of its content. To put the matter bluntly, it is as easy to do geometric
constructions in this geometry as it is to write poetry in Pig Latin. (Good poetry
is, of course, another matter.)

While this conclusion is at first rather disconcerting, we may take heart in
the observation that herein lies one of the ways we can articulate the difference
between the geometry imposed by G and classical projective algebraic geometry.
Indeed, we may ask: when can a geometric construction in the G-geometry be
effected by means of a construction in classical projective algebraic geometry?
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For example, recall Klein’s generators of the ring of invariants of PSL2(F7)
in a three-dimensional complex representation, which we discussed in Section 3.
Klein started with the invariant quartic

f = x3y + y3z + z3x

and then wrote down 3 other invariants ∇, C,K of degrees 6, 14, 21 explicitly.
According to the geometry imposed on P2 by PSL2(F7), the mere juxtaposition
of f and C, for example, amounts to a geometric construction of C from f . We
explore the difference between PSL2(F7) geometry and classical plane projective
geometry when we ask whether there is a covariant

S4(C3)→ S14(C3)

mapping f to C. And in fact, there is: Klein himself gave it when he expressed
C as a constant times the 4 × 4 matrix obtained by bordering the matrix of
second partials of f with the first partials of the Hessian ∇ of f .

Thus, one way of exploring the difference between these two geometries is to
ask whether every invariant of PSL2(F7) arises by applying a covariant to f .
Since all of Klein’s generators are given explicitly by covariants, it appears that
the answer to this question is affirmative.

For another example, consider the cubic form

f3 = v2w +w2x+ x2y + y2z + z2v,

also discovered by Klein [1879b]. It is the unique (up to constant multiple) cubic
invariant of a five-dimensional irreducible complex representation of SL2(F11). I
computed the generators and relations of the ring of invariants of this represen-
tation and found that it is generated by 10 polynomials

f3, f5, f6, f7, f8, f9, f10, f11, f12, f14,

where fn has degree n. I was able to express all of the invariants explicitly
using covariants of f3 except for f11. For years, I didn’t know whether it was
expressible by covariants or not. But as we will see in Corollary 7.6 below, it is
in fact expressible in this way, as are all of the invariants.

If we write down the matrix of second partial derivatives of Klein’s cubic we
find that up to a trivial factor of 2, it is

w v 0 0 z

v x w 0 0
0 w y x 0
0 0 x z y

z 0 0 y v

 .

Its determinant is the invariant I have denoted f5 and is the Hessian of f3 up to
a factor of 32.
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Now consider the locus of all point [v, w, x, y, z] in P4 for which this matrix
has rank equal to 3. Saying that the rank is at most 3 amounts to writing down
the 4 × 4 minors of the matrix and setting them to 0. That gives us a lot of
quartics which define an algebraic locus in P4. On the other hand, it is not
difficult to show, as Klein did, that there are no points [v, w, x, y, z] for which
the rank is less than 3. Therefore the rank 3 locus is an algebraic locus.

Felix Klein discovered the remarkable theorem that this locus is isomorphic
to the modular curve X(11) of level 11. Let me call this Theorem K. He also
expressed this result by saying that X(11) is isomorphic to the singular locus of
the hypersurface f5 = 0, that is, that X(11) is the singular locus of the Hessian
of the cubic f3 = 0. Let me call this Theorem K′. I would like to mention
that these two theorems do not say exactly the same thing, although it is not
hard to show (as Klein did) that they are really equivalent. Meanwhile let me
merely note that from Theorem K′, it is immediately apparently how the group
PSL2(F11) acts on the modular curve X(11). For f3 is an invariant of PSL2(F11),
its Hessian is likewise an invariant and therefore the singular locus of the Hessian
is invariant under the group.

However one states the theorem, I have always found this to be an inspiring
result. One naturally wonders whether one can generalize it. This problem has
occupied me for a number of years.

Actually, Klein himself found a beautiful generalization of his theorem. Let
p ≥ 5 be a prime number. Denote by L2(Fp) the p-dimensional complex vector
space of all (square-integrable) complex valued functions on Fp with respect to
counting measure, that is, all functions from Fp to the complex numbers. We
can decompose L2(Fp) as the direct sum of the space V + of even functions and
the space V − of odd functions. The space V − has dimension (p − 1)/2 and its
associated projective space P(V −) has dimension (p − 3)/2. If f is a nonzero
element of V −, we will denote by [f ] the corresponding element of P(V −), in
keeping with the classical notation for homogeneous coordinates.

Klein discovered the following general result:

Theorem 6.1. The modular curve X(p) is isomorphic to the locus of all [f ] in
P(V −) which for all w, x, y, z in Fp satisfy the identities

0 = f(w + x)f(w − x)f(y + z)f(y − z)
+ f(w + y)f(w − y)f(z + x)f(z − x)

+ f(w + z)f(w − z)f(x + y)f(x − y).

Thus, X(p) is defined by a collection of quartics which we can write down ex-
plicitly. In the special case p = 11, we recover Klein’s theorem about X(11). In
the case p = 7, we obtain the defining equation of the Klein curve,

x3y + y3z + z3x = 0
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As much as we may admire this theorem, it is natural to feel somewhat
daunted by it. For even though we know the equations, there are an awful
lot of equations and it isn’t clear that they really do us any good. To per-
suade you otherwise, let me mention that in [Adler and Ramanan 1996, § 19] we
looked closely at these equations and found that they have a simple geometric
interpretation: they say that the modular curve X(p) is the intersection of a
Grassmannian and a 2-uply embedded projective space!

More precisely, consider the Weil representation of SL2(Fp) on L2(Fp). Tensor
this representation with itself and identify L2(Fp)⊗L2(Fp) with L2(F2

p). Define
the operator T from L2(F2

p) to itself by

(TΦ)(x, y) = Φ
(
x+ y

2
,
x− y

2

)
.

Then one can show that T normalizes SL2(Fp) as a group of operators on L2(F2
p)

and maps
∧2(V +) isomorphically onto Sym2(V −). Passing to projective spaces,

we can use T to identify P(
∧2(V +)) with P(Sym2(V −)). Now, in P(

∧2(V +))
we have the Grassmannian Gr of complex 2-planes in V + and in P(Sym2(V −))
we have the image Ver of P(V −) under the 2-uple embedding. Klein’s equations
say precisely that X(p) is the intersection of Gr and Ver.

Incidentally, one immediate consequence of this interpretation is the other-
wise non-obvious result that the modular curve X(p) has a canonical SL2(Fp)
invariant rank 2 vector bundle that it gets from the Grassmannian Gr. This
vector bundle is considered in more detail in [Adler and Ramanan 1996, § 24].

If Klein already generalized his theorem about X(11) (that is, Theorem K) to
all p, why am I not satisfied? Well, look again at Theorem K′. It says that the
modular curve X(11) is the singular locus of the Hessian of f3 = 0. In particular,
it says that we can construct the modular curve X(11) from the cubic invariant
f3. Now there is nothing in Klein’s general theorem on X(p) about any cubic.
It just gives a bunch of quartic equations that define X(p). On the other hand,
Ramanan and I proved that whenever p > 3 is a prime congruent to 3 modulo 8
(e.g. the prime p = 11), there is a unique cubic invariant for the representation
of SL2(Fp) on V −. At least for such p, we have an invariant cubic hypersurface
in P(V −) and we have the modular curve X(p). So we have the right to ask: can
we construct the modular curve X(p) geometrically from the cubic hypersurface
for all such p?

More generally, for any p > 3 there is a unique 3-tensor Θ on L2(Fp) invariant
under the Weil representation of SL2(Fp), as we mentioned in Section 4. Thus,
with essentially no restriction on p, we can ask: is there a way to construct
the modular curve X(p) geometrically from the invariant 3-tensor Θ? We will
answer this question in the affirmative.

Suppose that instead of wanting to construct one hypersurface from another,
we want to construct an invariant algebraic locus L in Pn from an invariant
hypersurface f = 0, where f is an invariant. Here, the ambient geometry is
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supposed to be defined by a representation ρ of a finite group G. Since the
invariants of ρ separate orbits of G, the algebraic locus L is the intersection
of all of the invariant hypersurfaces containing it. Therefore, we can find a
finite number of homogeneous invariants I1, . . . , Is which define the locus L
set theoretically. If we can show that each of the invariants Ij is obtained from
a covariant of f , then we can feel safe in asserting that the locus L can be
constructed geometrically (in the set theoretic sense) from f = 0. This motivates
the following definition.

Definition 6.2. Let H : f = 0 be a hypersurface in a projective space P d(C) of
dimension d and let Z be a subvariety of P d(C). We say that Z can be constructed
geometrically from H if the ideal defining Z is generated by covariants of f . We
say that Z can be constructed geometrically from H in the set theoretic sense if
Z is the set theoretic intersection of covariants of f .

From a theoretical point of view, the notion of geometric constructibility we are
using is much too restrictive. If X is a G invariant hypersurface, it requires the
locus to be an intersection of G-invariant hypersurfaces. While this may be true
set theoretically, contemporary algebraic geometry requires us to consider the
locus from a scheme theoretic point of view and it is certainly not reasonable to
require the ideal defining Z to be generated by invariants. For example, if we
take Z to be the singular locus of X, the ideal defining Z will be generated by
the first partial derivatives of the form f defining X. Even if f is an invariant
of G, the first partials of f in general will not be. Thus, passing to the singular
locus of something geometrically constructible is not geometrical according to
the definition we used. We could try to expand the notion by throwing in the
singular locus construction, but that is arbitrary. It would be better to have
a philosophical and comprehensive notion which is at the same time practical.
Meanwhile, in the absence of one, I will leave things as they stand for the moment.
It is rather like confining oneself to straightedge and compass constructions even
though one cannot use them to trisect angles.

A second objection is that it our definition only addresses the question of
constructing Z from a hypersurface X. It says nothing about constructing Z

from some other locus W .

Remark 6.3. In Definition 6.2, there is no reason to confine ourselves to hy-
persurfaces except to preserve the geometric language. We could just as well
speak of Z as being constructed from f . Since a polynomial is simply a sym-
metric tensor and the symmetric tensors form an irreducible representation of
SLd+1(C), we could instead take any irreducible representation of SLd+1(C) on
a finite-dimensional vector space W and choose an element Ξ of W . We can
then consider covariants of Ξ and modify Definition 6.2 to speak of a subvariety
Z of Pd being constructed geometrically from Ξ. We will use this more general
definition in Theorem 7.7 below in the cases where −2 is not a square in Fq .
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7. Applications of Contemporary Invariant Theory

From the notion of geometric construction we are using, we see that it in-
volves the notion of being able to extend mappings equivariant for one group to
mappings equivariant for a larger group. Fortunately, contemporary invariant
theory has been concerned with such questions.

We begin with a simple result whose statement and proof were kindly com-
municated to me by Gerry Schwarz.

Theorem 7.1. Let k be an algebraically closed field of characteristic zero. Let
G be a reductive algebraic group and let V and W be representation spaces for G

over k. Let x be a point of V such that the orbit G · x of x under G is closed in
V and let y be a point of W . Let Gx and Gy be the subgroups of G fixing x and
y respectively . Then the following conditions are equivalent :

(1) Gx ⊆ Gy;
(2) there is a G equivariant polynomial mapping Γ : V →W such that Γ(x) = y.

Proof. The necessity of the condition is obvious. We prove the sufficiency.
Since Gx ⊆ Gy, the map sending an element g of G to the element g · y of W
factors through G/Gx. Since X = G · x is closed in V , we may interpret the map
as a G-equivariant map f of X to W which sends x to y. The map extends to
a morphism F of V to W . If N is sufficiently large, the space P of polynomial
maps of degree ≤ N from V to W contains F and restriction to X maps P
linearly and G-equivariantly onto a space Q of maps from X to W containing f .
Since G fixes f and since G is reductive, it follows that we can find an element
of P which restricts to f and which is invariant under G. �

Remark 7.2. If x = 0 then the constant mapping with value y from V to W is
homogeneous (of degree 0, if y 6= 0). If y = 0, then again the constant mapping
with value y works. However, Theorem 7.1 does not let us conclude in general
that we can find a homogeneous polynomial mapping Γ of V to W such that
Γ(x) = y. The following counterexample is due to David Vogan. Let G be the
a group of order 2, let V be the complex numbers C with G acting by ±1 (that
is, the non-trivial one-dimensional representation) and let W be C2 with the
nontrivial element of G acting by interchange of coordinates (that is, the regular
representation). Let x = 1 and let y = (a, b), where a 6= ±b. Then Gx = Gy has
order 1, so by Theorem 7.1, we can find a G equivariant mapping Γ from V to
W carrying x to y. Suppose Γ is homogeneous. Then Γ must be of the form

Γ(z) = (azm, bzm)

for some nonnegative integer m. As z runs over all complex numbers, so does zm,
so the image of Γ will be the line in W generated by (a, b). Since V is invarant
under G, that line must be also. However, there are only two invariant lines in
W and our hypothesis a 6= ±b implies that (a, b) doesn’t lie on either of them.



INVARIANTS OF SL2(Fq) ·Aut(Fq) ACTING ON C n FOR q = 2n± 1 203

That proves that Γ cannot be homogeneous. Close examination of this example
leads to the additional condition that must be satisfied in order to guarantee the
existence of a homogeneous mapping. This result, due to Dave Vogan, will be
presented in Theorem 7.3 below. The proof given is also due to Vogan.

Theorem 7.3 (Vogan). Let G, V,W, x, y be as in Theorem 7.1 and assume
that x, y are both nonzero. Then the mapping Γ of Theorem 7.1 can be taken
to be homogeneous if and only if the stabilizer GCx of the line Cx through x is
contained in the stabilizer GCy of the line Cy through y.

Proof. Suppose that Γ is a G equivariant homogeneous mapping from V to
W such that Γ(x) = y, say, homogeneous of degree m. Let z be a complex
variable. As z runs over all complex numbers, so does zm. Since Γ(zx) = zmy,
we conclude that the line through x is mapped by Γ onto the line through y.
Since Γ is equivariant, if g ∈ G leaves the line through x invariant, it therefore
must also leave the line through y invariant. This proves the necessity.

Next we assume the condition and prove its sufficiency. The group Gx is a
normal subgroup of the group GCx and we denote the factor group by Zx. We
may identify the group Zx with the multiplicative group of all nonzero complex
numbers z such that zx lies in the orbit G·x of x under G. Similarly, we define the
group Zy. Both of the groups Zx and Zy are Zariski closed in the multiplicative
group of C. In particular, Zx is either the whole multiplicative group or else it
is a finite cyclic group. But it cannot be all of C× since we have assumed that
the orbit of x is closed. Therefore the group Zx is finite, say, of order m. Let ζm
be a primitive m-th root of unity and let g ∈ GCx be such that gx = ζmx. By
hypothesis, g · y is a multiple of y, say λy. Since gm fixes x, it must also fix y,
so λm = 1. Therefore, λ = ζdm for some integer d which is determined modulo
m. It follows that any equivariant polynomial from V to W carrying x to y

must be a sum of homogenous terms of degrees congruent to d modulo m. We
can identify the affine coordinate ring of Cx with the polynomial ring C[z] by
means of the isomorphism z 7→ zx of C onto Cx. Denote by Rx the restriction
to Cx of the ring of invariants of G, identified with a subring of C[z]. Then Rx is
generated by certain powers zrm of zm. By hypothesis, the orbit G · x is closed.
Since the group G is reductive, the invariants separate closed orbits. Therefore,
the greatest common divisor of the integers rm is m. Since Rx is a ring, it must
therefore contain zrm for all sufficiently large values of r. In other words, for all
sufficiently large r, there is an invariant jr of degree rm such that jr(x) = 1.
Now let Γ be as in Theorem 7.1 and write Γ as a sum of its homogeneous parts:

Γ =
k∑
s=1

Γd+rsm,

where Γi denotes a homogeneous polynomial of degree i. Each of the Γi is of
course G equivariant. Now choose r to be a sufficiently large integer and let
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Γ′ =
k∑
s=1

jr−rsΓd+rsm.

Then Γ′ is equivariant, homogeneous of degree d+ rm and carries x to y. This
proves the sufficiency. �

In order to apply Theorems 7.1 and 7.3, we need to have simple criteria for an
orbit to be closed. The following theorem of Luna provides such a criterion.

Theorem 7.4 [Luna 1975, p. 231]. Let k be an algebraically closed field of char-
acteristic 0. Let G be a reductive algebraic group over k and let H be a reductive
subgroup of G, not necessarily connected . Let NG(H) denote the normalizer of
H in G. Then the following two conditions are equivalent :

(1) the group NG(H)/H is finite;
(2) in every rational representation of finite dimension G→ GL(M), the G-orbit

of any fixed point of H in M is closed in M .

If r, s are nonnegative integers and M is a complex vector space, denote by⊗r,s
M the tensor product M⊗r ⊗ (M∗)⊗s viewed as a GL(M) module. If G is

a subgroup GL(M), we call a G submodule of
⊗r,s

M an (r, s) tensor module of
G. We will call a G module a tensor module if it is isomorphic to an (r, s) tensor
module of G for some (r, s). An element of

⊗r,s
M is called a mixed tensor of

type (r, s) of M .

Theorem 7.5. Let G be a reductive algebraic group and let ρ : G → SL(M) be
a unimodular representation of G on a finite-dimensional complex vector space.
Assume that ρ(G) has finite index in its normalizer in SL(M). (This will be the
case, e.g ., if ρ(G) is a maximal algebraic subgroup of SL(M) modulo scalars.)
Let T1, T2 be mixed tensors on M , with T1 of type (r, s) and T2 of type (u, v).
Assume that the isotropy group of T2 in SL(M) contains G and that the isotropy
group of T1 in SL(M) coincides with ρ(G) modulo scalars and is not all of SL(M).
Then the following two conditions are equivalent :

(1) There exists a homogeneous SL(M)-equivariant polynomial Γ :
⊗r,s

M →⊗u,v
M such that Γ(T1) = T2.

(2) u− v is a multiple of gcd(r−s,m), where m is the dimension of M .

Proof. If we take G = SL(M) and H = ρ(G) in Luna’s Theorem, the as-
sumption on the normalizer of H implies that the SL(M) orbit of T1 is closed
in
⊗r,s

M . Next, we let G = SL(M), V =
⊗r,s

M , W =
⊗u,v

M , x = T1,
y = T2 in Theorems 7.1 and 7.3 and consider the hypotheses of these theorems.
If Gx ⊆ Gy , our assumptions on the isotropy groups of T1 and T2 imply that
GCx ⊆ GCy. This shows that if G, V,W, x, y satisfy the conditions of Theorem
7.1, they also satisfy the additional condition of Theorem 7.3 and that the G

equivariant polynomial mapping Γ can therefore be taken to be homogeneous.
Since ρ(G) ⊆ Gy, the condition that Gx ⊆ Gy is equivalent to the condition
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that every scalar in Gx lies in Gy. Let z be a scalar multiplication in SL(M).
Then z is an m-th root of unity, where m is the dimension of M . Under the
action of z on V (or W ), the tensor x (or y) is multiplied by zr−s (or zu−v,
respectively). Therefore, Gx is generated by G and the d-th roots of unity, where
d = gcd(m, r−s). Therefore, condition (1) is equivalent to the assertion that
u− v is a multiple of d, which is condition (2). This proves the theorem. �
Corollary 7.6. Let q = pr be an odd prime power , where p is a prime number
and where r > 1 if p = 3. Assume that q ≥ 11 and q 6= 13. Let Θ be the unique
invariant 3-tensor for SL2(Fq) on V εν . If q is not congruent to 1 modulo 6 then
every invariant of SL2(Fq) · Aut(Fq) on V εν arises from a covariant of Θ. If q
is congruent to 1 modulo 6 then every invariant of degree divisible by 3 on V εν
arises from Θ.

Proof. This follows at once from Theorems 7.3 and 7.4 and and from the fact
(see [Adler 1994]) that the group ρεν(SL2(Fq) · Aut(Fq)) is the precise automor-
phism group of Θ modulo scalars. �
Theorem 7.7. Assume that η = 1 and let n = (q − ε)/2. Then there is a cubic
contravariant of n-ary cubics which does not vanish on Θ. In particular , there
exists a nonzero cubic contravariant of n-ary cubics.

Proof. This follows at once from Theorem 7.5. Alternatively, by Theorem 7.4,
the orbit of Θ is closed. In Theorem 7.1, let G be SLn(C), V be the space of
n-ary cubics, W be the dual space of V , x be Θ and let y be the differential
operator DΘ. By Theorem 7.1 there is a polynomial mapping λ of V into W

which maps x onto y. Write λ as the sum λ0 + λ1 + · · · of its homogeneous
components. Then each component is SLn(C) invariant and is therefore a cubic
contravariant of Θ. Since λ(Θ) = DΘ, one of the terms λi(Θ) must be nonzero.
Since any representation of SL2(Fq) of degree n has a unique cubic invariant (up
to a scalar), we conclude that λi(Θ) must be a scalar multiple ofDΘ. Multiplying
λi by the reciprocal of that scalar we obtain a cubic contravariant of n-ary cubics
whose value on Θ is DΘ. �
Theorem 7.8. Suppose q is a an odd prime which is ≥ 11 and 6= 13. Then
the modular curve X(q) may be constructed geometrically from the 3-tensor Θ
in the set theoretic sense. More precisely , if ε = 1 then the A-curve may be
constructed from the restriction Θ|V + of Θ to V +, while if ε = −1, the z-curve
may be constructed from the restriction Θ|V − of Θ to V −.

Proof. Note that the invariants of SL2(Fq) separate orbits of SL2(Fq). It
follows that the modular curve is the set theoretic intersection of all of the
invariant hypersurfaces containing it. To prove the theorem, it therefore suffices
to show that every SL2(Fq) invariant hypersurface Z arises set theoretically as
a covariant of Θ. For set theoretic purposes, we may replace any invariant by
its cube. Therefore, we can assume that the degree of the form F defining Z is
divisible by 3. The theorem now follows from Corollary 7.6. �
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8. Appendix: The Fundamental Intertwining Operator

In this section, we recall the Weil representation of a finite symplectic group
and discuss a certain intertwining operator introduced in [Adler and Ramanan
1996]. We begin by recalling some of the notation of the fundamental paper
[Weil 1964] and some of our own modifications of it.

8.1. Throughout this section, G will denote a locally compact abelian group, G∗

its dual group and T the multiplicative group of all complex numbers of absolute
value 1. The natural pairing between elements g ∈ G and g∗ ∈ G∗ is denoted
〈g, g∗〉 and the operation in G∗ is also written additively. We will also assume
that multiplication by 2 is an automorphism of G. Weil defines the group A(G)
to be the set G×G× T with the group law defined by

(g1, g
∗
1, t1)(g2, g

∗
2, t2) = (g1 + g2, g

∗
1 + g∗2 , 〈g1, g

∗
2〉t1t2).

The group A(G) is a locally compact topological group with the product topol-
ogy. Its center is T.

8.2. We note that the same construction will define a group if T is replaced
by any subgroup T0 of T containing all of the values 〈g, g∗〉 with g ∈ G and
g∗ ∈ G∗. Thus, we obtain a group which we denote A0(G) whose underlying
set is G × G∗ × T0. If T0 is not all of T, we give T0 the discrete topology, so
that A0(G) is likewise a locally compact topological group. Its center is T0. In
practice, we will take T0 to be the smallest subgroup containing all of the values
〈g, g∗〉. In our applications, we will often find it better to work with the group
A0(G) rather than A(G).

8.3. Weil constructs certain automorphisms of A(G) which induce the identity
on the center T of A(G). They are as follows.

8.3.1. The automorphism t0(f) of A(G). By a second degree character of a
locally compact abelian group H, we will mean a function f from H in to the
circle group T such that the mapping β : H ×H → T, given by

β(g, h) =
f(g + h)
f(g)f(h)

,

is a character of H in each variable separately. Thus, a second degree character is
analogous to a quadratic polynomial without constant term. Indeed, if p : Rn →
R is such a quadratic polynomial then the function exp(2πip) is a quadratic
character.

If f is a second degree character of G, denote by ρ : G → G∗ the associated
symmetric morphism defined by

〈g, hρ〉 =
f(g + h)
f(g)f(h)

.



INVARIANTS OF SL2(Fq) ·Aut(Fq) ACTING ON C n FOR q = 2n± 1 207

Note that the homomorphism ρ is written on the right in Weil’s notation. The
automorphism t0(f) of A(G) is defined by

t0(f)(g, g∗, t) = (g, gρ+ g∗, f(g)t).

In practice, we will be concerned with the case in which f is even, that is,
f(g) = f(−g) for all g ∈ G. Since multiplication by 2 is assumed to be an
automorphism of G, one can show that an even second degree character f is of
the form

f(g) = 〈g/2, gρ〉
where g/2 denotes the unique element of G such that g/2 + g/2 = g and where
ρ, as above, is the symmetric morphism associated to f .

8.3.2. The automorphism d0(α). If α is a continuous automorphism of G, the
automorphism d0(α) of A(G) is defined by

d0(α)(g, g∗, t) = (gα, g∗α∗−1
, t).

Here α∗ is the automorphism of G∗ defined by composition with α, that is,

〈gα, g∗〉 = 〈g, g∗α∗〉

for all g ∈ G and all g∗ ∈ G∗.
8.3.3. The automorphism d ′0(α). Let γ : G∗ → G be an isomorphism. We will
be dealing with self-dual groups G, so this construction will not be empty. The
automorphism d ′0(γ) of A(G) is defined by

d ′0(γ)(g, g∗, t) = (g∗γ,−gγ∗−1, 〈g,−g∗〉t).

Here γ∗ : G∗ → G is the isomorphism defined by

〈g∗γ∗, h∗〉 = 〈h∗γ, g∗〉

for all g∗, h∗ ∈ G∗.The reader can easily verify that each of these automorphisms

leaves the group A0(G) invariant and induces an automorphism on A0(G).

8.4. Weil denotes by B(G) the group of all continuous automorphisms of A(G).
Each such automorphism induces an automorphism of the center T of A(G).
Such an automorphism must either be the identity on T or else must induce on
T the automorphism t 7→ t−1. Weil denotes by B0(G) the subgroup of B(G)
inducing the identity automorphism on the subgroup T. It is then easy to see
that the elements of B(G) and of B0(G) actually leave invariant the group A0(G)
and induce automorphisms on it. Elements of B0(G) are uniquely determined by
their restrictions to B0(G). Furthermore, any automorphism of A0(G) inducing
the identity on T0 extends uniquely to an element of B0(G). So we will be free to
identify B0(G) with the group of automorphisms of A0(G) inducing the identity
on the center T0. It is also useful to consider certain endomorphisms of A(G),
and we will do so before we state Lemma 8.17.
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8.5. The group A(G) has a canonical unitary representation on the Hilbert
space L2(G) of square integrable functions on G with respect to a Haar measure
on G. That representation, denoted U , is defined as follows: if (g, g∗, t) is an
element of A(G) and if Φ is a square integrable function on G, then the function
Φ′ = U(g, g∗, t)Φ is given by

Φ′(x) = t〈x, g∗〉Φ(x+ g)

for all t ∈ G. This notation U is slightly at variance with Weil’s notation,
according to which Φ′ would be tU(g, g∗)Φ. We find this modification of Weil’s
notation useful for our purposes. The representation U of A(G) restricts to a
representation of A0(G) on L2(G). We also denote that restriction by U .

8.6. Weil denotes by A(G) the image of A(G) under the representation U and
remarks that U induces a topological isomorphism of A(G) onto A(G) where
the latter is given the strong operator topology. Weil is consistent in the use
of boldface fonts for operator versions of the groups and elements we have con-
structed. He denotes by B0(G) the normalizer of A(G) in the group of all uni-
tary operators on L2(G). He shows that there is a continuous homomorphism
π : B0(G)→ B0(G), called the canonical projection, such that for all S ∈ B0(G)
and all (g, g∗, t) ∈ A(G), we have

U(π(S)(g, g∗ , t)) = S−1U(g, g∗, t)S.

The kernel of π is the group of scalar multiplications by complex numbers of
absolute value 1, which we may identify with the group T.

8.7. Weil shows how to find elements of B0(G) lying over elements of B0(G).
This is in fact one of the important themes of [Weil 1964]. In the case of the
elements t0(f), d0(α) and d ′0(γ) mentioned above, he gives the following elements
of B0(G) mapped to them respectively under the canonical projection π.

8.7.1. The operator t0(f). Let f be a second degree character of G. Then the
operator t0(f) on L2(G) is defined by

(t0(f)Φ)(x) = f(x)Φ(x)

for all Φ ∈ L2(G) and all x ∈ G.

8.7.2. The operator d0(α). Let α be an automorphism of G. Then the operator
d0(α) is defined by

(d0(α)Φ)(x) = |α| 12 Φ(xα)

for all Φ ∈ L2(G) and all x ∈ G, where |α| denotes the modulus of the automor-
phism α of the locally compact abelian group G. If X is a subset of G of finite
positive measure, then the ratio of the measure of Xα to the measure of X is
|α|. In case the group G is compact, we can take the set X to be all of G and
we conclude that |α| = 1 for a compact group.
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8.7.3. The operator d ′0(γ). Let γ : G∗ → G be an isomorphism. We define the
operator d ′0(γ) on L2(G) by

(d ′0(γ)Φ)(x) = |γ|− 1
2 Φ∗(−xγ∗−1)

for all Φ ∈ L2(G) and all x ∈ G. Here Φ∗ is the Fourier transform of Φ, defined
by

Φ∗(x∗) =
∫
G

Φ(x) · 〈x, x∗〉 · dx

for all x∗ ∈ G∗, the integral being taken with respect to a Haar measure dx on
G. Thus the definition of Φ∗ depends on the choice of dx, which is only unique
up to a positive real factor. Specifically, if dx is replaced by cdx for some positive
real number c, the value of Φ∗ is likewise multiplied by c. Once one has chosen
a Haar measure on G, there is canonically associated to it a Haar measure dx∗

on G∗, called the dual measure, characterized by the relation∫
G

|Φ(x)|2dx =
∫
G∗
|Φ∗(x)|2dx∗

for all Φ ∈ L2(G). Having chosen the Haar measure dx, we can therefore consider
the modulus |γ| of the isomorphism γ : G∗ → G. If X is a measurable subset
of G∗ with finite positive measure, |γ| is the ratio of the dx-measure of Xγ
to the dx∗-measure of X. If the Haar measure dx is replaced by cdx, where
c is a positive real, then the value of |γ| is multiplied by c2. Thus, one sees
that although both Φ∗ and |γ| depend on the choice of dx, the definition of the
operator d ′0(γ) does not.

8.8. The reader can verify that the canonical projection maps t0(f), d0(α) and
d ′0(γ) respectively to t0(f), d0(α) and d ′0(γ).

8.9. Weil also showed that in general there is no homomorphism from B0(G) to
B0(G) whose composition with the canonical projection is the identity on B0(G).
However for certain subgroups1 of B0(G) which he denotes B0(G,Γ), where
Γ is a closed subgroup of G, he was able to define canonical homomorphisms
from B0(G,Γ) to B0(G) whose composition with the canonical projection is the
identity on B0(G,Γ). In the special case where G is the adèle group of a vector
space of finite dimension over an A-field (that is, a number field or an algebraic
function field in one variable over a finite field), the representation so obtained is
commonly known as the Weil representation. In his general setting, Weil denoted
his homomorphism from B0(G,Γ) by rΓ. If an element of B0(G) is expressed
as a product of elements of the form t0(f), d0(α) and d ′0(γ), one can take the
product of the operators t0(f), d0(α) and d ′0(γ) associated to these elements to
obtain an element of B0(G). This element depends, however, on the manner

1The subgroup B0(G,Γ) of B0(G) consists of all elements of B0(G) which leave invariant
the subgroup Γ× Γ∗ ×Tof A(G), where Γ∗ denotes the annihilator of Γ in G∗.
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in which one writes the given element of B0(G) as a product of elements of the
form t0(f), d0(α) and d ′0(γ).

8.10. Following Weil, we denote by Sp(G) the symplectic group of G, which by
definition is the group of all continuous automorphisms of G×G∗ preserving the
alternating bicharacter of G×G∗ given by

((g1, g
∗
1), (g2, g

∗
2)) 7→ 〈g1, g

∗
2〉

〈g2, g∗1〉
.

Following [Adler 1989], we denote by Sp′(G) the centralizer of d0(−1G) in B0(G).
Since every element of B0(G) leaves T invariant, every such element induces
an automorphism of A(G)/T. The latter group is isomorphic to G × G∗ and
the induced automorphism is in fact symplectic. Therefore we have a natural
homomorphism from B0(G) to Sp(G) and it is not difficult to show using [Weil
1964, § 5] that Sp′(G) is mapped isomorphically onto Sp(G).

8.11. In [Adler 1989], the group B1(G) is defined to be the subgroup of B0(G)
consisting of all operators in B0(G) that commute with d0(−1G). In Lemma 25.2
of that paper, it is shown that the canonical projection maps B1(G) surjectively
onto Sp′(G) provided the following hypothesis holds:

(E) The group Sp(G) is generated by the elements
(
α
γ
β
δ

)
of Sp(G) with γ :

G∗ → G an isomorphism.

Denote by V + and V − respectively the 1 and −1 eigenspaces of d0(−1G) in
L2(G). It is the same to say that V +, V − are respectively the spaces of even and
odd functions in L2(G). Since the elements of B1(G) commute with d0(−1G),
they leave V + and V − invariant. If S is an element of B1(G), we will denote by
S+ and S− respectively the operators induced by S on V + and V −.

8.12. For the rest of this section, we will assume that G is a finite abelian group
of odd order 2N+1. In this case, L2(G) is finite-dimensional, V + has dimension
N + 1 and V − has dimension N . According to [Adler 1989, Lemma 26.1], the
mapping

S 7→ χ(S) =
det(S+)
det(S−)

is a character of B1(G) such that χ(t) = t for all t ∈ T. Denote by φ the
homomorphism from B1(G) to itself given by

φ(S) = χ(S)−1S.

The image of φ is denoted by Sp′′(G). If G satisfies hypothesis (E) then [Adler
1989, Lemma 26.2] says that the canonical projection π maps Sp′′(G) isomor-
phically onto Sp(G). The inverse of this isomorphism is denoted r′. The repre-
sentation r′ is also called the Weil representation.
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8.13. According to [Adler 1989, Theorem 27.1], for any second degree character
f of G such that f(−x) = f(x) for all x ∈ G, we have

r′(t0(f)) = t0(f).

So the Weil representation r′ is given by Weil’s explicit lifting in this case. This
is not so, however, for the elements of Sp(G) of the form d0(α) and d ′0(γ).

8.14. For the rest of this section, we will further specialize G by assuming that G
is actually a vector space of finite dimension n over the field Fp with p elements.
Then hypothesis (E) holds in this case. Since G is compact, the factor |α| 12 in
d0(α) is always equal to 1. And with respect to the self-dual Haar measure on G,
the factor |γ|− 1

2 in d ′0(γ) is always equal to 1. So we will disregard such factors
in what follows. We will also use only the unique self-dual Haar measure on G.
According to [Adler 1989, Theorem 27.4], for any automorphism α of G, we have

r′(d0(α)) =
(

det(α)
p

)
d0(α),

where the first factor on the right side is the quadratic residue symbol of det(α)
in Fp. As for the value of r′ on elements of the form d ′0(γ), let γ : G∗ → G be an
isomorphism, let ρ be a symmetric isomorphism of G onto G∗ and let α be the
automorphism of G defined by γ = ρ−1α. Then [Adler 1989, Theorem 27.5], we
have

χ(d0(γ)) = γ(f)
(

det(α)
p

)
,

where f is the second degree character of G given by

f(x) = 〈x/2, xρ〉

and

γ(f) =
∫
G

fdx

is the integral of f with respect to the unique self-dual Haar measure on G.
Since hypothesis (E) holds, the elements of Sp(G) of the form t0(f), d0(α) and
d ′0(γ) generate Sp(G). Therefore, the results just quoted amount to a complete
determination of the Weil representation r′.

8.15. Let ν be an integer. Denote by σν the mapping from A(G) to itself given
by

σν(g, g∗, t) = (νg, g∗, tν).

Then one can verify directly that σν is a continuous endomorphism of A(G).
Furthermore, it clearly leaves invariant the group A0(G). We are concerned
with cases in which σν actually induces an automorphism ofA0(G); this happens,
for example, if multiplication by ν is an automorphism of G and if T0 doesn’t
contain any ν-th roots of unity other than 1. When σν induces an automorphism
of A0(G), we will also denote that automorphism by σν, or more simply by σ in
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case we don’t need to indicate ν. It is then clear that conjugation by σν induces
an automorphism sν of B0(G). We will also write s instead of sν when we do not
need to refer directly to the integer ν. The automorphism σν of A0(G) depends
only on the congruence class of ν modulo p and we will freely refer to ν as a
congruence class modulo p instead of as an integer.

8.16. Let ν be a nonzero element of Fp. Then multiplication by ν induces an
automorphism of G. Accordingly, the automorphism sν of B0(G) is well defined.
Furthermore, since sν itself commutes with d0(−1G), sν actually induces an
automorphism of Sp(G). That automorphism will also be denoted sν . The
composition of sν with the Weil representation r′ will be denoted r′ν . Of course,
the representation r′ is the same as r′1.

Lemma 8.17. Let f be an even second degree character of G. Let α be an
automorphism of G and let γ : G∗ → G be an isomorphism. Then

r′ν(t0(f)) = r′(t0(fν)),

r′ν(d0(α)) = r′(d0(α)),

r′ν(d ′0(γ)) = r′(d ′0(γ/ν)).

Proof. Let ρ : G→ G∗ be the symmetric isomorphism associated to f . Then

f(x) = 〈x/2, xρ〉

for all x ∈ G. Let (g, g∗, t) be an arbitrary element of A0(G). Then

σν(g, g∗, t) = (νg, g∗, tν).

Therefore

σ−1
ν t0(f)σν(g, g∗, t) = σνt0(f)(νg, g∗, tν)

= σ−1
ν (νg, νgρ+ g∗, f(νg)tν)

= (g, gνρ+ g∗, f(g)ν t) = t0(fν)(g, g∗, t),

since fν is the even second degree character associated to νρ. Therefore,

r′ν(t0(f)) = r′(sν(t0(f))) = r′(t0(fν )).

Since d0(α) commutes with σν, we similarly have

r′ν(d0(α)) = r′(sν(d0(α))) = r′(d0(α)).

Finally,

σ−1
ν d ′0(γ)σν (g, g∗, t) = σ−1

ν d ′0(γ)(νg, g∗, tν)

= σ−1
ν (g∗γ,−νgγ∗−1, 〈g,−g∗〉νtν)

= (g∗γ/ν,−νgγ∗−1, 〈g,−g∗〉t) = d ′0(γ/ν),

so r′ν(d0(γ)) = r′(d0(γ/ν)). �
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8.18. The representations r′ and r′ν of Sp(G) on L2(G) induce representations,
also denoted respectively by r′ and r′ν , on the tensor powers of L2(G). Since
we can identify L2(G) ⊗ L2(G) with L2(G × G) canonically, in particular we
obtain representations r′, r′ν of Sp(G) on L2(G × G). Similarly, we will freely
regard operators such as t0(f), d0(α) and d ′0(γ) as operators on L2(G×G). The
identities of the preceding lemma therefore hold without modification when both
sides are regarded as operators on L2(G×G). It is useful to observe that when
the number of tensor factors is a positive integer N , the factors such as

(det(α)
p

)
and γ(f) are replaced by their N -th powers. Since each of these factors equals
±1, it follows that when the number of tensor factors is even, the factors become
equal to 1. We will in fact be concerned with the case of two tensor factors, so
we will not have to worry about these factors further. However, we also have
occasion to consider tensor products of representations r′ν for different ν. We
will then use multi-indices for the subscript of r′. Explicitly, we will denote by
r′µ∗ν the tensor product of r′µ and r′ν, where µ and ν may be either single integers
or multi-indices and where ∗ denotes concatenation of lists of integers.

8.19. We now introduce an operator that has proved to be of fundamental
importance in our work. It is the operator T on L2(G×G) given by

(TΦ)(x, y) = Φ
(
x+ y

2
,
x− y

2

)
for all Φ ∈ L2(G ×G) and all x, y ∈ G. We will refer to the operator T as the
fundamental intertwining operator. We then have the following result, stated
and proved in special cases in [Adler and Ramanan 1996] but undoubtedly well
known, which justifies this terminology.

Theorem 8.20. The operator T is an isomorphism between the representations
r′ and r′2 on L2(G×G).

Proof. We will simply verify this for the elements of Sp(G) of the form t0(f),
d0(α) and d ′0(γ). Let Φ ∈ L2(G×G) and x, y ∈ G. Then

(Tr′2(t0(f))(Φ))(x, y) = (r′2(t0(f))(Φ))
(
x+ y

2
,
x− y

2

)
= (r′(t0(f2))(Φ))

(
x+ y

2
,
x− y

2

)
= f2

(
x+ y

2

)
f2
(
x− y

2

)
Φ
(
x+ y

2
,
x− y

2

)
=
〈
x+ y

4
,
x+ y

2
2ρ
〉〈

x− y
4

,
x− y

2
2ρ
〉

Φ
(
x+ y

2
,
x− y

2

)
= 〈x/2, xρ〉〈y/2, yρ〉Φ

(
x+ y

2
,
x− y

2

)
= (r′(t0(f))(TΦ))(x, y),
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which proves the theorem in the case of t0(f). For d0(α) we simply have

(Tr′2(d0(α))(Φ))(x, y) = (r′2(d0(α))(Φ))
(
x+ y

2
,
x− y

2

)
= (r′(d0(α))(Φ))

(
x+ y

2
,
x− y

2

)
= Φ

(
x+ y

2
α,
x− y

2
α
)

= (T(Φ))(xα, yα) = (r′(d0(α))T(Φ))(x, y),

which proves the theorem in the case of d0(α). Finally, if γ : G∗ → G is an
isomorphism and ρ : G → G∗ is a symmetric isomorphism, we let α = ργ. We
then have

(Tr′2(d ′0(γ))(Φ))(x, y)

= (r′2(d ′0(γ))(Φ))
(
x+y

2
,
x−y

2

)
= (r′(d ′0(γ/2))(Φ))

(
x+y

2
,
x−y

2

)
=
∫
G×G

Φ(u, v)
〈
u,−x+y

2
(γ/2)∗−1

〉〈
v,−x−y

2
(γ/2)∗−1

〉
dx dy

=
∫
G×G

Φ
(
a+b

2
,
a−b

2

)〈
a+b

2
,−(x+y)γ∗−1

〉〈
a−b

2
,−(x−y)γ∗−1

〉
dx dy

=
∫
G×G

Φ
(
a+b

2
,
a−b

2

)
〈a,−xγ∗−1〉〈b,−yγ∗−1〉 da db

=
∫
G×G

(TΦ)(a, b)〈a,−xγ∗−1〉〈b,−yγ∗−1〉 da db

= (r′(d ′0(γ))T(Φ))(x, y). �

8.21. The subspaces V + and V − are invariant under r′ν for all integers ν. The
representations one obtains on these spaces for each ν will be denoted ρ+

ν and
ρ−ν respectively. Although the spaces V + and V − themselves do not depend on
ν, we will denote them V +

ν and V −ν respectively whenever we wish to emphasize
that one is acting on them via ρ+

ν and ρ−ν . We also note that, for the purposes
of studying the relevant bicycles, all of the representations r′ν of Sp2r(Fp) (resp.
SL2(Fq)) are equivalent under the group of automorphisms of Sp2r(Fp) (resp.
SL2(Fq)) and the representation r′−ν is the dual of the representation r′ν . The
same remarks apply, mutatis mutandis, to the representations ρ±ν . In particular,
the rings of invariants of all of these representations form bicycles.
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8.22. Parts of the following result, and the relevant principles for proving it,
may be found in [Adler and Ramanan 1996, pp. 54, 55, 74].

Lemma 8.23. We have

T
(
Sym2(V +

ν )
)

= Sym2(V +
2ν),

T
(
Sym2(V −ν )

)
=
∧2(

V +
2ν

)
,

T
(∧2(V −ν )

)
=
∧2(

V −2ν
)
,

T
(∧2(V +

ν )
)

= Sym2(V −2ν).

Proof. Denote by α, β two numbers each of which is equal to ±1. Denote by
W (α, β) the space of all complex valued functions f(x, y) on G×G such that

f(y, x) = αf(x, y)

and
f(−x, y) = βf(x, y).

We note that these two conditions imply

f(x,−y) = βf(x, y).

We then have

W ( 1, 1) = Sym2(V +
2ν),

W (−1, 1) =
∧2(V +

2ν),

W ( 1,−1) = Sym2(V −2ν),

W (−1,−1) =
∧2(V −2ν).

If f ∈W (α, β), then

(Tf)(y, x) = f
(
y+x

2
,
y−x

2

)
= βf

(
y+x

2
,
x−y

2

)
= β(Tf)(x, y)

and

(Tf)(−x, y) = f
(−x+y

2
,
−x−y

2

)
= f
(
x−y

2
,
x+y

2

)
= αf

(
x+y

2
,
x−y

2

)
.

This shows that T maps W (α, β) into W (β, α). Since L2(G × G) is finite-
dimensional and is the direct sum of the spaces W (α, β), we are done. �

8.24. We can generalize the fundamental intertwining operator in the following
way. Let a, b be any elements of Fp such that a2 + b2 6= 0. Then we define the
operator Ta,b on L2(G⊗G) by the rule

(Ta,bΦ)(x, y) = Φ(ax+ by,−bx+ ay).

A computation similar to the one in Theorem 8.20 shows that Ta,b is an inter-
twining operator between the representations r′ν and r′ν(a2+b2) on L2(G × G),
that is,

Ta,b ◦ r′ν = r′ν(a2+b2) ◦ Ta,b.

The fundamental intertwining operator is then T 1
2 ,

1
2
. We do need the more

general interwining operator Ta,b in Section 4, for example. It should be noted
that the preceding lemma does not hold in general with T replaced by Ta,b, but
it does hold if a = b.
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8.25. We can identify the group Sp(G) with the finite symplectic group Sp2s(Fp),
where the order of G is p2s. If s = nr, where n, r are positive integers, the group
Sp2n(Fq), where q = pr, is naturally a subgroup of Sp2s(Fp). The Weil rep-
resentations of Sp(G) therefore give rise to representations of these two groups
which we also refer to as Weil representations. We will also retain the notations
r′ and r′ν.

8.26. By drawing on the methods and concepts of [Weil 1964, § 49], the results of
this Appendix can be extended without difficulty to treat the Weil representation
of the symplectic group Sp2n(Fq) directly. Instead of the group A0(G), one
introduces the group A#(G) whose underlying point set is G × G∗ × Fq and
whose operation is given by

(g1, g
∗
1, u1)(g2, g

∗
2, u2) = (g1 + g2, g

∗
1 + g∗2 , [g1, g

∗
2] + u1 + u2).

In order to explain the pairing [ · , · ] that appears on the right, denote by tr the
trace from Fq to Fp and by τ the character of the additive group of Fq given by

τ(x) = ζtr(x)
p .

There is a natural structure on G∗ of vector space over Fq induced by that of
G. Denote by G′ the dual space of the Fq vector space G. There is a canonical
isomorphism of G′ onto G∗ which associates to an element λ of G′ the composi-
tion τ ◦λ of λ and τ . By means of this isomorphism, we canonically identify G∗

with G′. The pairing [ · , · ] is then the natural pairing from G×G′ to Fq.

8.27. We identify Sp2n(Fq) with the centralizer in Sp(G) of all elements of the
form d0(α) where α is scalar multiplication by an element of Fq . One can then
verify that Sp2n(Fq) acts as a group of automorphisms of A#(G) in a natural
way. Explicitly, suppose an element β of Sp2n(Fq) acts on A0(G) by the rule

(w, t) 7→ (wβ, f(w)t),

where w ∈ G × G∗ and where f is a second degree character of G such that
f(−x) = f(x) for all x ∈ G. Then as in [Weil 1964, § 49] we can write f uniquely
in the form

f(x) = τ(F (x)),

where F : G × G∗ → Fq is a quadratic form on the Fq vector space G × G∗.
Then β acts on A#(G) by

β(w, u) = (wβ, u+ F (w)).
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8.28. If ν is a nonzero element of Fq , we can define the automorphism σν of
A#(G) by the rule

σν(g, g∗, u) = (νg, g∗, νu).

Conjugation by σν leaves Sp2n(Fq) invariant and induces an automorphism on it
which we denote sν . We denote by r′ν the composition of the Weil representation
r′ with sν . Thus, we can obtain more Weil representations of Sp2n(Fq) in this way
than we could using only integers ν prime to p. The importance of considering
these more general Weil representations is that in case ν happens to be a square
in Fq, the Weil representation is equivalent to the original Weil representation.
If q = pr with r even, then every element of Fp will be a square in Fq and we
will get nothing new. But by taking ν to be an element of Fq which is not a
square in Fq , we do get something new.

8.29. In connection with the bicycles we are considering, note that even if ν
is not a square in Fq, the Weil representation r′ν can be obtained from r′ by
composition with an automorphism of Sp2n(Fq).

8.30. With these preliminaries, the fundamental intertwining operator still
behaves as described in Lemma 8.23 and the intertwining operators Ta,b can be
defined more generally whenever a, b are elements of Fq such that a2 + b2 6= 0.

8.31. In closing, we show that if −1 is a square in Fq then the representation
of Sp2n(Fq) on V +

ν is orthogonal and on V −ν is symplectic. Since −1 is a square,
let a be a square root of −1 in Fq. Then the mapping τa from L2(Fq) to itself
given by

τaΦ(x) = Φ(ax)

normalizes r′(Sp2n(Fq)). Indeed, an easy direct computation shows that τa inter-
twines r′ν and r′−ν. On the other hand, we have the canonical Sp2n(Fq) invariant
pairing between r′ν and r′−ν given by

〈Φ1,Φ2〉 =
∑

Φ1(x)Φ2(x),

where the summation runs over all x ∈ Fnq . We therefore obtain the bilinear
pairing Q on L2(Fnq ) given by

Q(Φ1,Φ2) =
∑

Φ1(x)Φ2(ax).

If Φ1,Φ2 are even functions on Fnq , we have

Q(Φ2,Φ1) = Q(Φ1,Φ2),

hence the restriction Q+ of Q to V +
ν is symmetric. One sees that it is also nonzero

by taking Φ1 = Φ2 to be the function which is 1 at 0 and 0 everywhere else. This
shows that V +

ν is orthogonal and gives the invariant quadratic form explicitly as

Φ 7→
∑

Φ(x)Φ(ax).
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We will also denote this quadratic form by Q+. On the other hand, if Φ1,Φ2 are
both odd functions on Fnq , we have

Q(Φ2,Φ1) = −Q(Φ1,Φ2),

which shows that the restriction Q− of Q to V −ν is alternating. To see that it is
nonzero, let y be a nonzero element of Fnq and let Φ1 be 1 at y, −1 at −y and 0
everywhere else and let Φ2(x) = Φ1(ax) for all x. Then we have

Q−(Φ1,Φ2) =
∑

Φ1(x)Φ2(ax) = −
∑

Φ1(x)2 = −2,

which proves that Q− is also nonzero. Thus V −ν is symplectic and its invariant
alternating form Q− is given explicitly.
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(1964), 143–211. Reprinted as pp. 1–69 in his Collected Papers, vol. III, Springer,
New York, 1979.

Allan Adler

P.O.Box 1043

Bowling Green, KY 42102-1043

United States

adler@hera.wku.edu





The Eightfold Way
MSRI Publications
Volume 35, 1998

Hirzebruch’s Curves F1, F2, F4, F14, F28 for Q(
√

7 )
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Abstract. We give a detailed proof of Hirzebruch’s remarkable result that

the symmetric Hilbert modular surface of level
√

7 for Q(
√

7) is PSL2(F7)-
equivariantly isomorphic to the complex projective plane. We identify the
curves F1, F2, F4, F28 explicitly as plane curves defined by invariants of de-
grees 4,12,18,21 for a three-dimensional representation of PSL2(F7), and
we explain their geometry. For example, F1 is the Klein curve, F12 is
the Steinerian of the Klein curve and F18 is essentially the Caylean of the
Klein curve. The curves F12 and F18 are birationally equivalent to the
Hessian of the Klein curve, which was shown to be defined by a cocompact
arithmetic group by Fricke; Hirzebruch’s theory gives another uniformiza-
tion using subgroups of SL2(Z). We compute the group of invariant line
bundles on the Hessian and offer the Hessian as a challenge to extending
Doglachev’s recent work on the invariant vector bundles on modular curves
to the case of triangle groups {p, q, r} in which p, q, r are not pairwise rel-
atively prime. The curve F14 maps to the 21-point orbit in P2. Using
our explicit identification of F1, F2, F4, F14, F28, we are able to complete
Hirzebruch’s identification of the nonsymmetric Hilbert modular surface.
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Introduction

Hirzebruch [1977] proved the remarkable result that the complex projective
plane P2 is a minimal model of the symmetric Hilbert modular surface of level√

7 for the extended Hilbert modular group of Q(
√

7). Furthermore, the identi-
fication is equivariant for natural actions of PSL2(F7) on the two surfaces. This
result also enabled him to identify the (nonsymmetric) Hilbert modular surface
associated to this group: namely, it is obtained from P2 by a certain sequence of
blowings up and then passing to a two-sheeted covering branched along a certain
curve on the resulting surface.

The curve in question and the sequence of blowings up are given in terms
of some PSL2(F7) orbits and certain PSL2(F7) invariant curves. These curves
are defined from the point of view of the theory of Hilbert modular surfaces as
the images of the so-called modular curves FN in P2 for N = 1, 2, 4. However,
the construction of the Hilbert modular surface starting with P2 fails to be
completely explicit since the invariant curves involved in the construction were
not completely identified in terms of the geometry of P2 and PSL2(F7) alone.
The identification of modular curves FN on a Hilbert modular surface is a matter
of independent interest.

The purpose of the present article is twofold. First, we show how to identify
the images of the curves FN in P2 for N = 1, 2, 4, 14, 28. Second, since the details
of Hirzebruch’s theorem were never published, we provide those details here as
a public service. In this latter endeavor, I relied on some unpublished notes and
private communications [Hirzebruch 1995; 1979]. Hirzebruch also encouraged
me to provide details of his unpublished determination of the curves F14 and
F28, which were also discussed in [Hirzebruch 1995].

In 1979 or so, I learned of this work of Hirzebruch from a letter of Serre and
began looking at [Hirzebruch 1977]. From the sketches there, I was motivated
to study the images in P2 of the curves F1, F2 and F4 knowing only that they
were PSL2(F7) invariant plane curves of degrees 4, 12 and 18 respectively and
that their genera were 3, 10 and 10 respectively. The first curve, as Hirzebruch
already pointed out, must be Klein’s curve

x3y + y3z + z3x = 0,

but the nature or identity of the other two is not so easy to determine.
I was able to identify the curve F2 explicitly as the Steinerian of the Klein

curve and to write down its equation. (See the beginning of Section 15 for
the definition of the Steinerian.) I also showed that there were essentially two
possibilities for the singularities of the curve F4: either it had double points
on the 21-point orbit and the 42-point orbit or it had quadruple points on the
21-point orbit. Through a careless error, I incorrectly concluded that the latter

1991 Mathematics Subject Classification. 14G35, 14H40, 14H45, 14H60, 14J26, 14J50.
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possibility did not occur and only noticed the error after sending the manuscript
[Adler 1979] to Hirzebruch. When I pointed out my error to Hirzebruch, he
replied that [Berzolari 1903–15] has a footnote describing a way to get a covariant
of degree 18 and genus 10 with 21 quadruple points and suggested that this might
be the way to obtain F4 from the Klein curve, since he knew from his study of
the Hilbert modular surface that the image of the curve F4 in P2 must have 21
quadruple points.

There the matter stood until recently when I again took up the task of com-
pleting this article and of providing details of Hirzebruch’s results. This effort
was partly motivated by my conviction that his striking result was perfect for
inclusion in the present volume on the Klein curve.

The effort of providing details given my limited experience with Hilbert mod-
ular surfaces turned out to be considerable, partly because of the difficulty of
reading and using the relevant literature. Accordingly, I am preparing a set of
lecture notes [Adler ≥ 1998], which I hope will make it easier for others to gain
access to this beautiful subject. The notes will also contain a much more detailed
and general examination of the Hilbert modular surface of level

√
7 for Q(

√
7)

than is possible in this article.
The first part of the article is devoted to a proof of Hirzebruch’s published

results, including the fact that the projective plane is a minimal model of the
symmetric Hilbert modular surface of level

√
7 for Q(

√
7). The second part is

devoted to a determination of the curves F1, F2, F4. Some of the computations
were carried out using the algebra package REDUCE 3.4 on a personal computer.
There are also results regarding the nonsingular models of the curves F2 and F4.
It turns out that they are isomorphic to the Hessian of the Klein curve and that
this is the unique curve of genus 10 with PSL2(F7) acting on it. We also study
the group of invariant line bundles on this curve.

As this article was nearing publication, I ran across [Fricke 1893a] and learned
that some of these results on the various models of the Hessian of the Klein curve
were anticipated by Fricke a century ago. In particular, Fricke knew that the
Hessian of the Klein curve is characterized by its genus and automorphism group.
He also wrote down the equations of the unique invariant curve of degree 12 and
genus 10 and considered the pencil of all invariant curves of degree 12. Thus, in
effect, he found the equations of Hirzebruch’s curve F2. He also considered the
pencil of all invariant curves of degree 14 and, as we do, the net of all invariant
curves of degree 18 but stopped short of the extensive computations of that
net which we have carried out. It will be pleasant to learn more from our late
colleague about his old work in this field which for us is so new.
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1. Some Hilbert Modular Surfaces for Q(
√

7)

Throughout this article, k will denote the real quadratic field Q(
√

7) of dis-
criminant D = 28 and Ok will denote the ring of integers of k. The conjugate
over Q of an element x of k or of a matrix M with entries in k will be denoted
x′ and M ′ respectively. Denote by Γ̂ the group of all 2× 2 matrices

γ =
(
a b

c d

)
with entries in Ok such that the determinant of γ is a totally positive unit of k.
Denote by Γ̂(

√
7) the subgroup of Γ̂ consisting of matrices which are congruent

to the identity matrix modulo
√

7. We will refer to Γ̂ as the extended Hilbert
modular group. (The adjective “extended” refers to the fact that Γ̂ contains the
usual Hilbert modular group SL2(Ok).) It is known [van der Geer 1988, § I.4,
pp. 11–14] that Γ̂ is a maximal discrete subgroup of SL2(R)× SL2(R). We will
refer to Γ̂(

√
7) as the congruence subgroup of level

√
7 of Γ̂. If Γ is a subgroup

of GL+
2 (k) (the group of 2 × 2 matrices with entries in k and totally positive

determinant) commensurable with SL2(Ok), we will call Γ a group of Hilbert
modular type.

A group Γ of Hilbert modular type acts on the product P1(C)×P1(C) of two
copies of the projective line P1(C) by the rule

γ ·(z1, z2) =
(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
.

We denote by H the upper half plane in C and by H2 the product of two copies
of H. If Γ is of Hilbert modular type, we denote the orbit space for Γ acting on
H2 by Γ\H2 and we will refer to any complex analytic surface bimeromorphic
to Γ\H2 as a surface of Hilbert modular type.

The group Γ̂(
√

7) acts without fixed points on H2 and the orbit space is
a complex manifold. The group Γ̂ has some isolated fixed points arising from
elliptic elements and its orbit space is a complex orbifold but is not a complex
manifold due to the singularities arising from the elliptic fixed points. (For the
notion of an orbifold see [Satake 1956; Weil 1962], where the terminology “V-
manifold” is used.)

One can prove that both orbit spaces are isomorphic to quasiprojective al-
gebraic varieties. The proof depends on showing that both spaces have natu-
ral compactifications which are isomorphic to projective varieties. We will not
present the proof of this result, but the compactifications themselves [Satake
1960; Baily and Borel 1966] are of interest to us. They are defined in [van der
Geer 1988, § I.4], and we refer the reader there for details. The compactification
and its structure of normal complex analytic variety were constructed in a gen-
eral setting by Satake [1960]. That complex analytic variety is called the Satake
compactification. Baily and Borel [1966] proved that the Satake compactifica-
tion is isomorphic to a projectively normal (hence normal) projective variety.
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That variety is called the Baily–Borel compactification, but since we don’t want
Satake’s role to be forgotten, we will refer to it as the SBB compactification
throughout this article.

We will denote the SBB compactifications of Γ̂\H2 and Γ̂(
√

7)\H2 respec-
tively by X̂ and X̂(

√
7). Write Γ to denote either Γ̂ or Γ̂(

√
7) and X to denote

the SBB compactification of Γ\H2. Then the complement of Γ\H2 in X is a
finite set, namely the orbit space for Γ acting on the projective line P1(k) over
k. This projective line sits in P1(C)×P1(C) via the embedding ξ 7→ (ξ, ξ′). The
orbits for Γ on P1(k) will be called the cusps of Γ or of X. The point (∞,∞)
is a cusp. It and the points corresponding to it in surfaces of Hilbert modular
type will be denoted ∞.

Since the class number of k is 1, the number of cusps of Γ̂ is 1 [van der Geer
1988, Prop. I.1.1, p. 6], and the number of cusps of Γ̂(

√
7) is (72 − 1)/2 = 24.

The natural mapping of X̂(
√

7) onto X̂ has degree equal to the order of
PSL2(F7), which is 168. For the rest of this article, we will denote the group
PSL2(F7) by G.

2. Some Congruence Subgroups of Unit Groups of Orders in
Quaternion Algebras

Recall that k = Q(
√

7), D = 28 is the discriminant of k and Ok is its ring of
integers. For the rest of this article, η = 3 −

√
7 is an element of norm 2 and

ε = η/η′ = 8− 3
√

7 is a fundamental unit of k.

Definition 2.1. By a skew-hermitian matrix we will mean a matrix of the form

B =
(
a
√
D λ

−λ′ b
√
D

)
,

where a, b are rational numbers and λ is an element of k. We will say such a
matrix is integral if a, b are rational integers and λ is an integer of k. We will say
an integral skew-hermitian matrix B is primitive if there is no rational integer
n > 1 such that 1

nB is also integral.

The proofs of the next two lemmas are left to the reader.

Lemma 2.2. If ν is a nonnegative integer , the skew-hermitian matrix Bν given by(
0 ην

−η′ν
√
D

)
is primitive and has determinant 2ν.

Lemma 2.3. If ν is a nonnegative integer , the matrix Bν given by(
2ν
√
D 0

0
√
D

)
is a primitive skew-hermitian matrix of determinant 2νD.
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Lemma 2.4. There is no integral skew-hermitian form B with determinant 7
but there is one of determinant 14.

Proof. The skew-hermitian matrix B given by

(2.5)
( √

D 7−
√

7
−7 −

√
7 −

√
D

)
has determinant 14. We have Ok = Z[

√
7]. The general integral skew-hermitian

matrix (
a
√
D λ

−λ′ b
√
D

)
has determinant 28ab+ ν(λ), where ν denotes the norm of the quadratic field k.
If this determinant equals 7 then 7 divides the norm λλ′ of λ, whence

√
7 divides

λ. Writing
λ = (c + d

√
7)
√

7,

we have
4ab− c2 + 7d2 = 1,

where a, b, c, d are rational integers. Modulo 4 this becomes

−c2 − d2 ≡ 1,

which clearly has no solution. �

Proposition 2.6. Let B be a primitive integral skew-hermitian matrix with
entries in k. Denote by QB the set of all 2× 2 matrices

M =
(
a b

c d

)
with entries in k such that

(2.7) tM ′B = BM∗,

where

M∗ =
(
d −b
−c a

)
.

Then QB is an indefinite quaternion algebra over Q generated by elements i, j
such that

i2 = D, j2 = −N/D, ij = −ji,
where N is the determinant of B. The intersection of QB with the ring of 2× 2
matrices with entries in Ok is an order , denoted OB , of QB. The discriminant
of the order OB is N2.

(The discriminant of the order OB is defined to be the index of OB in its dual
lattice in QB with respect to the pairing defined by the reduced trace of QB .
This is not the same as the discriminant of the quaternion algebra QB, which is
the product of the primes q such that QB is ramified at q. The discriminant of
a maximal order of QB is the square of the discriminant of QB.)
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Proof. See [van der Geer 1988, Prop. V.1.5, p. 90]. �

Lemma 2.8. If B is as in Lemma 2.2 then the quaternion algebra QB is a matrix
algebra over Q. If B is as in Lemma 2.3 or Equation 2.5 then QB is a division
algebra with discriminant 14.

Proof. Since k has discriminant D = 28, it follows from Lemma 2.6 that the
reduced norm for QB is of the form

w2 − 28x2 + 1
7 ·2

ν−2y2 − 2νz2

with ν ≥ 0 or, after replacing x by x/2 and y by 14y,

ξξ′ − 2νζζ′,

where ξ = w + x
√

7 and ζ = z + y
√

7. Since ηη′ = 2 and the norm from k to Q
is multiplicative, the form is equivalent to

ξξ′ − ζζ′,

which obviously represents 0. This proves the first assertion.
If B is Bν as in Lemma 2.3 or B as in Equation 2.5 then by Lemma 2.7, the

norm form is

w2 − 28x2 + 2ν−2y2 − 2ν ·7z2

with ν ≥ −1, which is equivalent to

ξξ′ + ζζ′

with ξ = w+x
√

7 and ζ = y+z
√

7, by a reduction similar to the preceding one,
and hence to

w2 − 7x2 + y2 − 7z2.

It is easy to see that this form cannot represent zero nontrivially. Indeed, one
can assume that w, x, y, z are all integers without common factor. Reducing
modulo 7, one concludes that 7 must divide w and y. Replacing w by 7w, y by
7y, dividing through by 7 and again reducing modulo 7, one concludes that x, z
are divisible by 7, which contradicts the assumption that w, x, y, z are integers
without common factor. �

Lemma 2.9. Let B be as in Lemma 2.8. With the notation of Lemma 2.6,
denote by O1

B the group of units of OB of reduced norm 1. Denote by O1
B(
√

7)
the intersection of the group of O1

B consisting of elements which are congruent
to 1 with the group Γ̂(

√
7). If B is Bν as in Lemma 2.2 then the factor group

O1
B/{±1}O1

B(
√

7) is isomorphic to G. If B is Bν as in Lemma 2.3 or B as in
Equation 2.5, then the factor group is a cyclic group of order 4.
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Proof. By the approximation theorem, the factor group O1
B/O

1
B(
√

7) is the
product of the analogous groups for the q-adic completions of the algebraQB, as q
runs over all primes. In particular, it must contain the analogous group for the 7-
adic completion. On the other hand, the factor group O1

B/O
1
B(
√

7) clearly injects
into the factor group Γ̂/Γ̂(

√
7), which is isomorphic to SL2(F7). Now suppose

we are in the case of B = Bν as in Lemma 2.2. Then QB is a matrix algebra
isomorphic to M2(Q). According to Lemma 2.2, the discriminant of the order
OB is a power of 2, hence its 7-adic completion is a maximal order of M2(Q7)
and the 7-adic completion of O1

B is SL2(Z7). Similarly, since i2 = D = 28,
the 7-adic completion of the congruence subgroup O1

B(
√

7) is the congruence
subgroup of level 7 of SL2(Z7) and the factor group is SL2(F7). Therefore, the
contribution at 7 to the factor group O1

B/O
1
B(
√

7) is SL2(F7) and to the factor
group O1

B/{±1}O1
B(
√

7) isG, which implies that O1
B/{±1}O1

B(
√

7) must be all of
G in this case. If B is Bν as in Lemma 2.3 or B as in Equation 2.5, the quaternion
algebra QB is ramified at 7 by Lemma 2.6. The discriminant of the order OB is
a power of 2 times the square of the discriminant of the algebra QB . Therefore,
the 7-adic completion of OB is a maximal order of the 7-adic completion of QB .
The 7-adic completion of O1

B is then the group of units of reduced norm 1 in that
maximal order and the 7-adic completion of O1

B(
√

7) is the subgroup of elements
congruent to 1 modulo the maximal ideal of that maximal order. The maximal
order modulo its maximal ideal is isomorphic to the field F49 with 72 = 49
elements [Weil 1974, Prop. I.4.5, pp. 20-21]. The factor group O1

B/O
1
B(
√

7) is
therefore isomorphic to the group of elements of norm 1 in F49. Since the norm
map is a surjective homomorphism from F×49 to F×7 , the elements of norm 1 form
a group of order (49−1)/(7−1) = 8, in fact a cyclic group, and that cyclic group
is therefore contained in the factor group O1

B/O
1
B(
√

7). When we pass to the
factor group O1

B/{±1}O1
B(
√

7), the contribution from the 7-adic completion is
therefore a cyclic group of order 4. This cyclic group is a maximal commutative
subgroup of the group G. In particular, it is its own centralizer in G. Since
the group O1

B/O
1
B(
√

7) is the product of this cyclic group with the analogous
groups at primes other than 7, the latter must commute with the cyclic group.
It follows that the groups coming from the other primes must be trivial. �

If B is a primitive skew-Hermtitian matrix with positive determinant, we denote
by Γ̂B the subgroup of Γ̂ consisting of similitudes of B, i.e.,

(2.10) Γ̂B = {M ∈ Γ̂ | (∃ξ ∈ k) tM ′BM = ξB}.

Using the notation of equation (2.7), for invertible matrices M we have M∗ =
M−1 · det(M). Replacing ξ by ξ · det(M) in (2.10), we can therefore rewrite
(2.10) as

(2.11) Γ̂B = {M ∈ Γ̂ | (∃ξ ∈ k) tM ′B = ξBM∗},
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which is a natural generalization of (2.7). It is easy to verify that Γ̂B is a
subgroup of Γ̂.

Lemma 2.12. Let B be as in Lemma 2.3 or equation (2.5). Then the image of
Γ̂B in G is a Sylow 2-subgroup of G and therefore has order 8.

Proof. We will refer to B in Lemma 2.3 as Case 1 and B as in equation (2.5)
as Case 2. Let C = 1√

7
B. Then we have

C =
(

2ν+1 0
0 2

)
if B in Case 1 and

C =
(

2 −1 +
√

7
−1−

√
7 −2

)
in Case 2. Clearly, in the definition of Γ̂B we can replace B by C. Let C denote
the reduction of C modulo

√
7. Since x′ ≡ x modulo

√
7 for all x in Ok, the

matrix C will be a symmetric matrix with entries in F7. Explicitly,

C =
(

2ν+1 0
0 2

)
in Case 1 and

C =
(

2 −1
−1 −2

)
in Case 2. Therefore, the image of Γ̂B in Γ̂/Γ̂(

√
7) = SL2(F7) lies in the group

of similitudes of determinant 1 of the quadratic form determined by C. That
quadratic form is 2ν+1x2 + 2y2 in Case 1 and is 2x2 − 2xy − 2y2 in Case 2.
Using the fact that 2 is a square in F7 it is easy to verify that in either case the
quadratic form is anisotropic and therefore equivalent, up to scalar multiple, to
the quadratic form x2 +y2 whose group of orthogonal similitudes of determinant
1 is easily seen to be of order 16 and is a Sylow 2-subgroup of SL2(F7). Its image
in PSL2(F7) is therefore a Sylow 2-subgroup of of PSL2(F7). It remains to show
that the group Γ̂B maps onto this subgroup. From Lemma 2.9, we know that
the subgroup O1

B maps onto a cyclic subgroup of PSL2(F7) of order 4. Since the
elements of O1

B consist of elements of Γ̂B which satisfy (2.10) with ξ ≡ 1 modulo√
7, it is enough to show that Γ̂B contains an element which satisfies (2.10)

with ξ = −1. But this is in fact a special case of [Hausmann 1980, Cor. 2.9,
pp. 14–15]. �

3. Modular Curves on a Hilbert Modular Surface

If B is a primitive integral skew-hermitian matrix over k, we will denote by
HB the locus in H2 consisting of all z = (z1, z2) in H2 such that

(3.1) (z2 1) B
(
z1

1

)
= 0.
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If S is a complex surface with a mapping φ (usually understood from the context)
of H2 into S, then the closure of the image φ(HB) of HB in S under φ will be
denoted FB(S). For example, FB(H2) = HB .

Let N be a positive integer. The union of all FB(S) as B runs over all primitive
integral skew-hermitian forms of determinant N will be denoted FN(S). The
union of all FN/d2 , where d runs over all positive integers such that d2 divides
N , will be denoted TN (S). It is the same to say that one obtains TN by omitting
the primitivity condition from the definition of FN .

In most of the cases of interest to us (though not all, since some or all of
the curves may collapse to points), the loci FB(S), FN (S) and TN (S) will be
complex analytic curves on the surface S. We will be particularly interested in
cases where S is an algebraic surface and in that case, these loci will actually be
algebraic.

We need to know the number of components of the curves FN (S) in certain
cases. For this it is helpful to know the subgroup of Γ̂ leaving HB invariant. It
turns out to be a group with which we are already familiar.

Lemma 3.2. The subgroup of Γ̂ leaving FB(H2) invariant is Γ̂B (see Equa-
tion 2.10).

Proof. Suppose γ ∈ Γ̂. Then γ−1 maps the locus of of all z = (z1, z2) in H2

such that

0 = (z2 1) B
(
z1

1

)
to the locus of all z such that

0 = (z2 1) tγ′Bγ
(
z1

1

)
.

Since FB(H2), when nonempty, determines B up to a scalar factor, the lemma
follows at once. �

Lemma 3.3. Let φ : Γ̂(
√

7)\H2 → S be a holomorphic mapping with dense
image. Then the curve F7(S) is empty . Let r ≥ 1 and N = 2r ·7. Then the
curve FN(X̂(Ok)) has exactly one component . For r ≥ 0 and N = 2r , the curve
FN(X̂(Ok)) has just 1 component for r ≤ 3 and exactly 2 components for r ≥ 4.

Proof. The assertion about F7 follows at once from the definition and from
Lemma 2.4. By Lemmas 2.2, 2.3, 2.4, there do exist primitive skew-hermitian
forms over k with determinant N = 2r ·7 with r ≥ 1 and determinant N = 2r

with r ≥ 1. Therefore the loci FN(S) are nonempty for such N . The number
of components is now determined using the table in [Hausmann 1980, p. 20]
(cf. [van der Geer 1988, §V.3, pp. 93–100]). �

Corollary 3.4. The number of components of FN(X̂(
√

7)), with N = 1, 2, 4
is 1. The number of components of FN(X̂(

√
7)) with N = 2r ·7, r ≥ 1, is 21.
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Proof. By Lemma 3.3, FN (X̂) has only one component. Therefore, by Lemma
3.2 the set of components of FN(H2) can be identified Γ̂-equivariantly with Γ̂/Γ̂B ,
where B is as in Lemma 2.2, Lemma 2.3 or equation (2.5) according to the value
of N . It follows that the set of components of FN(X̂(

√
7)) can be identified

with the double coset space {±1}Γ̂(
√

7)\Γ̂/Γ̂B. Since {±1}Γ̂(
√

7) is a normal
subgroup of Γ̂ with quotient G, it follows that the number of components of
FN(X̂(

√
7)) is the index in G of the image of Γ̂B in G. By Lemma 2.9, the

image of Γ̂B in G is all of G if N = 1, 2, 4, which proves the first assertion of the
lemma. If N = 2r ·7 with r ≥ 1, then by Lemma 2.12, the image of Γ̂B has order
8, so FN(X̂(

√
7)) has 168/8 = 21 components. �

Lemma 3.5. Let

B =
(
a
√
D λ

−λ′ b
√
D

)
be a primitive integral skew-hermitian matrix over k with positive determinant .
Then the analytic disc HB has ∞ as a limit point if and only if a = 0.

Proof. The equation (3.1) defining HB when expanded becomes

(3.6) az1z2

√
D+ λz2 − λ′z1 + b

√
D = 0.

Dividing through by z1z2 we see that if (z1, z2) can approach ∞ along HB, in
the limit we have a = 0. Coversely, if a = 0 then λ 6= 0 and z2 will approach ∞
along with z1. �

4. Volumes and Genera of Modular Curves on X̂(
√

7)

In the following lemma, the characters χ−7 and χ−4 are Dirichlet characters
modulo 7 and modulo 4 respectively and are defined as follows. Letting t denote
either 7 or 4, let ζt denote a primitive t-th root of unity and Q(ζt) the cyclotomic
field of t-th roots of unity. The value of χ−t(n) is 0 if t divides n. To compute
χ−t(n) for n prime to t, consider the automorphism σn ofQ(ζt) given by ζt 7→ ζnt .
Then the value of χ−t(n) is 1 or −1 according to whether the automorphism σn
does or does not induce a trivial automorphism of the quadratic subfield Q(

√
−t)

of Q(ζt). The Legendre symbol
(
D
q

)
and the Hilbert symbol

(
N,D
q

)
appear in

the definition of αq.

Lemma 4.1. The volume of FN(X̂) with respect to the volume form

− 1
2π

dx∧ dy
y2

is

vol(FN(X̂)) = − 1
24
N(1 + χ−p(N))(1 + χ−4(N))

∏
q|N

αq,
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where αq is defined for primes q dividing N by

αq =



1 +
(
D

q

)
/q if q -D

1 +
(
N,D

q

)
/q if q|D and q||N

1− 1
q2

if q|D and q2|N .

Proof. In [Hausmann 1980, p. 49] (cf. [van der Geer 1988, §V.5, pp. 101–102])
one finds a volume formula which specializes to the one given above except for
having the fraction on the right-hand side equal to−1/12 instead of−1/24. How-
ever, the formula of Hausmann was for the volume of the curve FN(X), where X
is a compactification of SL2(Ok)\H2. Therefore, FN(X) is a two-sheeted cover
of the curve FN(X̂), because PSL2(Ok) is isomorphic to a subgroup of index 2 in
Γ̂/O×k . Therefore our curve has half the volume given by Hausmann’s formula.

�

Corollary 4.2. Let k = Q(
√

7) and let J be the two sided ideal (
√

7) =
√

7Ok
of Ok. Then the volumes of the curves FN(X̂(

√
7)) for N = 1, 2, 4, 7, 14, 2r ·7

are given by :

N 1 2 2r, r ≥ 2 7 14 2r ·7, r ≥ 2

vol(FN(X̂(Ok))) −28 −42 −2r−1 ·21 0 −42 −2r−1 ·63

Proof. Since X̂(
√

7) is a 168-sheeted branched cover of X̂ , with branching only
at a finite set of points, the volume of the curve FN(X̂(

√
7)) is 168 times the

volume of FN(X̂). The latter is computed directly from Lemma 4.1. We leave
the arithmetic to the reader. �

Corollary 4.3. For N = 2r ·7, with r ≥ 1, the curve FN(X̂(
√

7)) consists of
exactly 21 nonsingular irreducible components. Each component of F14(X̂(

√
7))

has volume −2 and genus 2. If r > 1, each component of FN(X̂(
√

7)) has volume
−2r−1 ·3 and genus 1 + 2r−2 ·3.

Proof. The volume of FN(X̂(
√

7)) for N = 2r ·7, r ≥ 1, is given in the
preceding corollary. By Corollary 3.4 the number of components of FN (X̂(

√
7)),

for such N is 21. Hence, each component of FN(X̂(
√

7)) has volume −2 if r = 1
and −2r−1 ·3 if r > 1. Since these volumes coincide with the Euler numbers of
the components, we conclude that the genus of each component of FN(X̂(

√
7))

is 2 if r = 1 and is 1 + 2r−2 ·3 if r > 1. �

Remark 4.4. In Lemma 7.15, we will prove that the components of F14(X̂(
√

7))
and F28(X̂(

√
7)) are hyperelliptic curves.
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5. Intersections of Modular Curves on X̂(
√

7)

In this section, we will compute the intersection numbers of certain of the
modular curves FN(

√
7) on the complete normal singular surface X̂(

√
7). The

theory of intersections on complete normal singular surfaces is due to Mumford
[1961] (cf. [Fulton 1984, Ex. 7.1.16, p. 125]). We will have more to say about it in
Section 7. Our main tool for computing these intersection numbers is a formula
due to Hausmann. However, Hausmann’s formula is for intersections of modular
curves on the normal singular surface X̂ , so we need some preliminary results
(Lemmas 5.1 and 5.3), which seem to be implicit in the literature on Hilbert
modular surfaces. I am indebted to Angelo Vistoli and Torsten Ekedahl for their
help in explaining to me how to prove it and in criticizing my earlier drafts of
the proofs. The relevant principles will be discussed in greater detail. in [Adler
≥ 1998].

Lemma 5.1. If g : X → Y is a surjective morphism of degree n of complete
normal surfaces, with X smooth, and if C is a Weil divisor on Y , then there
is a unique Weil divisor C ′ on X with rational coefficients with the following
properties:

(1) Let Y0 be the smooth locus of Y , let X0 = g−1(Y0) and let g0 : X0 → Y0 be
the restriction of g. Let C0 = C ∩ Y0 and C ′ = C ′ ∩X0. Then C ′0 = g∗0C0.

(2) If D is any curve component of the complement of X0 in X then (C ′·D)X =
0.

Proof. For n = 1, this is due to Mumford [1961] and is the key to his intersec-
tion product. In the general case, use the Stein factorization of g:

X → Y ′ → Y

to first pull C back to C ′′ on Y ′ and then to use Mumford’s result for n = 1
for the morphism X → Y ′. The condition (2) follows from the fact that the
complement of X0 in X maps to a finite set in Y ′. �

Remark 5.2. We will call C ′ the Mumford pullback of C and denote it gMC.
In the proof of Lemma 5.3, we also need to use another notion of pullback. Let
g : X → Y be a surjective quasifinite morphism of complete normal surfaces and
let C be a Weil divisor on Y . Let Y0 be the smooth locus of Y , let X0 = f−1(Y0),
let C0 = C ∩ Y0 and let g0 : X0 → Y0 be the restriction of g. Then C0 is
a Cartier divisor on Y0 whose pullback to X0 is denoted g∗(C0). The scheme
theoretic closure of g∗(C0) in X is then associated to a Weil divisor on X which
we denote g∗(C). We remark that on any surface, a Weil divisor is uniquely
determined by its restriction to the complement of a finite set. This notion
of pull-back is a special case of the notion of pullback of codimension-1 cycles
presented in [Grothendieck 1967, § 21.10] and will be denoted f∗. In the case of
Cartier divisors, it coincides with the usual notion of pullback.
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Lemma 5.3. Let f : U → V be a finite surjective morphism of complete normal
surfaces. Let n be the degree of f . Let C1, C2 be curves on V . Denote by ( · , · )U
and ( · , · )V the Mumford intersection products on U and V respectively . Then
if C ′i is the pullback to U of the divisor Ci in U , we have

(C ′1, C
′
2)U = n·(C1, C2)V .

Proof. Suppose that π1 : Z → V is a desingularization and that π2 : W → U

is a desingularization factoring through the fibre product of f and π1. Denote
by h : W → Y the natural mapping from W to Z. Then we have fπ1 = π2h. I
claim that we also have

(fπ1)M = πM1 f∗ = h∗πM2 .

Indeed, our assumptions imply that W → U → V is the Stein factorization of
fπ1, so the first equality is an immediate consequence of our construction of
(fπ1)M . As for the second, we just have to prove that it satisfies the conditions
(1) and (2) above. Let C be a Weil divisor on V . Clearly h∗πM2 C satisfies
condition (1). As for condition (2), let D be a curve component of the preimage
in W of the singular locus of V . We have

(h∗πM2 C ·D)W = (πM2 C ·h∗(D))Z .

If h maps D to a point, this last expression is already 0. If h maps D to a curve,
that curve is mapped by π2 to a singular point of V and by definition of πM2 the
right side is again 0. We can now prove the lemma. Let C1, C2 be Weil divisors
on V . Then

(f∗C1·f∗C2)U = (πM1 f∗C1·πM1 f∗C2)W

= (h∗πM2 C1·h∗πM2 C2)W

= n(πM2 C1·πM2 C2)Z

= n(C1·C2)V .

Here the penultimate equality follows from the fact that the lemma is already
well known for morphisms between smooth varieties. �

As for Hausmann’s formula, it is given below. It is derived in [Hausmann 1980,
Satz 5.13, p. 102] (cf. [van der Geer 1988, Cor. VI.5.3, p. 144]) in greater gener-
ality than we state it here. The notation appearing in the formula, other than
Pρ(M,N), requires more extensive explanation, which will be given after the
statement of the formula. We will discuss Hausmann’s formula in greater detail
in [Adler ≥ 1998].

Intersection Formula 5.4. Let k be a real quadratic field of discriminant D.
Let M and N be positive integers. Then the intersection number of TM and TN
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on X̂ (in the sense of Mumford’s theory) is given by

(TM ·TN )
bX =∑

n|(M,N)

(
n
(
HD

(
MN

n2

)
+ ID

(
MN

n2

))∏
ρ|D

χD(ρ)(n) + χD(ρ)(Pρ(M,N)/n)
2

)
,

where the product runs over all rational primes dividing D and where

Pρ(M,N) = ρmin(µ,ν),

with µ = ordρM and ν = ordρN .

We now explain the notation.

(1) The Dirichlet characters χ−4 and χ−7 were defined at the beginning of Sec-
tion 4.

(2) In order to explain the notation HD, we first have to explain the number
theoretic functions h, h′ and H.

(a) If A is an order in an imaginary quadratic field K, we denote by h(A)
the class number of A. Since an order is determined up to isomorphism by
its discriminant, we will also define h(d) to be h(A) if d is the discriminant
of A. We also denote by Ad the unique order of discriminant d. If d is a
rational number which is not the discriminant of an order in an imaginary
quadratic field, we define h(d) to be 0.

(b) We define the number theoretic function h′ as follows. For all rational
numbers d, we define h′(d) by

h′(d) =


−1/12 if d = 0,
1/2 if d = −4,
1/3 if d = −6,
h(d) otherwise.

(c) We define the Hurwitz–Kronecker class number H by

H(d) =
∑
c2|d

h′(−d/c2)

for all rational numbers d.

(d) We define the function HD by

HD(n) =
∑

H
(4n− x2

D

)
,

where the summation on the right runs over all rational numbers x.

(3) Let k be a real quadratic field with discriminant D and let Id(k) denote the
group of fractional ideals of k. Then we define the function f : Id(k)→ R by

f(M) =
1√
D

∑
min(λ, λ′),
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where the summation runs over all totally positive elements λ of k such that
M = Okλ. We define the number theoretic function ID on the positive rational
integers by the rule

ID(N) =
∑

f(M)

where the summation runs over integral ideals k of norm N .

We now provide some values of HD and of ID.

Corollary 5.5. We have the following values of HD when D = 28.

N 1 2 4 8 16 49 98 196 392 784

HD(N) −1
6 0 −1

6 0 −1
6

5
6 2 11

6 8 71
6

Proof. Since h(7) = 1 and h(56) = h(84) = 4 (see any table of class numbers
of imaginary quadratic fields), this follows at once from the following lemma,
which is used for computing the class numbers of nonmaximal orders. �

Lemma 5.6. Let A be an order in a quadratic field K. Let h be the class number
of K and let OK be the maximal order of K. Then the class number of A is
given by

h(A) = h(OK )
|(OK/fOK )×|
|O×K/A×|·ϕ(f)

,

where ϕ is the Euler ϕ function.

Proof. See [Borevich and Shafarevich 1966, pp. 152–153]. �

Lemma 5.7. ID(2r ·7) = 0 for all r ≥ 0.

Proof. There is only one ideal of k with norm 2r ·7, namely the one generated by
ηr
√

7. Since this element has negative norm and since k has no unit of negative
norm, the ideal is not generated by a totally positive element and therefore the
function f vanishes on this ideal. �

Lemma 5.8. Let r be a nonnegative integer and let s = [r/2]. Then

ID(2r) =


2s−1·3

7
if r = 2s,

2s

7
if r = 2s+ 1.

Proof. The fundamental unit of k is given by ε = η/η′ = 3−
√

7 and we have
ε < 1. According to [van der Geer 1988, §V.8, p. 112], if M is a fractional ideal
generated by a totally positive element µ satisfying

ε2 ≤ µ/µ′ ≤ 1,
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then the value of f(M) is also given by

f(M) =
1√
D

(
µ

1− ε +
µ′ε

1− ε

)
= tr

(
µ

(1− ε)
√
D

)
.

Since 2 is ramified in k, there is only one ideal of k of norm 2r. If r = 2s the
ideal is generated by µ = 2s. If r = 2s + 1 the ideal is generated by µ = 2s ·η.
In either case, ε2 ≤ µ/µ′ ≤ 1. Therefore,

ID(2r) =


tr
( 2s

(3
√

7− 7)
√

28

)
if r = 2s,

tr
( 2s ·η

(3
√

7− 7)
√

28

)
if r = 2s+ 1,

=


2s−1 ·3

7
if r = 2s,

2s

7
if r = 2s+ 1.

We now use Hausmann’s formula to compute some intersection numbers on X̂

and X̂(
√

7). This is entirely straightforward, using the numerical values we
have provided for the various number theoretic functions that appear in it and
we leave the details to the reader. However, there is one detail that we wish to
point out. Hausmann’s formula is for intersections of the modular curves TM (X̂)
and TN(X̂), whereas the table in the following lemma is for intersections of the
modular curves FM (X̂) and FN(X̂). For M = 1, 2, 14, 28, we have FM(X̂) =
TM (X̂) and for M = 4 we have

F4(X̂) = T4(X̂)− T1(X̂).

Therefore, Hausmann’s formula is perfectly adequate for our purposes. In gen-
eral, one can always write a curve FM (X̂) as a linear combination of curves
TN(X̂). �

Lemma 5.9. We have the following table of intersection numbers on X̂(
√

7).

F1(X̂(
√

7)) F2(X̂(
√

7)) F4(X̂(
√

7)) F14(X̂(
√

7)) F28(X̂(
√

7))

F1(X̂(
√

7)) 8 24 36 0 84

F2(X̂(
√

7)) 24 30 24 42 84

F4(X̂(
√

7)) 36 24 −6 84 42

F14(X̂(
√

7)) 0 42 84 −42 168

F28(X̂(
√

7)) 84 84 42 168 210

The curves FN(X̂(
√

7)) are irreducible for N = 1, 2, 4 but are reducible for
N = 14 and N = 28. We also need to know the intersections of the individual
components of the curves FN(X̂(

√
7)) with the curves FM (X̂(

√
7)) for N =

14, 28 and M = 1, 2, 4, 14, 28. Just from knowing the number of components
of the curves FN(X̂(

√
7)) with N = 14, 28 and the above table of intersection
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numbers, we can obtain some partial information, which we summarize in the
following lemma.

Corollary 5.10. Let ZN(X̂(
√

7)) denote a component of FN(X̂(
√

7)), with
N = 14 or N = 28. Then we have the following intersection numbers:

F1(X̂(
√

7)) F2(X̂(
√

7)) F4(X̂(
√

7)) F14(X̂(
√

7)) F28(X̂(
√

7))

Z14(X̂(
√

7)) 0 2 4 −2 8

Z28(X̂(
√

7)) 4 4 2 −8 10

The more detailed problem of the intersection of the individual components of
F14(X̂(

√
7)) with themselves, with each other and with those of F28(X̂(

√
7))

will be taken up in Section 7.

6. The Switching Involution τ

Denote by τ the mapping of H2 to itself defined by

τ(z1, z2) = (z2, z1).

We will call τ the switching involution. One can show that if γ belongs to Γ̂ then
as mappings of H2 to itself we have

γτ = τγ′,

where the prime indicates that the nontrivial automorphism of k is to be applied
to all of the entries of γ. Since the ideal

√
7Ok is invariant under the Galois

group of k over Q, the group Γ̂(
√

7) is invariant under conjugation by τ .
The proof of the following lemma is straightforward and is left to the reader.

Lemma 6.1. Let γ be a matrix with entries in k and totally positive determinant .
Write

γ =
(
a b

c d

)
.

Then for z1, z2 ∈ H, the relation

z2 = γ ·z1

is equivalent to the relation

(z2 1) B
(
z1

1

)
= 0,

where

B =
(

0 1
−1 0

)
γ.

It is important for us to know the fixed point set of τ acting on Γ̂(
√

7)\H2.
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Lemma 6.2. The fixed point set of τ on the surface Γ̂(
√

7)\H2 is the union of
F1(Γ̂(

√
7)\H2), F2(Γ̂(

√
7)\H2) and F4(Γ̂(

√
7)\H2).

Proof. Let z = (z1, z2) be a point of H2. Then z represents a point x of X
fixed by τ if and only if there is an element γ of Γ(

√
7) such that τz = γz or,

what is the same,
z2 = γz1, z1 = γ′z2.

Then we have
z2 = γγ′z2,

which implies that γγ′ has z as a fixed point on H2. This implies that γγ′ acts
as the identity transformation on H2. We may assume that the determinant of
γ is either 1 or ε. Therefore we can write

γ =
(
ξ 0
0 1

)(
a b

c d

)
,

where the second matrix on the right-hand side, which we will denote δ, has
determinant 1 and entries in Ok, and where ξ is the determinant of γ. Note that
both matrices on the right-hand side lie in Γ. Since ξξ′ = 1, it follows that

±
(

1 0
0 1

)
= γγ′ =

(
a ξb

ξ′c d

)(
a b

c d

)
or, what is the same, (

a ξb

ξ′c d

)
= ±

(
d′ −b′
−c′ a′

)
.

We first remark that the sign on the right-hand side must be +. For if it were
−, we would have d = −a′ and therefore modulo

√
7 we would have (since ε ≡ 1

modulo
√

7):
1 ≡ det(γ) ≡ ad− bc ≡ −N(a) − bc.

This is a contradiction since b, c are congruent to 0 modulo
√

7 and a, a′ are
congruent to 1 modulo

√
7, hence N(a) is congruent to 1 modulo 7. There are

therefore two cases:

(1) the sign is + and ξ = 1;
(2) the sign is + and ξ = ε.

In case (1), we have
a′ = d, b′ = −b, c′ = −c,

and therefore

γ =
(

a b0
√

7
c0
√

7 a′

)
with b0, c0 rational integers and a in Ok. The relation

z2 = γz1 =
az1 + b

cz1 + d
=
az1 + b0

√
7

c0
√

7z1 + a
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then becomes

(z2 1) B0

(
z1

1

)
= 0,

where

B0 =
(

0 1
−1 0

)
γ =

(
c d

−a −b

)
=
(
c0
√

7 a′

−a −b0
√

7

)
.

Thus, the matrix B0 is skew-hermitian. If b0, c0 are even, it is actually an integral
skew-hermitian matrix B. If not, we can multiply B0 by 2 to obtain an integral
skew-hermitian matrix B. Since

1 = det(γ) = N(a)− 7b0c0,

there can be no natural number n > 1 dividing a, b0 and c0. Therefore, the
resulting skew-hermitian form will be primitive. If b0, c0 are both odd, the de-
terminant of B will be 1. Otherwise, it will be 4. It follows that in case 1, the
point z lies in F1 ∪ F4.

In case (2), we have

a′ = d, b′ = −bε, c′ = −cε′.

This implies that we can write

b = b0
√

7(3 +
√

7) = b0η
′√7,

c = c0
√

7(3−
√

7) = c0η
√

7,

where b0, c0 are rational integers and where we recall that η = 3−
√

7. Therefore,
z = (z1, z2) lies in the locus defined by

(z2 1) B
(
z1

1

)
= 0,

where

B = (3 +
√

7)
(

0 1
−1 0

)
γ =

(
c0
√

28 a′η′

−aη −b0
√

28

)
.

The matrix B is integral and skew-hermitian. In fact, B is primitive as well. For
if n > 1 is a positive integer dividing b0, c0, and aη, then n divides b, c and the
identity det(γ) = ε implies n doesn’t divide a. Therefore, since n divides aη and
η has norm 2, we must have n = 2. But then

2 = det(B) = −28b0c0 + 2N(a) ≡ 0 (mod 4),

which is a contradiction. It follows that z lies in FB ⊂ F2.
We have therefore proved that the fixed point set of τ lies in F1 ∪ F2 ∪ F4.

Next we show that the fixed point set contains a component of each of F1, F2,
F4. Indeed, the 3 loci

(6.3) z1 = z2, z1 = εz2, z1 = z2 +
√

7
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are easily seen to be invariant under τ modulo Γ̂(
√

7). They are are defined by

(z2 1) B
(
z1

1

)
= 0

with B given by (
0 1
−1 0

)
,

(
0 η′

η 0

)
,

(
0 2
−2

√
7

)
,

respectively, and these three matrices are primitive, integral skew-hermitian ma-
trices of determinants 1,2, and 4 respectively. The proof is now completed by the
observation that the loci F1(X̂(

√
7)), F2(X̂(

√
7)), F4(X̂(

√
7)) are all irreducible

by Lemma 3.3. �

Lemma 6.4. The involution τ of Γ̂(
√

7)\H2 extends to X̂(
√

7). The fixed point
set of τ on the surface X̂(

√
7) is the union of F1(X̂(

√
7)), F2(X̂(

√
7)) and

F4(X̂(
√

7)).

Proof. The first assertion is obvious from the definitions. As for the second, it
follows from Lemma 6.2, from Lemma 3.6 and from the fact that all of the cusps
of X̂(

√
7) are rational. �

7. Intersections on the Nonsingular Model Ẑ(
√

7) of X̂(
√

7)

Hirzebruch [1971] showed how to resolve the singularities of Hilbert modular
surfaces. His construction inspired the more general work of Mumford and others
[Ash et al. 1975, § I.5, pp. 39–53] on compactification and desingularization of
quotients of Hermitian symmetric spaces by arithmetic groups. We will discuss
some aspects of this more general work in [Adler ≥ 1998].

The only singularities of X̂(
√

7) are at the cusps. Applying Hirzebruch’s
construction to the surface X̂(

√
7), we obtain a surface which we will denote

Ẑ(
√

7). The preimage in Ẑ(
√

7) of each cusp is a pentagonal cycle of 5 rational
curves with self intersection numbers −2, −2, −3, −3, −2 respectively. This is
described in [Hirzebruch 1977]. It can be justified from the general theory of
such resolutions by means of the table in [van der Geer 1988, p. 41], where we
take α = 3 in the second row, second column of the table. We illustrate the
resolution cycle in Figure 1.

If x is a cusp of X̂(
√

7), we will denote by Sxi , for 0 ≤ i ≤ 4, the 5 curves of
the resolution cycle. We number them with subscripts modulo 5 such that

(1) The curve Sxi has self-intersection number −2 for i = 0, 1, 4 and self-inter-
section number −3 for i = 2, 3.

(2) The curves Sxi and Sxj meet transversely in one point if i− j is congruent to
±1 modulo 5 and otherwise do not meet.

Our main goal in this section is to study the intersection numbers of some of
the curves FN(Ẑ(

√
7)) on Ẑ(

√
7). The key to computing these numbers is the
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Sx0

Sx1 Sx2

Sx3 Sx4

−2

−2 −2

−3 −3

Figure 1. Resolution cycle of cusp x in bZ(
√

7).

computation of the corresponding numbers on X̂(
√

7), which was carried out in
Section 5, combined with Mumford’s definition [Mu1] of intersection numbers
on complete normal singular surfaces. Therefore, although we merely alluded to
that notion at the beginning of Section 5, here we need to consider it explicitly
and we will now do so.

Let S be a complete surface with isolated normal singularities. Denote by S′ a
surface obtained by resolving the singularities of S and denote by f : S′ → S the
natural mapping. If C is a curve on S, we will denote by C ′ the preimage of C on
S′. For each point p of S such that f−1(p) is a curve, denote the components of
f−1(p) by Kp

1 , . . . , K
p
r , where r = r(p) depends on p. Denote by Mp the matrix

Kp
i ·K

p
j of intersection numbers of the components of f−1(p). Since f−1(p) can

be blown down to a point, namely p, the matrix Mp is negative definite and,
in particular, invertible as a matrix with rational entries. If C is a curve on S,
denote by C = C(f) the cycle with rational coefficients in S′ given by

C = C ′ +
∑
p

r(p)∑
i=1

aipK
p
i ,

where the outer summation runs over all points p of S such that f−1(p) is a
curve and where, for each such p, the aip are the unique rational numbers such
that

C ·Kp
i = 0

for 1 ≤ i ≤ r(p). One then defines the intersection number of two curves C1, C2

on S to be the intersection number on S′ of the curves C1, C2:

(C1 ·C2)S = (C1 ·C2)S′ .

One can show that the intersection number so defined is independent of the
choice of the resolution f : S′ → S. We also note that since the preimage of a
curve on S differs from the proper transform of the curve only by an integral
linear combination of curves of the form Kp

i , one could have taken C ′ in the
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above definition to be be the proper transform of C or, indeed, any curve in S′

mapping onto C.
If S′ → S is a morphism of surfaces of Hilbert modular type, with S′ non-

singular and C = FN(S), we will also write FN(S′ → S) to denote the curve C
on S′.

Lemma 7.1. We have

F1(Ẑ(
√

7)→ X̂(
√

7)) = F1(Ẑ(
√

7)) +
1
2

∑
x

(3Sx0 + 2Sx1 + Sx2 + Sx3 + 2Sx4 )

F2(Ẑ(
√

7)→ X̂(
√

7)) = F2(Ẑ(
√

7)) +
∑
x

(Sx0 + Sx1 + Sx2 + Sx3 + Sx4 )

F4(Ẑ(
√

7)→ X̂(
√

7)) = F4(Ẑ(
√

7)) +
1
2

∑
x

(3Sx0 + 2Sx1 + Sx2 + Sx3 + 2Sx4 ).

Proof. To prove this, one verifies that the intersection of a component Sxi with
the expression on the right side of each of these equations is 0. Since we know the
intersection numbers Sxi ·S

y
j , one merely needs to know the intersection numbers

FN(Ẑ(
√

7))·Sxi . They are given by

FN(Z(
√

7))·Sxi =
{

1 if (N, i) = (1, 0), (2, 2), (2, 3), (4, 0),
0 otherwise.

That these are the correct intersection numbers between the FN(Z(
√

7)) and
the Sxi will be shown in Lemma 7.7. �

In order to prepare for the proof of Lemma 7.7, we need to look more closely at
Hirzebruch’s desingularization of X̂(

√
7).

A sequence indexed by the set of all integers will be called a Z-sequence. If
b = (bn)n∈Z is a Z-sequence of positive integers, one can associate to b a complex
manifold which we will denote M0(b). The explicit construction is described in
[Hirzebruch 1973; 1971; van der Geer 1988]. For certain purposes, one assumes
that all of the integers bn are ≥ 2 with at least one of them ≥ 3, and that is
the practice of the authors we have cited. One constructs M0(b) by forming the
disjoint union of a Z-sequence of copies of C2 and identifying the point (un, vn)
in the n-th copy C2

n with the point (ubnn vn, u−1
n ) in the (n + 1)-th copy C2

n+1.
Each copy of C2 injects into M0(b) and the injection defines a coordinate chart
(C2

n, (un, vn)). The closure in M0(b) of the axis vn = 0 of that chart will be a
projective line which we will denote Sn and which has self-intersection number
−bn (cf. [van der Geer 1988, p. 33]).

In the following lemma, it is convenient to denote by I(Z) the isometry group
of the the set of integers with their usual metric inherited from the real numbers.
As is well-known, every such isometry is of the form n 7→ tn + r, where r ∈ Z
and t = ±1. In order to conserve subscripts, in the proof of the lemma we will
write (u, v)n for all n ∈ Z to denote a point whose coordinates are (u, v) in the
coordinate chart σn.
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Lemma 7.2. Denote by ι the automorphism of C2 given by (u, v) 7→ (v, u). Then
the isometry group I(Z) of Z acts holomorphically on the disjoint union C × Z
of copies of C2 indexed by Z by the rule

α(t,r) ·(w, n) =
(
ι(1−t)/2w, t(n− 1

2) + +
r

)
,

with t = ±1, where α(t,r) is the automorphism of Z given by n 7→ tn + r. Let
b : Z → Z≥1 be a Z-sequence of positive integers. Let G be the subgroup of
I(Z) consisting of all automorphisms g of Z which preserve b in the sense that
b ◦ g = b. Then the action of G on the complex manifold C2 × Z descends to an
action of G on the complex manifold M0(b).

Proof. That we have indeed defined an action of I(Z) on C2×Z as a group of
holomorphic automorphisms is straightforward and left to the reader. As for the
assertion that G acts on M0(b), it suffices to show that for g ∈ G, the action of g
on C2 × Z is compatible with the identifications which give rise to the complex
manifold M0(b). To see this, let p = (u, v)n be a point of C2

n. This point is
identified with the point q = (ubnv, 1/u)n+1 of C2

n+1. Let α(t,r) be an element
of G. Let p′ = α(t,r)(p) and q′ = α(t,r)(q). If t = 1, we have

p′ = (u, v)n+r, q′ = (ubnv, 1/u)n+r+1,

and p′ is identified with

(ubn+rv, 1/u)n+r+1 = (ubnv, 1/u)n+r+1 = q′

since bn+r = bn. This proves that the translations in G descend to M0(b).
Therefore, it suffices to show that if α(−1,0) belongs to G then it descends to
M0(b). Hence we may assume that b−n = bn for all n. Then as above, we have

p′ = α(−1,0)(p) = (v, u)1−n, q′ = α(−1,0)(q) = (1/u, ubnv)−n,

and q′ is identified with

((1/u)b−n(ubnv), 1/(1/u))1−n = (v, u)1−n = p′

since b−n = bn. This proves the lemma. �

In most of the cases of interest in this theory, the sequence is periodic and in
many cases it is also symmetric under n 7→ −n. If b is periodic with period r,
where r is not necessarily the smallest period of b, then rZ fixes b and therefore
acts on M0(b). The quotient of M0(b) for the action of rZ will be denoted Mr(b),
and M0(b) may be regarded as the special case r = 0. The images in Mr(b) of
the curves Sn will form a closed cycle of rational curves. In case b is not only
periodic but also invariant under n 7→ −n, the latter induces an automorphism
of Mr(b) which we will denote τr,b. This choice of notation derives from the
relation between the automorphism τr,b and the switching map τ , which will be
elucidated below.
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Corollary 7.3. Assume that b is periodic with period r and symmetric under
n 7→ −n. Then the involution τr,b interchanges the the projective lines Sn(b)
and S−n(b) for all n.

Proof. The component Sn(b) is the closure of the axis vn = 0 of the n-th
coordinate system. It is mapped to the closure of the axis u1−n = 0 in the
(1 − n)-th coordinate system. But that is the same as the closure of the axis
v−n = 0 of the n-th coordinate system, which is S−n(b), and we are done. �

The manifolds Mr(b) are the key to Hirzebruch’s resolution of the cusp singular-
ities of Hilbert modular surfaces. We refer the reader to the works cited above
for details. We will merely summarize the facts that are pertinent to our work
here.

Let Γ be a group of Hilbert modular type acting on H2 and let XΓ denote
the SBB compactification of Γ\H2. Modulo ±1, the subgroup fixing the cusp
∞ will be the semidirect product of a subgroup V of finite index in the group
of totally positive units of Ok with a lattice M in k. It is convenient to denote
the subgroup fixing ∞ by (V,M). The norm form of the lattice gives rise to a
rational binary quadratic form, a root of which can be expanded in a continued
fraction of Hirzebruch’s type,

c0 −
1

c1 −
1

c2 −
1

c3 − . . .

.

Since the root is a quadratic irrationality, the coefficients cn are eventually pe-
riodic in n. If the smallest period is (b1 . . . br) then one forms the Z-sequence
b = (bn)n∈Z by extending bn to a periodic function of n with period r on all of
Z. The resolution of the singularity at the cusp ∞ in the SBB compactification
of Γ\H2 is then obtained [Hirzebruch 1971, Theorem of § 3] by replacing a neigh-
borhood of the singularity by a neighborhood of the union of the curves curves
Sn in Mrs(b), where s is the index of V in the full unit group of Ok modulo ±1.
(Some care has to be taken in the case where rs ≤ 2; see [Hirzebruch 1971] for
details.) The components of the resolution cycle at a cusp x will be denoted Sx0 ,
Sx1 , . . . , if they are known from the context, or by Sx0 (δ), Sx1 (δ), etc., where δ is
data such as Ok,

√
7Ok or b describing the group Γ and the resolution in more

or less detail.
One can be quite explicit about this construction. Indeed, if one embeds the

lattice M into R2 via the two embeddings of k into R, the image of the set of
totally positive elements of M will be denoted M+. The convex hull of M+ will
be an infinite polygon whose vertices form a Z-sequence An in k. If we regard
k as a subfield of R by fixing one of the embeddings in advance, then we can
determine the Z-sequence An up to a translation of the index n by requiring that
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An be monotonically decreasing in n. The Z-sequence An then has the following
interesting properties for all n:

(1) An−1 and An form a basis for M ;
(2) An−1 +An+1 = bnAn.

Denoting by Bn, Cn the dual basis to An−1, An with respect to the trace form
(x, y) 7→ tr(xy) of k, we can then define a map

φn : H2→ C2
n ⊆M0(b)

by the rule

φn(z1, z2) =
(
e(Bnz1 + B′nz2), e(Cnz1 + C ′nz2)

)
= (un, vn),

where e(t) = e2πit for all t. One can then verify that for z, w in H2, we have
φn(z) = φn(w) if and only if for some µ ∈M we have

w =
(

1 µ

0 1

)
z = (z1 + µ, z2 + µ′),

where z = (z1, z2). Furthermore, η = εs is a generator of V and we have

φn+rs ◦
(
η 0
0 1

)
·z = φn+rs(ηz1, η

′z2) = φn(z)

for all n and all z = (z1, z2). Therefore, φn induces a map

(V,M)\H2→ C2
n ⊆Mrs(b)

which is injective in a neighborhood of ∞ and maps that neighborhood isomor-
phically onto a neighborhood in Mrs(b) of the form W − ∪Sn, where W is a
neighborhood of ∪Sn in Mrs(b). The inverse mapping extends to a mapping
from W to a neighborhood of∞ in the SBB compactification and that mapping
resolves the singularity at ∞. The preimage of ∞ will be called the resolution
cycle at ∞. In the special case where rs ≤ 2, some care must be taken, as de-
scribed in [Hirzebruch 1971, § 3], but we will not worry about such details here.
Using elements of GL+

2 (k), one can move any cusp to ∞ and back. Therefore,
one can give a similar description of the resolution of the cusps of the SBB com-
pactification of Γ\H2 for any group Γ of Hilbert modular type. In the particular
case we are considering, where k = Q(

√
7), the field k has class number 1, and

Γ = Γ̂(
√

7), the cusps are all equivalent under the action of Γ̂ and the description
of the resolution is simpler. In particular, all of the resolution cycles for X will
look the same. The surface we have denoted by Ẑ(

√
7) has been obtained by

this process.
Thanks to the system of bases An−1, An and the associated maps φn, we have

a very clear picture of what Ẑ(
√

7) looks like in a neighborhood of the resolution
cycles of the cusps. In this case, we can compute the system of bases An−1, An
quite explicitly, thanks to the table in [van der Geer 1988, p. 41], which gives
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for the the cycle associated to the lattice
√

28Ok (the same as the one associated
with

√
7Ok, since the two lattices are related by multiplication by a rational

number) as (3, 3, 2, 2, 2). However, we find it more convenient to describe the
cycle as (2, 2, 3, 3, 2).

Lemma 7.4. The Z-sequence An = An(
√

7Ok) is given by

An(
√
pOk) = εm(7 − j√p)

if n = j+5m, with |j| ≤ 2, where m ∈ Z and where the corresponding Z-sequence
{bn} is given by

(7.5) bn =
{

3 if n ≡ ±2 (mod 5),
2 otherwise.

Proof. It is straightforward to verify that with M =
√

7Ok and An = An(M)
and bn as given above, we have

An−1 + An+1 = bnAn

for all n in Z. Furthermore, the Z-sequence bn is cyclic with period (3, 3, 2, 2, 2)
if M =

√
7Ok. Furthermore, we have A−n = A′n and b−n = bn for all n ∈ Z.

Furthermore, A0, A1 is a basis for M , namely 7, 7−
√

7 if M =
√

7Ok. Therefore
the An are precisely the vertices of the convex hull of the set M+ of totally
positive elements of M [van der Geer 1988, pp. 31–33]. �

Lemma 7.6. Let x be a cusp of X̂(
√

7). The only fixed points of τ on the
components Sxi of the resolution cycles of the cusps are its fixed points on the
components Sx0 and the point where the two components Sx2 and Sx3 meet . More
precisely , since τ induces an involution of the nonsingular rational curve Sx0 , it
will have two fixed points on Sx0 and therefore 3 fixed points in all among the
cusps.

Proof. Since the period of (2, 2, 3, 3, 2) is 5 and since the order of M is the
maximal order of k, the value of s is 1 in this case. Therefore, a neighborhood
of each cusp x of X̂(

√
7) is replaced by a neighborhood of the cycle of curves

Sxi (M), 0 ≤ i ≤ 4, in the complex manifold M5(2, 2, 3, 3, 2). Furthermore, it
is clear from the construction of M5(2, 2, 3, 3, 2), and from the fact that G acts
transitively on the set of cusps and the fact that all of the cusps of Γ̂(

√
7) are

rational, that the involution τ of Γ̂(
√

7)\H2 extends to an automorphism, also
denoted τ , of Ẑ(

√
7) inducing the automorphism τ5,b, where b = (2, 2, 3, 3, 2) on

the copy of M5(b) at each cusp. It therefore follows from Corollary 7.3 that τ
interchanges the curves Sxi and Sx−i. From this, the lemma follows at once. �

We know from Lemma 6.4 that the involution τ acting on X̂(
√

7) has for its fixed
point set the union of the three curves FN(X̂(

√
7)), with N = 1, 2, 4. Therefore,

the fixed point set of τ acting on Ẑ(
√

7) will contain the union of the three
curves FN(Ẑ(

√
7)). The following lemma sharpens this observation and also
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determines the intersection number of each FN(X̂(
√

7)), for N = 1, 2, 4 with the
components Sxi .

Lemma 7.7. Let x be a cusp of X̂(
√

7). Each of the three fixed points of τ among
the five components Sxi , 0 ≤ i ≤ 4, of the resolution cycle of x lies in one and only
one of the curves FN (Ẑ(

√
7)), N = 1, 2, 4. The point of intersection of Sx2 and Sx3

lies on F2(Ẑ(
√

7)). The other two, which are found on Sx0 , lie on F1(Ẑ(
√

7)) and
F4(Ẑ(

√
7)) respectively . The curves FN(Ẑ(

√
7)), with N = 1, 2, 4, do not have

any other points of intersection with the components Sxi , 0 ≤ i ≤ 4. Furthermore,
the intersections of F1(Ẑ(

√
7)) and F4(Ẑ(

√
7)) with Sx0 and of F2(Ẑ(

√
7)) with

Sx2 and Sx3 are transverse.

Proof. We prove this by looking at the equations of FN(X̂(
√

7)), for N =
1, 2, 4, in local coordinate charts σi containing the fixed points of τ acting on
the components Sxi . Since G acts transitively on the cusps, we can assume
that x is the cusp ∞ = (∞,∞). The coordinate chart σ1 does not contain the
entire component Sx0 , but the point it does not contain lies on the component Sx4
therefore can’t be a fixed point. Therefore, we can use the coordinate chart σ1

to study the fixed points lying on Sx0 . Since the dual basis B1, C1 to A0, A1 with
respect to the pairing xy 7→ tr(xy) is given by B1 = (1 +

√
7)/2, C1 = −

√
7/2,

the coordinates (z1, z2) of H2 are related to the coordinates (u1, v1) of σ1 by

(u1, v1) =

(
e
(1 +

√
7

2
z1 +

1−
√

7
2

z2

)
, e
(
−z1 + z2

2

))
.

Since the curves FN(Ẑ(
√

7)), for N = 1, 2, 4, have only one component each, we
obtain them as the images of the curves of the curves described in (6.3), namely:

z1 = z2, z1 = εz2, z1 = z2 +
√

7.

These three curves are respectively mapped to the following curves in σ1:

v1 = 1, u7
1v

4
1 = 1, v1 = −1.

For example, if we put z1 = z2, we obtain (u1, v1) = (e(z2), 1); the other cases
are handled similarly. From this it is clear that the curves F1(Ẑ(

√
7)) and

F4(Ẑ(
√

7)) meet the line Sx0 (i.e., u1 = 0) transversely in the two distinct points
(0, 1) and (0,−1), respectively, and the curve F2(Ẑ(

√
7)) does not meet Sx0 . To

complete the proof, we work in the coordinate system σ3, whose intersections
with the curves Sx2 , Sx3 are the coordinate axes of the coordinate system σ3. The
points of Sx2 , Sx3 that do not lie on σ3 lie on the curves Sx1 and Sx4 respectively and
therefore are not fixed points of τ . Therefore it suffices to work in the coordinate
system σ3. By Lemma 7.4, we have

A2 = 7− 2
√

7, A3 = 14− 5
√

7,
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F1 F4

F2

Sx0

Sx1 Sx2

Sx3 Sx4

−2

−2 −2

−3 −3

Figure 2. How the curves FN( bZ(
√

7)), for N = 1, 2, 4, meet the resolution

cycle.

and the dual basis B3, C3 to this basis for
√

7Ok is given by

B3 =
5 + 2

√
7

14
, C3 = −2 +

√
7

14
.

Therefore the coordinates (z1, z2) of H2 are related to the coordinates (u3, v3)
of σ3 by

(u3, v3) =

(
e
(
z1

5 + 2
√

7
14

+ z2
5− 2

√
7

14

)
, e
(
−z1

2 +
√

7
14

− z2
2−
√

7
14

))
.

The curves (6.3) are respectively mapped to the following curves in σ3:

u2
3v

5
3 = 1, u3 = v3, u2

3v
5
3 = −1.

Thus, F1(Ẑ(
√

7)) and F4(Ẑ(
√

7)) do not meet the axes of σ3 and F2(Ẑ(
√

7))
passes through the origin of σ3 (the point of intersection of Sx2 and Sx3 ), trans-
versely to both axes. This completes the proof of the lemma. �

The configuration of curves in the resolution cycle of a cusp x and their inter-
sections with the curves FN(Γ̂(

√
7)) for N = 1, 2, 4 are shown in Figure 2.

Having computed the divisors with rational coefficients FN(Ẑ(
√

7)→ X̂(
√

7))
for N = 1, 2, 4, we can now compute the intersection numbers of the modular
curves on the surface Ẑ(

√
7). Before doing so, we note that according to Lemma

3.6, the curves F14(X̂(
√

7)) and F28(X̂(
√

7)) do not pass through the cusps of
X̂(
√

7). This is also consistent with the fact that by Lemma 2.5 the components
of FN (X̂(

√
7)) for N = 14, 28 are quotients of the upper half plane by arith-

metic groups arising from quaternion division algebras over Q and are therefore
compact subvarieties of Γ̂(

√
7)\H2. Therefore we have

FN(Ẑ(
√

7)→ X̂(
√

7)) = FN(Ẑ(
√

7))
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for N = 14, 28. That implies that the intersection numbers of FN(Ẑ(
√

7)) on
Ẑ(
√

7) will be the same as the corresponding intersection numbers on X̂(
√

7).
That allows us to fill in the last two rows and columns of the table in the following
lemma simply by copying them from the corresponding entries of the table in
Lemma 5.9.

Lemma 7.8. We have the following table of intersection numbers on Ẑ(
√

7).

F1(Ẑ(
√

7)) F2(Ẑ(
√

7)) F4(Ẑ(
√

7)) F14(Ẑ(
√

7)) F28(Ẑ(
√

7))

F1(Ẑ(
√

7)) 28 0 0 0 84

F2(Ẑ(
√

7)) 0 −18 0 42 84

F4(Ẑ(
√

7)) 0 0 −42 84 42

F14(Ẑ(
√

7)) 0 42 84 −42 168

F28(Ẑ(
√

7)) 84 84 42 168 210

Proof. According to Mumford’s theory, we have
(7.9)
FM (X̂(

√
7))·FN(X̂(

√
7)) = FM(Ẑ(

√
7)→ X̂(

√
7))·FN (Ẑ(

√
7)→ X̂(

√
7)).

The values of the left side are given by the table in Lemma 5.9 for M,N =
1, 2, 4, 14, 28. The factors of the intersection product on the right side of (7.9)
can be written in the form

FM (Ẑ(
√

7)) +
∑
x

4∑
i=0

aixMS
x
i ,

FN(Ẑ(
√

7)) +
∑
x

4∑
i=0

bixNS
x
i ,

where the coefficients aixM , aixN are known to us from Lemma 7.1. Furthermore,
since

FM(Ẑ(
√

7)→ X̂(
√

7))·Sxi = 0,

the intersection product on the right side of (7.9) is equal to

FM(Ẑ(
√

7)→ X̂(
√

7))·FN (Ẑ(
√

7)→ X̂(
√

7))

= FM (Ẑ(
√

7)→ X̂(
√

7))·(FN (Ẑ(
√

7) +
∑
x

4∑
i=0

aixNS
x
i )

= FM (Ẑ(
√

7)→ X̂(
√

7))·FN(Ẑ(
√

7))

= FM (Ẑ(
√

7))·FN (Ẑ(
√

7)) +
∑
x

4∑
i=0

aixMS
x
i ·FN(Ẑ(

√
7)).
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Knowing the intersection numbers of the modular curve FN (Ẑ(
√

7)) with the
cuspidal components Sxi , we can use (7.9) to solve for FM (Ẑ(

√
7))·FN(Ẑ(

√
7))

in terms of quantities we know how to compute. In fact, we have

(7.10) FM (Ẑ(
√

7))·FN (Ẑ(
√

7))

= FM(X̂(
√

7))·FN (X̂(
√

7))−
∑
x

4∑
i=0

aixMS
x
i ·FN(Ẑ(

√
7)).

We will leave the detailed verification of the table to the reader, but we will
illustrate the computation of one of its entries. According to Lemma 5.9, the
self-intersection number of F1(X̂(

√
7)) is 8. Using Lemma 7.1 and equation

(7.10), we therefore have

F1(Ẑ(
√

7))2 = 8− 1
2

∑
x

F1(Ẑ(
√

7))·(3Sx0 + 2Sx1 + Sx2 + Sx3 + 2Sx4 )

= 8− 1
2
·24·3 = −28. �

Like their counterparts on X̂(
√

7), the curves FN (Ẑ(
√

7)) are irreducible for
N = 1, 2, 4 but reducible for N = 14 and N = 28. As noted above, the two curves
for N = 14, 28 do not pass through the cusps and there intersection properties
are therefore unaffected by the resolution of the cuspidal singularities. The same
applies to the irreducible components of these curves. From Corollary 5.10, we
therefore immediately have the following result.

Corollary 7.11. Let ZN(Ẑ(
√

7)) denote a component of FN(Ẑ(
√

7)), with
N = 14 or N = 28. Then we have the following intersection numbers:

F1(Ẑ(
√

7)) F2(Ẑ(
√

7)) F4(Ẑ(
√

7)) F14(Ẑ(
√

7)) F28(Ẑ(
√

7))

Z14(Ẑ(
√

7)) 0 2 4 −2 8

Z28(Ẑ(
√

7)) 4 4 2 8 10

In order to compute the self-intersection numbers of ZN (Ẑ(
√

7)) for N = 14, 28,
we need to recall the adjunction formula and its interpretation for Hilbert mod-
ular surfaces.

Lemma 7.12 (Adjunction Formula). Let W be a complete nonsingular sur-
face and let V be a curve on W . Then we have

2− 2pa(V ) = c1(W )·V − V ·V,

where pa(V ) is the arithmetic genus of V and c1(W ) is the first Chern class
of W .

Proof. See [van der Geer 1988, p. 162]. Here pa(V ) is just the genus of V if V
is nonsingular. �
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Using the adjunction formula, one can compute self-intersection numbers pro-
vided one can compute the other terms in the formula. The next two tools
provide formulas for computing c1(Ẑ(

√
7))·FN(Ẑ(

√
7)) and pa(FN(Ẑ(

√
7))) re-

spectively.

Lemma 7.13. Let B be a primitive integral skew hermitian matrix over k. Then
the intersection number of FB(Ẑ(

√
7)) with the cohomology class c1 on Ẑ(

√
7)

is given by

c1 ·FB(Ẑ(
√

7)) = 2
∫
ω +

∑
x

Zx ·FB,

where the integral is over ΓB\H2, the integrand is the volume form

ω = − 1
2π

dx ∧ dy
y2

,

the summation runs runs over all of the cusps x of Ẑ(
√

7) and where for a cusp
x, we denote by Zx the sum of all of the curves Sxi in the resolution cycle of the
cusp x.

Proof. See [van der Geer 1988, Cor. VII.4.1] and the explicit description of the
local Chern cycle at x on pp. 46 and 63 of the same reference. The result is not
stated in there in a way that makes it completely clear that it is also valid for
congruence subgroups, but that is implicit in its proof. �

Lemma 7.14. The self-intersection number of ZN(Ẑ(
√

7)) for N = 14, 28 is

ZN(Ẑ(
√

7))2 =
{
−2 if N = 14,
−6 if N = 28.

Proof. We already know that the arithmetic genus of ZN (Ẑ(
√

7)) for N =
14, 28 is equal to the volume of ZN (Ẑ(

√
7)). It therefore follows from the ad-

junction formula and the preceding lemma that the self-intersection number of
ZN (Ẑ(

√
7)) is equal to its volume of ZN (Ẑ(

√
7)). We are therefore done by

Corollary 4.2. �

We now verify that the curves ZN (Ẑ(
√

7)), for N = 14, 28, are hyperelliptic.

Lemma 7.15. Let N = 14, 28. Then the intersection number of ZN(Ẑ(
√

7))
with

F1(Ẑ(
√

7)) + F2(Ẑ(
√

7)) + F4(Ẑ(
√

7))

is equal to 6 if N = 14 and is equal to 10 if N = 28. The curve ZN(Ẑ(
√

7))
is hyperelliptic, with the involution τ inducing the hyperelliptic involution on
ZN (Ẑ(

√
7)).

Proof. The computation of the intersection number follows at once from the
table in Lemma 7.9. Since FN(Ẑ(

√
7)) has 21 components, an odd number, and

since these components must be permuted by the involution τ of Ẑ(
√

7), there
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must be at least 1 component invariant under τ . Since τ commutes with the ac-
tion of PSL2(F7), it follows that every component ZN (Ẑ(

√
7)) is invariant under

τ . The number of fixed points of τ on ZN (Ẑ(
√

7)) is equal to the intersection
number of ZN (Ẑ(

√
7)) with the fixed point set of τ , which by Lemma 7.7 is

F1(Ẑ(
√

7)) + F2(Ẑ(
√

7)) + F4(Ẑ(
√

7)).

The intersection number computed in the first part of this lemma therefore gives
the number of fixed points of τ on each component. Since ZN (Ẑ(

√
7)) has genus

2 and 6 fixed points for τ , when N = 14, and genus 4 and 10 fixed points for
τ when N = 28, it follows that ZN (Ẑ(

√
7)) is a hyperelliptic curve and τ is its

hyperelliptic involution. �

Lemma 7.16. The curve FN(Ẑ(
√

7)) has genus 3 for N = 1 and genus 10 for
N = 2, 4.

Proof. By Corollary 4.2, the volume of FN (Γ̂(
√

7)) is −28 for N = 1 and −42
for N = 2, 4. Therefore these numbers are also their Euler numbers. The curve
FN(Ẑ(

√
7)) for N = 1, 2, 4 is obtained by adding the points where it meets the

resolution cycles at the cusps. According to Lemma 7.7 (cf. Figure 2), there is
one such point for each cusp, so there are 24 points in all. Therefore the Euler
number of FN (Ẑ(

√
7)) is −28 + 24 = −4 for N = 1 and is −42 + 24 = 18 for

N = 2, 4. Writing the Euler number as 2 − 2g, we have g = 3 for N = 1 and
g = 10 for N = 2, 4. �

8. The Symmetric Hilbert Modular Surface W = Ẑ(
√

7)/τ

We denote by W the orbit space for the action of the switching involution τ on
Ẑ(
√

7). It follows from Lemma 6.3 and Lemma 7.6 that the natural mapping of
Ẑ(
√

7) ontoW is a two-sheeted covering branched along F1(W )∪F2(W )∪F4(W ).
Furthermore, since τ commutes with the elements of G acting on Ẑ(

√
7)), the

group G acts on W .

Lemma 8.1. The surface W is an algebraic surface whose Betti numbers are
given by :

bi =


1 if i = 0, 4,
0 if i = 1, 3,
94 if i = 2.

Proof. First of all, a surface of Hilbert modular type is always an algebraic sur-
face, by the results of Baily and Borel [1966] (cf. [van der Geer 1988, Prop. II.7.1,
p. 44]). It follows that the surface W is also an algebraic surface. Furthermore,
Hilbert modular surfaces have vanishing first Betti number [van der Geer 1988,
comments following Cor. IV.6.2, p. 82]. So b1 = 0 and therefore, by Poincaré
duality, b3 = 0. Since Ŵ (

√
7) is connected, we have b0 = 1 and then b4 = 1 by
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Poincaré duality. Therefore, the Euler number e(W ) satisfies

e(W ) = b2 + 2,

so we will prove b2 has the value we claim by proving that e(W ) = 96. Since
Ẑ(
√

7) is a two-sheeted covering branched of W branched along F1(W )∪F2(W )∪
F4(W ), we have

e(Ẑ(
√

7)) = 2e(W )− e(F1(Ẑ(
√

7))) − e(F2(Ẑ(
√

7))) − e(F4(Ẑ(
√

7))).

By [van der Geer 1988, Theorem IV.1.2, p. 60], the Euler numbers of the open
curves FN(Γ̂(

√
7)\H2), for N = 1, 2, 4, are equal to their volumes, which we

have computed in Corollary 4.2. We obtain these open curves by deleting the 24
points where FN (Ẑ(

√
7)) meets the resolution cycles of the cusps, N = 1, 2, 4.

Therefore

e(FN (Ẑ(
√

7))) =
{
−4 if N = 1,
−18 if N = 2, 4;

hence
e(Ẑ(
√

7)) = 2e(W ) + 4 + 18 + 18 = 2e(W ) + 40.

Therefore, we just have to prove that e(Ẑ(
√

7)) = 232. By [van der Geer 1988,
Theorem IV.2.5, p. 64], we have

e(Ẑ(
√

7)) = vol(Γ̂(
√

7)\H2) + 5·24,

since there are 5 components in each of the 24 resolution cycles. Since the
Hilbert modular group for k = Q(

√
7) has index 2 in the extended Hilbert

modular group and since Γ̂(
√

7) has index 168 in the extended Hilbert modular
group Γ̂, it follows from [van der Geer 1988, Theorem IV.1.1, p. 59] that

vol(Γ̂(
√

7)\H2) = 168ζk(−1),

where ζk denotes the Dedekind zeta function of the quadratic field k. Using
[van der Geer 1988, Theorem I.6.5, p. 20], we have

ζk(−1) =
1
60

∑
x∈Z

σ1

(
28− x2

4

)
=

2
3
,

where σ1(n) is the sum of the divisors of n if n is a positive integer and otherwise
is 0. Therefore

vol(Γ̂(
√

7)\H2) = 168· 2
3

= 112,

hence
e(Ẑ(
√

7)) = vol(Γ̂(
√

7)\H2) + 5·24 = 232.

This completes the proof of the lemma. �

We now compute the intersection numbers of the modular curves and their com-
ponents on W .
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Lemma 8.2. We have the following table of intersection numbers on W .

F1(W ) F2(W ) F4(W ) F14(W ) F28(W )

F1(W ) −56 0 0 0 84

F2(W ) 0 −36 0 42 84

F4(W ) 0 0 −84 84 42

F14(W ) 0 42 84 −21 84

F28(W ) 84 84 42 84 105

Proof. The intersection product of two divisors on W is half the intersection
product of their pullbacks to Ẑ(

√
7). Since the curves FN(W ) for N = 1, 2, 4

form the branch locus of the natural mapping of Ẑ(
√

7) onto W , we have

FM (W )·FN (W ) = cMNFM (Ẑ(
√

7))·FN(Ẑ(
√

7)),

where

cMN =


2 if M,N = 1, 2, 4,
1 if M = 1, 2, 4 and N = 14, 28,
1 if M = 14, 28 and N = 1, 2, 4,
1
2

if M,N = 14, 28.

Using this, the lemma follows at once from Lemma 7.8. We leave it to the reader
to verify the computation. �

Lemma 8.3. Each component of F14(W ) has self-intersection number −1. Each
component of F28(W ) has self-intersection number −3. For N = 14, 28, each
component meets exactly 4 components of F42−N(W ). Each such intersection is
a transverse at a single point . Each component FN(W ) is a rational curve for
N = 14, 28.

Proof. Since the components of FN (Ẑ(
√

7) are not ramified in the cover-
ing Ẑ(

√
7) → W , the intersection numbers of these components with them-

selves, with each other and with components of F42−N(Ẑ(
√

7)) are one half
of the corresponding intersection numbers for components of FN(X̂(

√
7)) and

F42−N(X̂(
√

7)). Therefore we are done by the preceding lemma. �

The next lemma describes the image of the resolution cycles of Ẑ(
√

7) in W .

Lemma 8.4. The resolution cycle Zx on Ẑ(
√

7) of a cusp x is mapped to a
reducible curve with 3 components Cx0 , Cx1 , Cx4 . For s modulo 5, the image of the
component Cxs is the curve Cxt with t = s2. The intersection numbers of the these
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F1 F4

F2

Cx0

Cx1

Cx4

−1

−2

−2

Figure 3. How the curves FN (W ), for N = 1, 2, 4, meet the image of a resolution
cycle in W .

curves are given by

Ci ·Cj =


−1 if i = j = 0,
−2 if i = j 6= 0,
0 if i = 0 and j = 4,
1 otherwise.

Proof. The first assertion follows from the fact (arising from Lemma 7.6 and its
proof) that τ interchanges the components Cxs and Cx−s. As for the intersection
numbers, we have

Cx0 ·Cx0 = 1
2S

x
0 ·Sx0 = 1

2 (−2) = −1,

Cx0 ·Cx1 = 1
2
Sx0 ·(Sx1 + Sx4 ) = 1

2
(1 + 1) = 1,

Cx0 ·Cx4 = 1
2S

x
0 ·(Sx2 + Sx3 ) = 1

2 (0 + 0) = 0,

Cx1 ·Cx1 = 1
2
(Sx1 + Sx4 )·(Sx1 + Sx4 ) = 1

2
(−2 − 2) = −2,

Cx1 ·Cx4 = 1
2(Sx1 + Sx4 )·(Sx2 + Sx3 ) = 1

2(2) = 1,

Cx4 ·Cx4 = 1
2(Sx2 + Sx3 )·(Sx2 + Sx3 ) = 1

2(−3 − 3 + 2) = −2,

and we are done. �

Figure 3 summarizes the intersection properties of the curves Cxi and the curves
FN(W ), for N = 1, 2, 4.

Proposition 8.5. The curve F28, the curves Cxi and the components of the
curve F14 represent a basis for the second homology group H2(W ;C).

Proof. The number of curves is 1 + 21 + 3·24 = 94, which is the same as the
second Betti number of W . We can blow down the components of F14(W ) one at
a time (they have self-intersection number −1 by Lemma 8.3). Independently of
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that, we can blow down the curves Cx0 one at a time. Having done so, the curves
Cx1 are mapped to curves with self-intersection number −1, which can then be
blown down one at a time. After that is done, the curves Cxi are mapped to
curves with self-intersection number −1, which can then be blown down one at
a time. Each time one of these curves is blown down, the Betti number of W
is decreased by 1 and when all have been blown down, the resulting surface has
second Betti number 94 − 21 − 3·24 = 1. This proves that the curves Bx

i and
the components of F14 are linearly independent in the homology of W . Suppose
we can write F28 as a linear combination of these curves. Since the curve F28

is invariant, components Bx
i and Z14(W ) equivalent under the action of G have

the same coefficient in this linear combination. Therefore we can write

F28(W ) = c14F14(W ) + c0
∑
x

Cx0 + c1
∑
x

Cx1 + c4
∑
x

Cx4 ,

where c14, c0, c1, c4 are rational numbers. However, if we intersect both sides
with the cycle

F28(W ) + 4F14(W ),

we obtain a contradiction. Indeed, we have

F28(W )·(F28(W ) + 4F14(W )) = 105 + 4·84 = 441

but since F14(W ) and F28(W ) are disjoint from the cuspidal components and

F14(W )·(F28(W ) + 4F14(W )) = 84 + 4· − 21 = 0,

we have

(F28(W ) + 4F14(W ))·(c14F14(W ) + c0
∑
x

Cx0 + c1
∑
x

Cx1 + c4
∑
x

Cx4) = 0. �

9. The Projective Plane as a Hilbert Modular Surface

As noted in the proof of Lemma 8.5, we can blow down all of the components
of the curve F14(W ) as well as all of the cycles Cx0 +Cx1 +Cx4 . The resulting surface
will be denoted P. Since the components being blown down are permuted among
themselves by the action of G on W , the group G also acts on P. We will prove
in this section that W is isomorphic to the complex projective plane.

First we need to recall a rationality criterion [van der Geer 1988, VII.2.2,
p. 161]:

Lemma 9.1. If S is a nonsingular algebraic surface with b1 = 0 and if S contains
either two intersecting exceptional curves or an irreducible curve C with C2 ≥ 0
and K ·C < 0, then S is rational .

In order to apply this formula, we will need to compute some intersection num-
bers on P.
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Lemma 9.2. We have the following intersection numbers on P.

F1(P) F2(P) F4(P) F28(P)

F1(P) 16 48 72 84

F2(P) 48 144 216 252

F4(P) 72 216 324 378

F28(P) 84 252 378 441

Proof. To compute the self-intersection number of F1(P), we can use Mum-
ford’s definition of intersection numbers. After all, the surface on which one
is computing intersections doesn’t have to be singular for it to work. An easy
computation shows that

F1(W → P) = F1(W ) +
∑
x

(3Cx0 + 2Cx1 + Cx4),

since its intersection with any of the curves that were blown down to make P
is 0. Therefore the self-intersection number of F1(P) on P is equal to that of
F1(W → P), which is

F1(W → P)·F1(W → P) = F1(W ) +
∑
x

(3Cx0 + 2Cx1 + Cx4)·F1(W → P)

= F1(W )·(F1(W ) +
∑
x

(3Cx0 + 2Cx1 + Cx4))

= −56 + 24·3·1 = 16.

Similarly, it is straightforward to verify that

F2(W → P) = F2(W ) + 2·F14(W ) +
∑
x

(2Cx0 + 2Cx1 + 2Cx4)),

F4(W → P) = F4(W ) + 4·F14(W ) +
∑
x

(3Cx0 + 2Cx1 + Cx4)),

F28(W → P) = F28(W ) + 4·F14(W ).

From this it is easy to complete the table using the table of Lemma 8.2. �

Theorem 9.3. The surface P is isomorphic to P2(C). In particular , W is a
rational surface.

Proof. Denote by K the canonical class of P. By the adjunction formula and
the fact that c1 = −K, we have

K ·F1(P) = −e(F1(P)) − F1(P)·F1(P) = −(−4) − 4.4 = −12 < 0.

On the other hand, we already know that F1 ·F1 = 16 > 0, so by the rationality
criterion, it follows that P is rational. Since b2(P) = 1 and the self-intersection
number of F1(P) is > 0, the same will be true for the self-intersection number
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of any curve on P. In particular, P has no exceptional curves and is therefore a
minimal model. Since b2(P) = 1, we can find a rational number c such that K
is homologous to cF1. Then we have

−12 = K ·F1(P) = cF1(P)2 = 16c,

so c = −3/4. Therefore we have

K2 = c2F1(P)2 =
9
16
·16 = 9.

It now follows from the classification of minimal models of algebraic surfaces
[van der Geer 1988, §VII.2, p. 160] that P is actually P2(C). The rationality of
W now follows from the fact that it is birationally equivalent to P. �

Corollary 9.4. The curves FN(P ) for N = 1, 2, 4, 28 are plane curves of
degrees 4,12,18,21 respectively .

Proof. This follows at once from Bezout’s theorem and from the table of
intersection numbers for these curves on P. �

Corollary 9.5. The action of G on P arises from a irreducible complex linear
representation of degree 3.

Proof. The reader is referred to [Conway et al. 1985] for the character table
and group of Schur multipliers of G, which provides the basis for the following
argument. Any projective representation of degree 3 of G arises from a linear
representation of SL2(F7). Since the action of G on P is nontrivial and since
SL2(F7) has no nontrivial representation of degree < 3, the representation is
irreducible. Furthermore, the irreducible linear representations of degree 3 of
SL2(F7) arise from linear representations of G, so we are done. �

Corollary 9.6. The locus F14(P) is a 21-point orbit for G acting on P. The
curves FN(P) for N = 1, 2, 4, 28 are defined by polynomials invariant under the
linear 3-dimensional representation of G. The locus F28(P) is the union of 21
lines permuted transitively by G.

Proof. The first assertion follows from the fact that G acts transitively on
the components of F14(Ẑ(

√
7)) and the corresponding facts on W and P. The

last assertion follows from the fact that F28(P) has 21 components permuted
transitively by G and the fact that it is a plane curve of degree 21. Finally,
suppose f = 0 is a polynomial defining a curve in P invariant under G. Then for
all g ∈ G, the polynomial f is mapped to a multiple of itself by g, say to cgf .
The function g 7→ cg is then easily seen to be a homomorphism from G to the
multiplicative group of C×. Since G is a simple group, that character is trivial,
which proves the second assertion. �

Now that we have identified P, we can identify the surfaces W , Ẑ(
√

7) and
X̂(
√

7). The orbits in P mentioned in Lemma 9.7 and Lemma 9.8 are discussed
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in more detail in Section 11. (We thank Igor Dolgachev, who pointed out an
error in the original statement of Lemma 9.7 and explained how to correct it.)

Lemma 9.7. The surface Ẑ(
√

7) is obtained from the complex projective plane
through the following steps:

(1) Blow up the unique 21-point orbit O21 and the unique 24-point orbit O24 for
G acting on P. Call the resulting surface P ′.

(2) For each point x of O24, let E(x) denote the exceptional curve in P ′ obtained
by blowing up x. Let F ′1 denote the proper transform of the Klein curve x3y+
y3z + z3x = 0 in P ′ and for each x of O24 let x′ be the point of E(x) where
F ′1 meets E(x). The points x′ form a 24-point orbit O24 in P ′. We blow up
this orbit and call the resulting surface P ′′.

(3) For each point x′ of O24, denote by E′(x′) the line in P ′′ obtained by blowing
up x′. Let F ′′1 denote the proper transform of F ′1 in P ′′ and for each point
x′ of O24 denote by x′′ the point where F ′′1 meets E′(x′) Then the points x′′

form a 24-point orbit O24 on P ′′. Blow up the orbit O24 and call the resulting
surface P ′′′. The surface P ′′′ is G equivariantly isomorphic to W .

(4) Denote by DN the proper transform of FN(P) in P ′′′ for N = 1, 2, 4. Let
Z denote the two-sheeted cover P ′′′ branched along D1 ∪D2 ∪D4. Then Z is
equivariantly isomorphic to Ẑ(

√
7).

(5) The preimage in Z of each point x of O24 is a cycle Sx of curves as shown in
Figure 2. The cycle Sx can be blown down to a double point . Blowing down
all of the cycles Sx results in a surface X equivariantly isomorphic to X̂(

√
7).

What prevents Lemma 9.7 from containing a complete characterization of the
surfaces X̂(

√
7) and Ẑ(

√
7) is that we have not yet identified the plane curves

FN(P) for N = 1, 2, 4. The rest of this article is devoted to the solution of
this problem. The following lemma will be of fundamental importance for that
purpose.

Lemma 9.8. The curve F4(P) has singularities of order ≥ 4 on the 21-point orbit
O21. The curve F2(P) is singular along the 21-point orbit O24 and the 24-point
orbit O24.

Proof. Since each component Z14(W ) of F14(W ) and each curve Cxi is blown
down to a point under the natural mapping of W onto P, it will suffice to verify
the following intersection numbers on W :

Z14·F2(W ) = 2, Z14 ·F4(W ) = 4, Cx2 ·F2(W ) = 2.

The first and second of these follow immediately from the table in Lemma 8.2
if one notes that multiplying these intersection numbers by 21 must give the
corresponding intersection numbers for F14. As for the last, the left side must
equal the intersection number on Ẑ(

√
7) given by

(Sx2 + Sx3 )·F2(Ẑ(
√

7)) = 2. �
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10. The Ring of Invariants of G on C3

In this section, we recall some of the classical results from [Klein and Fricke
1890–92, vol. 1, § III.7, pp. 732 ff.] on the ring of invariants for a three-dimensional
irreducible complex representation ρ of G. An account of some of these results
may also be found in [Weber 1896, §§ 122–124]. However, since some of our
computations depend essentially on the precise forms for these invariants, we
have also computed them ourselves using the algebra program REDUCE 3.4 on
a personal computer.

The first invariant is the invariant f of degree 4 given by

(10.1) f = x3y + y3z + z3x.

The curve f = 0 is denoted C and is referred to as the Klein curve. The next
invariant, of degree 6, is denoted ∇ and is given, up to a constant factor, by the
determinant of the matrix of second partials of f . Explicitly,

(10.2) ∇ =
1
54

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z

∂2f

∂y∂x

∂2f

∂y2

∂2f

∂y∂z

∂2f

∂z∂x

∂2f

∂z∂y

∂2f

∂z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 5x2y2z2 − xy5 − yz5 − zx5 = 5x2y2z2 − σ(xy5),

where in general we write σ(xaybzc) to denote xaybzc + xbycza + xcyazb. We
will refer to the curve ∇ = 0 as the Hessian of C and denote it H. It is the locus
of all points in the plane whose polar conics with respect to the Klein curve are
line pairs.

The next invariant, of degree 14, is, up to a constant factor, the determinant
of the 4×4 symmetric matrix obtained by bordering the matrix of second partials
of f with the first partials of ∇. Denoting the matrix by C, we have

C =
1
9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z

∂∇
∂x

∂2f

∂y∂x

∂2f

∂y2

∂2f

∂y∂z

∂∇
∂y

∂2f

∂z∂x

∂2f

∂z∂y

∂2f

∂z2

∂∇
∂z

∂∇
∂x

∂∇
∂y

∂∇
∂z

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= σ(x14 − 34x11y2z − 250x9yz4 + 375x8y4z2 + 18x7y7 + 126x6y3z5).
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(Klein incorrectly gives the coefficient −126 as 126. The invariant is written
correctly in Weber’s presentation.) We will denote the curve C = 0 by Σ. It
is the locus of all points in the plane whose polar lines with respect to H are
tangent to their polar conics with respect to C.

Finally, there is the invariantK of degree 21, which is, up to a constant factor,
the functional determinant of f , ∇ and C:

K =
1
14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f

∂x

∂f

∂y

∂f

∂z

∂∇
∂x

∂∇
∂y

∂∇
∂z

∂C

∂x

∂C

∂y

∂C

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= σ(x21−7x18y2z+217x16yz4−308x15y4z2−57x14y7−289x14z7+4018x13y3z5

+637x12y6z3 +1638x11y9z−6279x11y2z8 +7007x10y5z6−10010x9y8z4)

+10296x7y7z7.

(Weber doesn’t give the full expression for this invariant; instead he cites [Gordan
1880] and [Klein and Fricke 1890–92]. In the former work, p. 372, our K is
denoted by Ω and is listed with the wrong coefficient 3472 for x7y7z7; this error
also occurs in the latter work, p. 734. It is easy to guess its origin: since a
notation Σ similar to our σ was used, the term 3432x7y7z7 appearing inside a σ
would equal 10296x7y7z7.) We will denote by Λ the curve K = 0. It is the locus
of all points in the plane whose polar lines with respect to the curves C, H and
Σ are concurrent.

Klein’s generators f,∇, C,K of the ring of invariants are connected by the
relation

K2 = C3 − 88C2f2∇− 256Cf7 + 1088Cf4∇2 + 1008Cf∇4

+1728∇7 − 60032f3∇5 + 22016f6∇3 − 2048f9∇.

The generating function of the ring of invariants is given by

∞∑
n=0

ant
n =

t21

(1− t4)(1− t6)(1− t14)
,

where an is the dimension of the space of G-invariant forms of degree n. The
series begins

(10.3) 1 + t4 + t6 + t8 + t10 + 2t12 + 2t14 + 2t16 + 3t18 + 2t20 + t21 + . . .
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11. Orbits of G Acting on P2(C)

In this section, we determine the orbit structure of the group G acting on
P2(C). Our approach is based on the enumeration of the subgroups of G and
the decomposition of ρ restricted to each subgroup. For that purpose, it is useful
to have a list of all of the conjugacy classes of subgroups of G. That information
is provided in the following proposition, due to Klein [1879, § 1] (as corrected
in his collected works). In [Adler ≥ 1998], we will make a more systematic and
general study of orbits. A discussion of the orbits of G on P2(C) can also be
found in [Weil 1974, §§ 116–121].

Lemma 11.1. The group G has subgroups of the following orders: 1, 2, 3, 4, 6,
7, 8, 12, 21, 24, 168. All are unique up to conjugacy except for :

(1) the groups of order 24, which form two conjugacy classes of subgroups inter-
changed by the outer automorphisms of G;

(2) the subgroups of order 12 which occur as normal subgroups of these groups
of order 24 and which fall into two conjugacy classes;

(3) the three conjugacy classes of subgroups of order 4, which consist of a con-
jugacy class of cyclic subgroups of order 4 and two conjugacy classes of Klein
4-groups.

G has no other subgroups.

For each element γ of G, the element ρ(γ) has three eigenvalues, not necessarily
distinct, forming a set with repetitions. That set with repetitions is denoted
η(γ).

In the next lemma and the following material, we follow the notation of [Con-
way et al. 1985] for the conjugacy classes.

Lemma 11.2. The eigenvalues of the elements of ρ(G) are as follows:

γ order η(γ)

1A 1 {1, 1, 1}

2A 2 {1,−1,−1}

3A 3 {1, ω, ω2}

4A 4 {1, i,−i}
7A 7 {ζ7, ζ2

7 , ζ
4
7}

7B 7 {ζ3
7 , ζ

5
7 , ζ

6
7}

Corollary 11.3. The identity element of G is the only element fixing all of
P2(C).

Elements from the following conjugacy classes 3A, 4A, 7A, and 7B have only
isolated fixed points on P2(C).
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Elements from the remaining conjugacy class S2 have a fixed line and a fixed
point on P2(C).

Proof. This is obvious from Lemma 11.2. �
Corollary 11.4. If a subgroup H of G has a fixed point in P2(C), the order of
H must be 1, 2, 3, 4, 6, 7, or 8. A subgroup of order 6 has a unique fixed point .
A noncyclic subgroup of order 4 has 3 fixed points. A subgroup of order 8 has a
unique fixed point . A subgroup of order 4 has 3 isolated fixed points. A subgroup
of order 7 has 3 isolated fixed points. A subgroup of order 2 has a fixed line and
a fixed point .

Proof. A subgroup H of G has a fixed point if and only if the three-dimensional
representation of G restricts to a reducible representation of H. The cases where
the restriction is irreducible can be found by a straightforward character com-
putation. The remainder are as described in the statement of this corollary. To
see that the fixed point is unique in the case of the subgroup of order 6, note
that an element of order 2 normalizing an element 3A of order 3 sends 3A to
its inverse and therefore interchanges the two fixed points of 3A corresponding
to the eigenvalues ω, ω2. It must leave the entire fixed point set of 3A invariant
and therefore must fix the fixed point with eigenvalue 1. Therefore, a subgroup
of order 6 has a unique fixed point. To see that a noncyclic subgroup H of order
4 has exactly 3 fixed points, note that an element a of order 2 has a fixed point
corresponding to the eigenvalue 1 and a fixed line corresponding to the eigenvalue
−1. If b is another element of order 2 of H, then b must leave the fixed point set
of a invariant. Therefore it fixes the isolated fixed point of a and also has two
fixed points of its own on the fixed line of a (it can’t fix the fixed line of a since
then ab would act as the identity). This proves the assertion about the noncyclic
subgroups of order 4. Finally, a subgroup H of order 8 is the normalizer of a
cyclic subgroup of order 4. Since an element of order 2 in H not lying in the
cyclic subgroup of order 4 sends an element 4A of order 4 in H to its inverse, it
will interchange the two fixed points of 4A corresponding to the eigenvalues ±i.
It will also necessarily fix the remaining fixed point of 4A corresponding to the
eigenvalue 1. This proves the corollary. �
Corollary 11.5. The group G has orbits of the following orders in its action of
P2(C): 21, 24, 28, 42, 56, 84, 168. The orbits of orders 21, 24, 28, 42 and 56 are
unique. The 42-point orbit arises from the conjugacy class of cyclic subgroups of
order 4 of G. There are ∞1 orbits of order 84 and ∞2 orbits of order 168. The
closure of the union of the 84-point orbits coincides with the locus K = 0, where
K is the invariant of degree 21 of Klein.

Proof. From the orders of the subgroups of G having fixed points, we know
that the possible orders of orbits are 21, 24, 28, 42, 56, 84, 168. The uniqueness
of the orbit of order 21 follows from the fact that a subgroup of order 8 is unique
up to conjugacy and has a unique fixed point. A similar argument shows the
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uniqueness of the orbit of order 28. The uniqueness of the orbit of order 24
follows from that fact that an element 7A of order 7 is sent to 7A2 and 7A4 by
the normalizer of the cyclic group it generates. Therefore, the normalizer acts
transitively on the three fixed points of 7A, which correspond to the eigenvalues
ζ7, ζ

2
7 , ζ

4
7 . If H is a cyclic group of order 4, it has 3 fixed points. The fixed

point belonging to the eigenvalue 1 is actually fixed by the normalizer of H,
as we noted above, and therefore belongs to a 21-point orbit, not a 42-point
orbit. The other two fixed points are interchanged by the normalizer of H and
give rise to a single 42-point orbit. If H is a Klein 4-group then H has 3 fixed
points. Each involution in H has a fixed line and an isolated fixed point. The
isolated fixed points of the three involutions are fixed points of H as a whole.
However, none of them can lie in a 42-point orbit since the isolated fixed point
of an involution is, as we have already noted, in a 21-point orbit. Therefore, the
Klein 4-groups contribute no 42-point orbits. That the union of the 84-point
orbits has dimension 1 follows from the fact that an element a of order 2 has a
fixed line and an isolated fixed point. Furthermore, that isolated fixed point lies
on the fixed line of another element b 6= a of order 2 provided b commutes with
a. Therefore the union of the 84-point orbits is the same as the union of the
fixed lines of the elements of order 2. Since there are 21 elements of order 2 in
G, the union of their fixed lines will be the union of 21 lines and invariant under
the action of G. The product of the linear forms defining these 21 lines will then
be an invariant of degree 21 and must therefore coincide, up to a nonzero scalar
factor, with Klein’s invariant of degree 21. A cyclic subgroup H of order 3 has
3 fixed points, two of which are exchanged by the normalizer of H and which
therefore give rise to a single orbit of order 56. The remaining fixed point is also
a fixed point of the normalizer of H and gives rise to a 28-point orbit. Since the
orbits of order < 168 consist of a finite number of points and a finite number of
lines, there must remain ∞2 orbits of order 168. �

Notation 11.6. We will denote by Od an orbit of order d. When such an
orbit is unique, there is no ambiguity in this notation. In order to resolve the
ambiguity in the case of the orbits of orders 84 and 168, we can denote an orbit
by Od(p) where p is a point of the orbit.

Our next goal is to give a list of explicit orbit representatives for the orbits of
orders 21, 24, 28, 42 and 56. This computation was carried out using REDUCE
3.4 on a personal computer.

Lemma 11.7. For d = 21, 24, 28, 42, the point pd given below is a representative
of the orbit Od.

p21 =
[√
−7(−ζ2

7−3ζ7−3) + 7(ζ2+ζ7 +1),

2
√
−7(ζ2

7−1),

ζ7(
√
−7ζ7−

√
−7+7ζ7+7)

]
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p24 = [1, 0, 0]

p28 = [1, 1, 1]

p42 =
[√
−7(−iζ2

7−4iζ7+ζ7−1−2i) + 7(−1+ζ7−2i+iζ2
7 ),

2
√
−7(iζ2

7−iζ7 +ζ7−1),

i
√
−7(ζ2

7 +2ζ7+4)+
√
−7(−3ζ7−4) + 7ζ(−iζ7+2ζ7 +1)

]
p56 = [1, ω, ω2]

Proof. We will merely explain the method by which these values were obtained.
The matrices ρ(2A), ρ(3A), ρ(4A) and ρ(7A) are given in an appendix to this
article, where ρ is the three-dimensional representation of G we are considering.
As noted above, one obtains a point of O21 by taking an eigenvector of ρ(4A)
corresponding to the eigenvalue 1. Since the eigenvalues of ρ(4A) are 1,±i, the
operator ρ(4A)2 + 1 maps C3 into the 1 eigenspace. So we can take

p21 = (ρ(4A)2 + 1)

 1
0
0

 ,

which leads to the value for p21 obtained above. The 24-point orbit consists of
the fixed points of ρ(7A), of which [1, 0, 0] is clearly one, so we have p24. The
28-point orbit consists of the points belong to the eigenvalue 1 of the elements
of order 3 of G. Since cyclic permutation of the coordinates is such an element
and since [1, 1, 1] clearly arises from an eigenvector with eigenvalue 1, we have
p28. To obtain p42, we need to find an eigenvector of ρ(4A) with eigenvalue
i. The operator (ρ(4A) − 1)(ρ(4A) + i) clearly projects onto the i-eigenspace
and we obtain p42 by applying this operator to the point [1, 0, 0]. The orbit
O56 arises from the ω- and ω2-eigenvectors of ρ(3A), a cyclic permutation of the
coordinates. So we can take p56 to be [1, ω, ω2]. �

12. Characterization of the Hessian of Klein’s Quartic

Denote by C the plane curve x3y + y3z + z3x = 0 and by H its Hessian.

Proposition 12.1. The plane curve H is defined by

5x2y2z2 − xy5 − yz5 − zx5 = 0,

is irreducible, nonsingular , has genus 10 and admits G as a group of automor-
phisms.

Proof. This is the expression given in (10.1) for the invariant∇ of degree 6 for
G. Since G has no permutation representation of degree < 7, any factor of ∇ is
also an invariant. We see from the generating function (10.3) that ∇ is therefore
irreducible. For if ∇ were reducible, the only factor it could have would be the
invariant of degree 4, whereas 6 is not a multiple of 4. If H were singular, its
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singular locus would contain a G-orbit. Since every orbit of G on P2(C) has at
least 21 points, H would have at least 21 points of the same multiplicity≥ 2. By
the Plücker formula, an irreducible sextic curve can’t have more than 10 singular
points. Therefore H is nonsingular and it follows from the Plücker formula that
H ias genus 10. �

Proposition 12.2. Let Γ denote the group whose presentation is

〈a, b, c | a2 = b4 = c7 = abc = 1〉.

Let φ be any surjective homomorphism from Γ to G. Then there is an automor-
phism α of G such that α ◦ φ(a), β ◦ φ(b) and γ ◦ φ(c) are the elements of G
represented respectively by(

0 3
2 0

)
,

(
3 5
4 0

)
,

(
1 1
0 1

)
.

Proof. We know that φ(c) must satisfy

φ(c)7 = 1.

If φ(c) = 1 then
1 = φ(abc) = φ(a)φ(b),

which would imply that the image of φ is commutative and that φ is not sur-
jective. Therefore φ(c) has order 7. Since the group of automorphisms of G
acts transitively on the set of elements of order 7 in G, we can assume without
loss of generality that φ(c) is the element of G represented by

(
1
0

1
1

)
. The same

reasoning as before shows that φ(a) must have order 2. There are 21 elements
of order 2 in G and they are all conjugate under the upper triangular subgroup
of G. Therefore, φ(a) is of the form g

(
0
2

3
0

)
g−1, where g is an upper triangular

matrix of determinant 1. We can write g in the form

g =
(

1 x

0 1

)(
y 0
0 y−1

)
.

Since
(

1
0
x
1

)
commutes with φ(c), we may after composing φ with the inner au-

tomorphism determined by
(

1
0
x
1

)
suppose without loss of generality that x is 0.

Therefore,

φ(a) =
(

0 y2

y−2 0

)
and

φ(b) = φ(a−1c−1) =
(

1 −1
0 1

)(
0 y2

y−2 0

)
=
(
−y−2 y2

y−2 0

)
.

If φ(b)2 = 1, then φ(b) has trace 0, which is impossible since the trace is −y−2.
Therefore, φ(b) has order 4 and its trace is ±4, whence y = ±3. This proves the
proposition. �
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Corollary 12.3. There is one and only one normal subgroup ∆ of Γ such that
Γ/∆ is isomorphic to G.

Proof. Let A =
(

0
2

3
0

)
, B =

(
3
4

5
0

)
and C =

(
1
0

1
1

)
viewed as elements of G.

Then A2 = B4 = C7 = ABC = 1, so there is a homomorphism φ0 : Γ → G

such that φ0(a) = A, φ0(b) = B and φ0(c) = C. Let ∆0 denote the kernel of φ0.
Since A,B, C generate G, the group Γ/∆0 is isomorphic to G. This proves the
existence. As for the uniqueness, let ∆ be any normal subgroup of Γ such that
Γ/∆ is isomorphic to G. Then there is a surjective homomorphism φ : Γ → G

whose kernel is ∆. By Proposition 12.2, there is an automorphism α of G such
that α◦φ = φ0. Consequently the kernel of φ equals the kernel of φ0, so ∆ = ∆0.

�

Theorem 12.4. There is one and up to isomorphism only one smooth curve
of genus 10 whose automorphism group contains a group isomorphic to G. Any
such curve is equivariantly isomorphic to the plane curve H.

Proof. The last assertion follows from the first combined with Proposition
12.1. The same proposition shows that such curves exist, so we only have to
prove that any two such curves are isomorphic. Let S be a compact Riemann
surface of genus 10 on which G acts nontrivially. Let S′ denote the orbit space
for this action of G on S. Then S′ naturally has the structure of a compact
Riemann surface. Let g denote the genus of S′. For every point P of S let eP

denote the order of the stabilizer of P in G. If γ is any element of G then the
stabilizer of P is conjugate via γ to the stabilizer of γ ·P. Therefore eP depends
only on the orbit of P under G. If p is the point of S′ representing that orbit,
we may also write ep for eP.

Using the Riemann–Hurwitz relation between the Euler characteristic of S
and that of S′, we have

−18 = 2− 2(10) = 168(2− 2g)−
∑
P∈S

(eP − 1).

If we group together all the terms in the summation which belong to the same
orbit and instead sum over S′, we obtain

−18 = 168(2− 2g)−
∑
p∈S′

168
ep

(ep − 1) = 168(2− 2g)− 168
∑
p∈S′

(
1− 1

ep

)
.

Dividing through by −168, we get

3
28

= 2g − 2 +
∑
p∈S′

(
1− 1

ep

)
.

Since the left-hand side is not an integer, the set of p ∈ S′ such that ep > 1 must
be nonempty and, of course, finite. Denote by n the number of points p of S′
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with ep > 1 and call these points p1, . . . , pn. Also, we will write ei for ep when
p = pi. Then we have

3
28

= 2g − 2 +
n∑
i=1

(
1− 1

ei

)
.

If g ≥ 1, the right-hand side of this equation is at least 1
2 , and so greater than

3
28

. Therefore g = 0. Furthermore, 7 divides the denominator of the left-hand
side, so one of the ei must be a multiple of 7. However, the stabilizer of any
point of S must be cyclic, so actually one of the ei equals 7, say, e1 = 7. Then
we have

5
4

=
n∑
i=2

(
1− 1

ei

)
.

If n > 3, the right-hand side is at least 3
2 , and so greater than 5

4 ; hence n ≤ 3.
If n < 3, the right-hand side is less than 1, and so less than 5

4 ; hence n = 3.
Therefore

1
e2

+
1
e3

=
3
4
.

If e2, e3 are both > 2, the left-hand side is at most 2
3 , and so less than 3

4 ; hence
one of e2, e3 is 2, say, e2 = 2, and then e3 = 4.

This proves that S is isomorphic to a Galois covering of P1(C) with Galois
group G and branched at exactly 3 points, the orders of branching being 2,4
and 7. The three points may, after applying a suitable projective transformation
of P1(C), be taken to be 0, 1 and ∞ respectively. The fundamental group Π
of P1(C) with these 3 points removed may be presented as a free group on the
letters a, b, c with the relation abc = 1. Any branched cover of P1(C) branched
only at 0, 1,∞ to orders 2,4,7 respectively corresponds uniquely to a subgroup
∆ of the group Π modulo the relations a2 = b4 = c7 = abc = 1, that is to say, of
the group Γ defined in Propostion 12.2. Furthermore, if such a cover is Galois
then ∆ is a normal subgroup and the Galois group is isomorphic to Γ/∆. In our
case, let ∆ correspond to the branched cover S → S′ = P1(C), so that Γ/∆ is
isomorphic to G. Then ∆ is the kernel of a surjective homomorphism from Γ to
G. By Corollary 12.3, there is one and only one normal subgroup ∆′ of Γ such
that Γ/∆′ is isomorphic to G. It folows that there is only one possibility for
∆ and, since ∆ determines the branched cover, only one possibility for S. This
completes the proof of the theorem. �

Corollary 12.5. Hirzebruch’s curves F2 and F4 are birationally equivalent to
the Hessian of Klein’s quartic.

Corollary 12.6. The curve H : xy5 + yz5 + zx5 − 5x2y2z2 arises from an
arithmetic subgroup of SL2(R).

Proof. We know that H arises from a subgroup of the {2, 4, 7} triangle group,
which was shown to be arithmetic by Fricke [1893b]. �
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Remark 12.7. The fact that H is the normalization of F2 and F4 and the ex-
plicit definition of these curves in terms of congruence subgroups of unit groups
of rational quaternion algebras also implies that the curve H arises from arith-
metic groups. However, by construction, the curves F2 and F4 also arise from
congruence subgroups of SL2(Z).

Remark 12.8. While browsing through old journals recently, we found the
article [Fricke 1893a]. From it, we learned that not only did he know that the
{2, 4, 7} triangle group is arithmetic but he also anticipated most of the results of
this section one century ago. Time and space do not allow a detailed discussion
of Fricke’s papers here, but we will return to them in [Adler ≥ 1998].

Remark 12.9. Dolgachev has kindly pointed out that Theorem 12.4 also follows
from Corollary 14.7 and Lemma 14.1.

13. The Jacobian Variety of the Hessian

Lemma 13.1. The Jacobian variety of H is G-equivariantly isogenous to the
product of an abelian variety A of dimension 3 and an abelian variety B of
dimension 7, both of which admit G as an automorphism group. Furthermore,
A is isomorphic to the Jacobian variety of the Klein curve C and therefore to a
product of 3 copies of the elliptic curve C/L, where L is the ring of integers of
the imaginary quadratic field Q(

√
−7), and B is isogenous to the sum of 7 copies

of the elliptic curve
PQR = S3, P +Q+ R = 5S.

Proof. The plane cubics give the adjoint system for H. Explicitly, every
holomorphic differential on H is obtained by taking the residue along H of a
rational differential of the form

E

5x2y2z2 − xy5 − yz5 − zx5

(
dy

y
∧ dz
z

+
dz

z
∧ dz
x

+
dx

x
∧ dy
y

)
,

where E runs over the space of all cubic forms in x, y, z. Consequently, the action
of G on the space of holomorphic differentials of H may be identified with the
action of G on the space of ternary cubics. Since the polars of points of P2(C)
with respect to C form a covariant system of cubics, it follows that there is a
3-dimensional irreducible space V of cubic forms generated by the partials of
x3y + y3z + z3x. The ten-dimensional representation is therefore the sum of an
irreducible representation of degree 3 and a representation of degree 7. Since
the degrees of the irreducible representations of G are 1, 3, 6, 7, 8, the seven-
dimensional space W of cubics can be reducible only if it contains the trivial
representation. Since there is no G-invariant cubic, it follows that the invariant
seven-dimensional space of differentials is irreducible. This implies at once that
the Jacobian variety J(H) of H contains an abelian variety A of dimension 3
invariant under G and an abelian variety B of dimension 7 invariant under G.
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It is well known that A must be the Jacobian of C. In [Adler 1981] one can
find a proof of this and of the fact that J(C) is isomorphic to the product of
three copies of C/L. Next consider the mapping λ : H→ P3 given by

λ([x, y, z]) = [xy5, yz5, zx5, x2y2z2] = [P,Q,R, S].

Then λ ◦ g = λ, where g is the collineation

[x, y, z] 7→ [ζx, ζ4y, ζ2z]

of P2(C). The image of λ is the elliptic curve

PQR = S3, P +Q+R = 5D,

which we will denote E. We therefore have a surjective mapping of J(H) onto
J(E) invariant under g, and an elliptic curve E′ in J(H) which maps onto J(E).
Durthermore, g must leave E′ pointwise fixed, so E′ ⊆ B. Since the action of
G on the tangent space of B is irreducible, it follows that B is isogenous to the
sum of 7 copies of E′, or what is the same, of E, since E′ and E are isogenous. �

It is natural to wonder whether J(H) is actually G-equivariantly isomorphic to
A⊕B, not merely isogenous. That will be investigated in a sequence of lemmas.
If r is a prime number, we will denote by Ir the group of points of order r in A∩B.
Then Ir is invariant under G and is a vector space over Fr, so Ir gives a modular
representation of G. The representations of G on the fundamental groups π1(A)
and π1(B) are integral representations of degrees 6 and 14 respectively. Their
extensions to C decompose as

π1(A) ⊗ C ∼= V ⊕ V ∗, π1(B) ⊗ C ∼= W ⊕W ∗ ∼= W ⊕W,

since W ∼= W ∗. We can reduce the integral represenations on π1(A) and π1(B)
modulo r and then obtain modular representations each of which has a sub-
module isomorphic to Ir. The set of irreducible representations of G over the
algebraic closure F̄r which occur as composition factors of π1(A) ⊗ F̄r will be
denoted Ar, while the set of those occurring as composition factors of π1(B)⊗F̄r
will be denoted Br. Denote by Cr the intersection of Ar and Br. The composi-
tion factors of G acting on Ir ⊗ F̄r must lie in Cr .

Lemma 13.2. If r does not divide the order of G then Ir = (0).

Proof. If r does not divide the order of G, the representations V and W remain
irreducible modulo r. Therefore the sets Ar and Br are disjoint, which implies
Cr is empty and Ir ⊗ F̄r has no composition factors. Therefore Ir = 0. �

Lemma 13.3. I7 = (0).

Proof. It is well known that that both the seven-dimensional representation
W and the three-dimensional representations V, V ∗ remain irreducible modulo
7. Therefore, C7 is empty and I7 = (0). �
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Lemma 13.4. I3 = (0).

Proof. We will show that the irreducible representation of degree 7 remains
irreducible modulo 3. Since 7 is prime, this will imply that the representation is
absolutely irreducible and therefore that C3 is empty and I3 = (0). Since 3 is a
primitive root modulo 7, G has no nontrivial representation of degree < 6 over
F3. Therefore, since W is nontrivial modulo 3, it is either irreducible modulo
3 or else has composition factors of degrees 1 and 6. Since W is self-dual, the
reduction ofW , if reducible, would contain the trivial representation. An explicit
model of the representation is given by the functions on P1(F7) with values in
F3 and whose sum over P1(F7) is 0. Such a function cannot be G-invariant, so
the representation of dimension 7 is irreducible modulo 3 and we are done. �
Lemma 13.5. We have B2 = {V, V ∗, 1} and A2 = C2 = {V, V ∗}.
Proof. The representation V is irreducible in all characteristics. Therefore the
second statement follows from the first. To prove the first, we use an explicit
model for the seven-dimensional representation modulo 2, namely the space X of
all functions on P1(F7) with values in F2 and whose sum over P1(F7) is 0. The
constant functions lie in X and form an invariant subspace Y of dimension 1. We
identify F2-valued functions with subsets of P1(F7). Modulo constant functions,
this means that every subset is identified with its complement. It is not difficult
to show that Y is reducible. Indeed, the orbit of the subset {∞, 3, 5, 6} under G
consists of 7 subsets up to complements and these together with the empty set
form a three-dimensional subspace of Y . �
We summarize the results of these lemmas in the following corollary.

Corollary 13.6. The kernel of the natural G-equivariant homomorphism of
A ⊕ B onto J(H) induced by addition is a finite 2-group. The elements of
order 2 in that group form a group G-equivariantly isomorphic to I2, which is of
order 1, 8 or 64 and whose composition factors lie in the set consisting of the
natural three-dimensional representation of GL3(F2) on F3

2 and its contragredient
representation.

Remark 13.7. The discussion so far does not settle the question of the existence
of nontrivial elements of order 2 fixed by G. We will show in Lemma 14.1 that
there is a G-invariant element of order 2 in B. We also note that we have
left open the precise determination of the group I2 as well as the question of
the existence of points of order 2n in A ∩B with n ≥ 2. I am informed by Fred
Diamond that one can use the methods of Ribet [1983] to determine intersections
of invariant abelian subvarieties of the Jacobian varieties of modular curves. It
seems reasonable to expect that these methods could also adapt to the case of
curves arising from arithmetic groups with compact quotient. Since the curve
H is such a curve, as well as a curve arising from arithmetic subgroups of finite
index in SL2(Z), we can perhaps expect a precise determination of A ∩B from
these methods.
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For later use, we also need the following result.

Lemma 13.8. Let X be a curve of genus 10 which admits G as an automorphism
group. Then any equivariant rational mapping of X onto another curve on which
G acts is either birational or else maps X onto a rational curve on which G acts
trivially .

Proof. By Theorem 12.4 and Lemma 13.1, the representation of G on the
holomorphic differentials of X is the sum of an irreducible representation of
degree 3 and an irreducible representation of degree 7. It follows that if Y is
a smooth irreducible complete curve on which G acts and if φ : X → Y is a
G-equivariant morphism then the genus g of Y can only be 0, 3, 7 or 10. If
g = 10 then f is necessarily birational. If g = 0 then G necessarily acts trivially
on Y . It remains to show that the cases g = 3, 7 don’t occur.

Suppose g = 3. It is well known (see [Hecke 1935], for example) that Y must
be isomorphic to the Klein curve. Let p be a point of X fixed by an element γ of
order 4 of G. Then φ(p) must be a point of Y which is also fixed by γ. However,
an element of order 4 has no fixed points on the Klein curve. So we cannot have
g = 3.

To show that g 6= 7, it suffices to observe that in general there can be no
nonconstant mapping of a curve of genus 10 onto one of genus 7. Indeed, the
degree n of such a mapping would have to be at least 2 and by the Riemann–
Hurwitz relation we would then have

−18 = 2− 2·10 ≤ n·(2− 2·7) ≤ −24,

which is impossible. (I am indebted to Noam Elkies for this observation, which
greatly simplified the argument.) �

14. Invariant Line Bundles on the Hessian

Denote by L the group of isomorphism classes of G-invariant line bundles on
the Hessian curve H and denote by L0 the subgroup of L represented by invariant
line bundles of degree 0. The quotient group L/L0 is the group of all integers
which occur as the degrees of G-invariant line bundles and will be denoted ∂L.
Similarly, we denote by M the subgroup of L whose elements correspond to
G-invariant divisors on the curve H. We denote by M0 the subgroup of M

consisting of elements of degree 0, so that

M0 = M ∩ L0.

The subgroup of ∂L represented by elements of M is denoted ∂M.

Lemma 14.1. The group M0 is cyclic of order 2 and lies in the G-invariant
abelian subvariety B of J(H). In particular B (and a fortiori J(H)) has a G-
invariant element of order 2. The group ∂M is equal to 6Z. The group M is the
product of M0 and an infinite cyclic group.
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Proof. Denote by (p2), (p4) and (p7) the G orbits on H of orders 84, 42 and
24 respectively. Identifying these orbits with the divisors they determine, it is
easy to see, using the fact that the orbit space for G acting on H is P1(C), that
2(p2), 4(p4) and 7(p7) are linearly equivalent to each other and to any 168-point
orbit. Therefore, M is generated by the line bundles associated to (p2), (p4) and
(p7). Those line bundles will be denoted ξ2, ξ4 and ξ7 respectively. A line bundle
represents an element of M0 if and only if it is of the form

ξa2ξ
b
4ξ
c
7

where
84a+ 54b+ 24c = 0.

By solving this diophantine equation for a, b, c, we see that M0 is generated by
ξ2ξ
−2
4 and ξ4

4ξ
−7
7 . However, the line bundle ξ4

4ξ
−7
7 is trivial since 7(p7) and 4(p4)

are linearly equivalent. Therefore, M0 is a cyclic group generated by ξ2ξ
−2
4 .

Since 2(p2) is linearly equivalent to 4(p4), the square of the line bundle ξ2ξ−2
4 is

trivial. Therefore, M0 has order 1 or 2. Suppose the order is 1. Then (p2) is
linearly equivalent to 2(p4). Let f be a rational function on H whose divisor is
2(p4) − (p2). Since the divisor 2(p4) − (p2) is G-invariant, the scalar multiples
of f form a one-dimensional representation space for G. Since G is a simple
group, that one-dimensional representation must be trivial. Therefore, f is fixed
by every element of G and therefore is really a rational function on the orbit
space P1(C) for G acting on H. In particular, the divisor of f is the preimage
under the quotient mapping H → H/G = P1(C) of a divisor on P1(C). Since
the divisor is supported on the 42-point orbit and the 84-point orbit, it would
then have to be of the form

2s(p2) + 4t(p4),

and that is a contradiction. Therefore M0 is cyclic of order 2. As for the group
∂M , it is clearly generated by the greatest common divisor of the orders of the
possible G-orbits on H, i.e. of 24, 42, 84 and 168, which is 6. This proves the
lemma. �

Lemma 14.2. Let H be a finite group acting on an algebraic curve X over the
field C of complex numbers. Let Y = X/H be the orbit space for the action of H
on X and assume that Y is of genus 0. Denote by LX the group of isomorphism
classes of invariant line bundles on X and by MX the subgroup of LX consisting
of elements represented by line bundles associated to H-invariant divisors. Then
the quotient group LX/MX is isomorphic to a subgroup of the group of Schur
multipliers of H. In particular , the index of MX in LX divides the order of the
group of Schur multipliers of H.

Proof. Denote by KX the function field of X and by K×X the multiplicative
group of KX . Let A = K×X/C

×, let B denote the group of all divisors on X and
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let C denote the group of all isomorphism classes of line bundles on X. Then
we have the exact sequence

1→ A→ B → C → 1.

From the associated long exact cohomology sequence of G, we have

1→ AH → BH → CH → H1(H,A).

From the exact sequence

1→ C× → K× → A→ 1,

we deduce that the sequence

H1(H,K×)→ H1(H,A)→ H2(H,C×)

is exact. However, H1(H,K×) is trivial by Hilbert’s Theorem 90 and H2(H,C×)
is the group of Schur multipliers of H. Since LX = CH and since MX is the
image of BH in LX , it follows that LX/MX is isomorphic to a subgroup of the
group of Schur multipliers of H. �

Originally, the following lemma merely asserted that M has index at most 2 in L.
I am greatly indebted to Dolgachev for communicating the proof of this stronger
and more satisfactory form of the lemma.

Lemma 14.3. The index of M in L is equal to 2. Furthermore, any torsion
element of L lies in M. In other words, L0 = M0.

Proof. That the index is at most 2 follows at once from the preceding lemma
and from the well known fact that the group of Schur multipliers of PSL(2, 7)
is cyclic of order 2. Dolgachev pointed out that in the preceding lemma the
homomorphism Pic(X(p))G → H2(G,C×) is in fact surjective. We will present
his argument in Lemma 14.4 below. Assuming this result, it follows that L/M is
a cyclic group of order 2. Let ξ be an invariant line bundle of degree 0 on H. If ξ
doesn’t represent an element of M0 then the group PSL2(F7) does not act on the
bundle ξ. Instead the group SL2(F7) will act and, in particular, the nontrivial
element of the center of SL2(F7) will act as −1 on the space of sections of ξ. On
the other hand, since ξ is a nontrivial line bundle of degree 0, the Riemann–Roch
theorem implies that the space of sections of ξ has dimension 9. However, all
irreducible representations of SL2(F7) in which the center acts nontrivially are
of even dimension, which contradicts the fact that the space of sections must
decompose into a direct sum of such representations. �

We now present Dolgachev’s proof of the following lemma.

Lemma 14.4. Let X be a curve and G ⊆ Aut(X) be a perfect group of automor-
phisms of X. Then the natural mapping of Pic(X)G to H2(G,C×) is surjective.
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Proof. The argument depends on two spectral sequences given in [Grothendieck
1957], namely

′Ep,q2 = Hp(G,Hq(X,O×X))⇒ Hp+q(G;X,O×X)
′′Ep,q2 = Hp(G\X,Rqπ∗(O×X))⇒ Hp+q(G;X,O×X)

Here, as A runs over the category of G-sheaves of abelian groups, the functor
Hn(X;G,A) is the n-th right derived functor of the functor which associates
to such a sheaf A its group of G-invariant sections. Also, π denotes the nat-
ural mapping of X onto G\X. From these spectral sequences, one derives the
following exact sequences [Grothendieck 1957, p. 201]:

0→H1(Y,O×X
G

)→H1(X;G,O×X)→H0(Y,H1(G,O×X))→H2(Y,O×X
G

)→H2(X;G,O×X)

0→ H1(G,C ×) →H1(X;G,O×X)→ H1(X,O×X)G → H2(G,C ×) →H2(X;G,O×X)

The first spectral sequence has E2,0
2 = E1,1

2 = E0,2
2 = 0, which implies

H2(G;X,O×X) = 0.

From this and the fact that H1(G,C×) = 0, we derive from the first exact
sequence:

0→ H1(G;X,O×X)→ H1(X,O×X)G → H2(G,C×)→ 1.

The group H1(X,O×X)G is the group L and the group H1(G;X,O×X) is the group
of line bundles on X with G-action. Such line bundles are precisely those arising
from G-invariant divisors, so this group may be identified with the group M.
This proves the lemma. �

Corollary 14.5.

∂L = 3Z, L0 = Z/2Z.

Proof. We know that M0 = Z/2Z and ∂M = 6Z. We also know that

L/M = ∂L/∂M ⊕L0/M0 = Z/2Z.

We also know from the preceding lemma that L0 = M0. Therefore

∂L = 3Z, L0 = Z/2Z. �

Remark 14.6. It would be interesting to know something about the geometry
of an embedding of H associated to a line bundle lying in L but not in M. For
example, by using contact quintics1 of H, one can map it to a curve of degree
15 in P5, where the action of SL2(F7) on P5 is derived from an irreducible
representation of degree 6 of SL2(F7) in which the center acts nontrivially. It
would probably not be difficult to write down the equations of the curve of degree
15 explicitly.

1A contact quintic of the sextic is one which is tangent to the sextic at every point where
it meets the sextic. More precisely, it is a quintic which cuts out a divisor divisible by 2 in the
group of all divisors on the sextic.
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Corollary 14.7. There are precisely two G-invariant curves of degree 18 and
genus 10 in P2.

Proof. Let C be such a curve and let φ : H → C be the unique G-invariant
mapping of H to C. Let ξ = φ∗O(1), where we denote by O(1) here the restriction
to C of the ample generator of the Picard group of P2(C). Then ξ is an invariant
line bundle of degree 18 on H. It follows from Corollary 14.5 and its proof that
there are precisely two possibilities for ξ: either ξ = K or ξ = K ⊗ ξ0, where K
is the canonical line bundle of H and ξ0 is the unique G-invariant line bundle of
order 2 and degree 0. By the Wood’s Hole Fixed Point Formula, we can write
the Euler character of G on the cohomology of ξ as

χ(γ; ξ) = tr(γ |H0(ξ))− tr(γ |H1(ξ))
∑ tr(γ | ξx)

1− dγx
for γ in G, where the summation on the right runs over the fixed points x of γ on
H and where dγx and tr(γ | ξx) denote the scalar by which γ acts on the fibres
Kx, ξx of K, ξ respectively at x. If ξ = K, we already know this Euler character
and its decomposition from the proof of Lemma 13.1. It is χ′3 + χ7 − 1. Now,
the line bundle ξ0 = ξ2ξ

−2
4 is associated to the G-invariant divisor (p2)− 2(p4).

Therefore the scalar tr(γ | ξx) at a fixed point x of γ will be the same for both K
and Kξ0 except when γ has order i and x belongs to (pi), with i = 2, 4. Leaving
these traces undetermined for the moment, let e1 = χ(γ;Kξ0) where γ has order
4 and let e2 = χ(γ;Kξ0) where γ has order 2. For the remaining values we have
χ(γ;K) = χ(γ;Kξ0). Therefore

K(γ;Kξ0) =



9 if γ = 1A,
e2 if γ = 2A,
0 if γ = 3A,
e1 if γ = 4A,
1
2(−3 +

√
−7) if γ = 7A,

1
2
(−3 −

√
−7) if γ = 7B.

On the other hand, we know from the proof of Lemma 14.3 that H1(Kξ0) = 0,
so the Euler character of Kξ0 is actually the character of G on sections of Kξ0.
Since an element of order 2 of G has at most 4 fixed points on H, it follows that
|e2| ≤ 2. The multiplicity of χ6 in the Euler character is then (e2 + 3)/4. Since
the multiplicity must be an integer, we must have e2 = 1 and the multiplicity
of χ6 is 1. Similarly, we have |e1| ≤ 2 and the multiplicity of χ′3 is (e1 + 3)/4.
Therefore, e1 = 1 and the multiplicity of χ′3 is 1. Hence, the Euler character of
Kξ0 decomposes as χ′3 + χ6. The mapping φ determines an embedding φx of
the representation space of χ′3 into H0(ξ). Since χ′3 occurs with multiplicity 1
in both H0(K) and H0(Kξ0), the embedding φξ is uniquely determined up to
a scalar factor for each line bundle ξ. Converely, φξ determines the mapping φ
and its image C. This proves the lemma. �



278 ALLAN ADLER

Remark 14.8. The techniques of [Dolgachev ≥ 1998] apparently do not apply
directly to the study of G-invariant vector bundles on H since H is associated
to a triangle group (2,4,7) and 2,4 are not relatively prime. But it is reasonable
to hope that Dolgachev’s methods can be extended to handle this case.

15. Identification of the Curve F2 of Degree 12

The Hessian H is the locus of points in the plane whose polar conics with
respect to the Klein curve C are pairs of lines. These lines are always distinct
since H is nonsingular. The Steinerian of C is the locus of the point where these
two lines meet. Denote the Steinerian by S. There is a morphism ι from H to S

which associates to the point p of H the singular point ι(p) of the polar conic of
p with respect to C.

The following result is due to Fricke [1893a, p. 386, eq. (3)]. It has been
rediscovered in modern times by Dolgachev and Kanev [1993, p. 256, Ex. 6.1.1]
and independently by the author.

Lemma 15.1. The degree of S is 12 and its equation is

(15.2) 4f3 +∇2 = 0.

Furthermore, S has 45 double points. These consist of the 24-point orbit and the
21-point orbit , each taken once. The points of the 24-point orbit are cusps and
those of the 21-point orbit are nodes.

Proof. The graph of ι consists of all pairs (p, q) ∈ P2(C) × P2(C) such that
Mp ·q = 0, where Mp is the matrix of second partials of f at p. Consequently the
graph is defined by 3 bihomogeneous equations of bidegree (2, 1). Denote by h

the generator of the cohomology group H2(P2(C),Z) and for i = 1, 2 denote by
hi the pullback of h via the projection πi of P2(C)× P2(C) onto its i-th factor.
Then the graph of ι is Poincaré dual to

(2H1 + h2)3 = 12h2
1h2 + 6h1h

2
2.

The Steinerian S is simply the projection of the graph of ι onto the second factor
and is Poincaré dual, at least as a cycle in P2(C), to

(π2)∗(2H1 + h2)3 = 12h2,

so S has degree ≤ 12. Since S is an irreducible invariant curve, we know from
Klein’s determination of the ring of invariants that S is either of degree 12 or else
is either H or C. By Lemma 13.7, H doesn’t map onto C, so S 6= C. If S = H,
then ι would be a G-equivariant automorphism of H, hence the identity. But it
is easy to check that

ι([1, 0, 0]) 6= [1, 0, 0].
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This proves that S has degree 12. The general invariant of degree 12 is of the
form

af3 + b∇2.

Since S has genus 10, it must have 45 multiple points, counted with their mul-
tiplicities. Since the 24-point orbit is the intersection of C and H, it is clear
that these are double points. The remaining 21 points form the 21-point orbit
to which Hirzebruch refers [1977, p. 319]. Since neither C nor H passes through
the 21-point orbit, there is only one invariant curve of degree 12 pasing through
the 21-point orbit and that is S. One of the 21 points is [−y−z, y, z], where y
and z are given by

(15.3) y =
γ3 − γ4

√
−7

, z =
γ6 − γ√
−7

.

By requiring that S pass through this point, we find that S is given by

4f3 +∇2 = 0.

To see that the 21-point orbit is double on S, note that each cyclic group of
order 4 in G has 3 fixed points, 2 of which lie on H. The mapping ι sends the
two on H to the remaining fixed point, which creates a double point on S. More
precisely, it has a node there since there are two points of the normalization H

corresponding to it. As for the 24-point orbit, it is clear from the expression
4f3 +∇2 that there is only one tangent at a point of the 24-point orbit, namely
the tangent to H at that point, since 4f3 vanishes to third order at the point
and ∇2 only to second order. �

16. Identification of the Curve F4 of Degree 18

In Corollary 14.7, we showed that there are exactly two irreducibleG-invariant
plane curves of degree 18 and genus 10. In this section, we will describe them
in more detail. As a first step in studying such curves, we note that there are
3 linearly independent invariants of degree 18 for G, namely fC, ∇3 and f3∇.
Accordingly, there is a net of G-invariant curves of degree 18. We will denote
that net by N. We then have the following technical result, where we adopt the
notation of § 11 for orbits.

Lemma 16.1. Denote by N the net of invariant curves of degree 18. Every
element of the net N passes through the 24-point orbit and the 42-point orbit . If
Od is an orbit with d elements, then for d = 21, 28, 56 the elements of N passing
through Od form a pencil which we denote Pd and these three pencils are not
concurrent in N. For d = 21, 28, the orbit Od is singular on any element of N

containing it . The pencil P56 consists entirely of reducible curves. The elements
of N singular on the orbit Od form a pencil Pd for d = 24, 42. The pencil P24

consists entirely of reducible curves containing H as a component . There is one
and only one element of N having multiplicity at least 3 at the points of O28.
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The pencil P21 has a unique element for which the multiplicity at the points of
O21 is at least 3 and for that element the multiplicity is actually equal to 4.

Proof. These assertions were all verified using REDUCE 3.4 on a personal
computer. Some of them are easy to verify by hand. �

To show the existence of two essentially different types of invariant curves of
degree 18 and genus 10, we begin with the following result which is based on a
classical result for generic quartics [Berzolari 1903–15].

Proposition 16.2. There is an irreducible invariant of degree 18 and genus 10
for G with all of the points of 21-point orbit as quadruple points and no other
singularities. There is another irreducible invariant of degree 18 and genus 10
for G whose singularities are the points of the 42-point orbit and the points of an
84-point orbit . The former is the reflex (see below) of the Caylean of the Klein
curve and the latter is the reflex of the Steinerian of the Klein curve.

Proof. According to [Berzolari 1903–15, footnote 78 on p. 340 and table on
p. 341], the dual of the Steinerian of a plane quartic has class 18, with 84 bitan-
gents and 42 inflectional tangents. This means that the image of the Steinerian
in P2(C)∗ (the dual P2(C)) under the Gauss map is a curve of degree 18 with
84 nodes and 42 cusps. Furthermore, in case the quartic is Klein’s quartic, this
image is invariant under G since S is. Now, the action of G on P2(C)∗ is re-
lated to the action of G on P2(C) by an outer automorphism of G. Therefore,
whenever an invariant curve U can be found in P2(C)∗ having certain properties,
there will be a uniquely determined invariant curve, which we call the reflex2 of
U , in the original P2(C) with the same properties as U . (Naturally, one cannot
take this statement too literally. For example, the action of G on the reflex of U
differs from the action of G on U by the outer automorphism. But the degree,
the genus, the number of singularities, etc. will be the same for the curve and
its reflex.) This observation allows us, in effect, to gloss over the distinction
between invariant curves in P2(C) and in P2(C)∗.

We know that the Steinerian of Klein’s quartic is birationally equivalent to
the Hessian, which has genus 10, and therefore any rational mapping from it onto
another curve on which G acts nontrivially must be birational. In particular,
the dual of the Steinerian will have genus 10 as well. Therefore the reflex of the
dual of the Steinerian will be an invariant curve of degree 18 and genus 10 in
P2(C), which proves the second assertion of the proposition. As for the first,
one works with the Caylean of a plane quartic. This is defined to be the curve
in the dual P2(C) consisting of of the lines joining points of the Hessian to the
corresponding points of the Steinerian. The citation in [Be] also shows that the
Caylean of a plane quartic has class 18 and has 21 quadruple tangent lines. In
the case of Klein’s quartic, one concludes that there is an invariant plane curve

2We don’t refer to it as the dual of U because the dual of a curve already has a meaning
which we will also be using.
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of degree 18 in P2(C) with 21 quadruple points, namely the reflex of the Caylean
of Klein’s quartic. Since the singularities are a union of orbits and the minimal
G-orbit has 21 points, we obtain our 21 points which are at least quadruple. By
the Plücker formula, we will know that the 21-point orbit is precisely quadruple
and that there are no other singularities as soon as we show that the genus is
10. But by definition of the Caylean, there is a G equivariant rational mapping
of the Hessian onto the Caylean which associates to a point x of the Hessian
the line that joins x to the corresponding point of the Steinerian. This mapping
must then be birational by Lemma 13.8.

The singular loci of invariant curves are unions ofG orbits, but it is conceivable
that there is some degeneration when specializing the general result to Klein’s
quartic. There can be no degeneration in the case of the reflex Caylean since
there can be no orbit with less than 21 points. An argument is needed in the case
of the reflex Steinerian, however, to verify that the singularities include the 42-
point orbit and an 84-point orbit. We have verified this explicitly for the 42-point
orbit but not for an 84-point orbit because of difficulties in computing the right
84-point orbit. The verification can however be completed by the following steps:
(1) verify that the orbits O21, O24, O28, O56 do not lie in the singular locus; (2)
verify that the points of the 42-point orbit are nodes. For if (1) is verified, it will
follow that all singularities of the reflex Steinerian lie on the 42-point orbit and
on 84-point orbits. And if (2) is verified, it will follow that the 42-point orbit
cannot be more singular than it is in the general case. In particular, O42 makes
the same contribution to the Plücker formula as in the general case, so the same
is true for the remaining orbits. Since the genus of the reflex Steinerian must
be the same as the genus of H, it follows that the remaining singularities must
come from an 84-point orbit. The actual verification of (1) follows from Lemma
16.1. As for (2), the orbit O42 arises from i-eigenspaces in C3 of elements of
order 4 in G. Since the eigenvalues of such an element are 1,±i, the action of an
element of order 4 on the tangent space to such a fixed point p has eigenvalues
−1,−i and acts, in suitable coordinates, by

(U, V ) 7→ (−U,−iV ).

In the local ring at p, the defining equation must have the form

φ(U, V ) = 0,

where

φ(U, V ) =
∞∑
n=0

φn(U, V )

and where φn is the homogeneous part of degree n of φ. Since the point lies on
the curve, we have φ0 = 0. Since the curve is defined by an invariant, we have

φn(−U,−iV ) = φn(U, V )
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for all n. This implies at once that φ1 = 0 and φ2(U, V ) = cU2. This proves
that the points of the 42-point orbit are ordinary cusps of the curve, since we
know that the curve can’t have multiplicity greater than or equal to 3 on O42.
This completes the proof of Proposition 16.2. �

Remark 16.3. Another natural idea for getting another invariant curve of
degree 18 and genus 10 is to consider the image of the Hessian under the dual
mapping of the Klein curve, i.e. the mapping which associates to each point x
of the Hessian the polar line of x with respect to the Klein curve. This mapping
is certainly G-equivariant and the coordinates of the mapping are cubics, so one
gets a curve of degree 18. The genus is again 10 for the same reasons as before.
By Corollary 14.7, it must be one of the curves we have already mentioned. In
fact, according to [Berzolari 1903–15], this curve is the same as the dual of the
Steinerian curve. Berzolari refers to [Cremona 1861; Clebsch 1876; 1891; Kötter
1887; Voss 1887] for this beautiful result: the line joining a point x of the Hessian
to the corresponding point y of the Steinerian is tangent to the Steinerian at y!
We also note that since the cubics form the adjoint system for H, the dual
Steinerian can therefore be regarded as the projection of the canonical curve
of H in P9(C) from the unique G-invariant P6(C) onto the unique G-invariant
P2(C).

Corollary 16.4. The curve F4 is the reflex of the Caylean of the Klein curve.

Proof. By Lemma 9.7, the curve F4 does have quadruple points. The result
now follows from Proposition 16.2. �

Appendix: Matrices for Some Generators of G

We present here matrices according to which elements of each of the conjugacy
classes of G act in the three-dimensional representation of G we are considering.
The notation for representatives of conjugacy classes ofG follows that of [Conway
et al. 1985]. We do not claim that 4A2 = 2A, only that they be conjugate. One
can also find a discussion of explicit matrices for this representation in [Weil
1974, § 115; Klein and Fricke 1890–92, § III.5, pp. 703–705].

7A =

 ζ7 0 0
0 ζ4

7 0
0 0 ζ2

7

 7B = 7A−1 3A =

 0 1 0
0 0 1
1 0 0



2A = − 1√
−7

 ζ2
7 − ζ5

7 ζ4
7 − ζ3

7 ζ7 − ζ6
7

ζ4
7 − ζ3

7 ζ7 − ζ6
7 ζ2

7 − ζ5
7

ζ7 − ζ6
7 ζ2

7 − ζ5
7 ζ4

7 − ζ3
7

 4A = 7A3 · 2A
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On the Order-Seven Transformation
of Elliptic Functions
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This is a translation of Klein’s Ueber die Transformation siebenter Ordnung
der elliptischen Funktionen, first published in Mathematische Annalen 14
(1879), 428–471, and dated early November 1878. It follows the text printed
in his Gesammelte Mathematische Abhandlugen, except where typos not
present in the original had crept into formulas. I redrew all the figures (they
had already been redrawn for the Abhandlugen: see caption on page 320),
except for Figure 9 and the bottom figures on pages 315 and 316.

I have not attempted to modernize the terminology, except on a few
occasions when the use of current language allowed me to replace a long-
winded phrase by something crisper and clearer. Nor have I tried to ap-
proximate the English mathematical style of the time. The goal has been
to produce a readable translation, as close to the original ideas as possi-
ble. Bibliographic citations have been converted to the house format, the
editors of the Abhandlugen having taken similar liberties.

Brackets, if not delimiting bibliographic tags, indicate interpolated text,
written either for the Abhandlugen (unsigned, or K. = Klein, B.-H. =
Bessel-Hagen) or for this edition (L. = Levy).

I’m grateful to Jeremy J. Gray for many excellent suggestions.

In the study of the fifth-order transformation of elliptic functions we en-
counter, along with the modular equation of sixth degree and its well-known
resolvent of fifth degree, the Galois resolvent of degree 60, called the icosahedral
equation, which governs both. Starting from the icosahedral equation one sees
with great ease the rule of formation and the properties of those lower-degree
equations.

In this work I would like to further the theory of the transformation of the
seventh order up to the same point. I have already shown in [Klein 1879a] how
one can construct the modular equation of degree eight in its simplest form in
terms of this theory. The corresponding resolvent of seventh degree was consid-
ered in [Klein 1879b]. The question now is to construct the corresponding Galois
resolvent of degree 168 in a suitable way, and to derive from it those lower-degree
equations.

As is well-known, the root η of this Galois resolvent, regarded as a function of
the period ratio ω, has the characteristic property of remaining invariant under

287
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exactly those linear substitutions
αω + β

γω + δ

that are congruent to the identity modulo 7. This will be for me in the sequel
the definition of the irrationality η.

Therefore I begin (Section 1) with a short investigation of linear substitutions
modulo 7. This investigation is thoroughly elementary, but should be included
for the sake of completeness.1 From this follows (Section 2) the way in which η

is branched as a function of the absolute invariant J , and above all the fact that
the equation linking η and J , which has genus p = 3, is sent to itself under 168
one-to-one transformations having an a priori specifiable arrangement.

This leads to a remarkable curve of order four, which is sent to itself under
168 collineations of the plane (Section 3) and which, as a consequence, enjoys a
number of particularly simple properties (Sections 4 and 5). From the knowledge
of the existence of those 168 collineations one can construct with little effort the
whole system of covariants belonging to the curve (Section 6), and one obtains
the equation of degree 168 in question in a particularly clear way, by intersecting
the ground curve with a covariant pencil of curves of order 42 (still Section 6).

If one wants to descend from the equation so obtained to the modular equation
of degree eight or to the resolvent of degree seven, certain results valid for the
general curve of order four and dealing with contact curves of order three and
with certain arrangements of bitangents (Sections 7–10) are particularly relevant.
The roots of the equations under consideration thus turn out to be rational
functions of the coordinates of one point on the curve, and to me the essential
advance lies in this explicit representation achieved for the transformation of
order seven.

The next several sections (Sections 11–15) attempt to sketch as intuitive as
possible a picture of the branching of the Riemann surface defined by η as a
function of J , and which is discussed more abstractly in Section 2. The figures
that I have obtained in this way play the same important role in the understand-
ing of the questions expounded here as the shape of the icosahedron plays in the
related problem of degree five.

The most important results discussed here have already been announced in a
note submitted on May 20, 1878 to the Erlangen Society.2 There I had already
shown how one can explicitly reduce those equations of degree seven having the
same group as the modular equation to the modular equation itself.3 In this
article I do not yet go into this and other connected questions; I intend to return
to them in more detail before long. [See [Klein 1879c].]

1 Compare the more general investigations in [Serret 1866].
2 [Klein 1878b]
3 [In an earlier communication [Klein 1878a], I had only established the possibility of this

reduction by abstract arguments. –K.]
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1. Classification of the Substitutions
αω + β

γω+ δ
Modulo 7

By a substitution
αω + β

γω + δ
pure and simple I will always mean a substitution

ω′ =
αω + β

γω + δ

where the coefficients are integers and the determinant is one. Moreover, for
brevity, I will use the following expression. Two substitutions S1 and S2 are
called equivalent if there is a third substitution S such that

S1 = S−1 ·S2 ·S.

In [Klein 1879a, § 8] I distinguished three kinds of such substitutions: elliptic,
parabolic, and hyperbolic. The following propositions are straightforward:

Equivalent substitutions have the same sum α+ δ.
All elliptic substitutions of period 2 (and so satisfying α+δ = 0) are equivalent .
If elliptic substitutions of period 3 (and so satisfying α+ δ = ±1) are taken in

pairs, so that one is the second iterate of the other , all such pairs are equivalent .
Parabolic substitutions (α + δ = ±2) fall into infinitely many classes, each

contaning one representative among

ω′ = ω, ω′ = ω ± 1, ω′ = ω ± 2, . . . .

From now on we will consider substitutions
αω + β

γω + δ
only modulo 7, so we will

regard two substitutions

αω + β

γω + δ
and

α′ω + β′

γ′ω + δ′

as identical if α ≡ α′, β ≡ β′, γ ≡ γ′, δ ≡ δ′. Accordingly, we will not require
that αδ− βγ be equal to 1, but only that it be congruent to 1 modulo 7. In any
case:

Substitutions that were formerly equivalent remain equivalent when considered
modulo 7.

Now there are only finitely many substitutions, which can be easily counted:
The number of substitutions is 168.
Clearly, exactly one of these has period one, the identity ω′ = ω. We will

denote it by S1.
To obtain the substitutions of period two, we introduce their characteristic

condition, α+δ = 0. There are 21 period-2 substitutions that are distinct modulo
7; since their period cannot change by considering them modulo 7, we have:

There are 21 equivalent substitutions of period two , which we denote by S2.
An example is −1/ω.

In a similar way, applying the condition α + δ = ±1, which characterizes
elliptic substitutions of period three, we obtain:
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There are 28 equivalent pairs of substitutions S3 of period three. An example
of a pair is −2

3ω, −3
2ω.

For parabolic substitutions we had α+δ = ±2, which leads to 49 substitutions
that are distinct modulo 7. One is the identity. Each of the others is equivalent
to one of ω ± 1, ω ± 2, and ω ± 3, and so has period 7. Thus:

There are 48 substitutions S7 of period seven, divided into eight equivalent
sextuples. One sextuple would be ω + 1, ω + 2, . . ., ω + 6.

There remain 168−1−21−56−48 = 42 substitutions, for which α+ δ = ±3.
The second iterate of a substitution of this kind satisfies α′ + δ′ = 0, and so has
period two; thus the 42 substitutions have period 4. I will pair each with its
inverse. Thus:

There are 21 equivalent pairs of substitutions S4 of period four , each pair being
associated with one S2.

For example,
2ω + 2
−2ω + 2

and
2ω − 2
2ω + 2

are associated with − 1
ω

.

Connected with this classification of substitutions by their period is the con-
struction of the groups they form. First we have the groups generated by a single
element:

1. One G1, consisting of the identity only : ω′ = ω.
2. Twenty-one G2s with two substitutions each; for example ω and −1/ω.
3. Twenty-eight G3s with three substitutions each; for example ω, −2

3
ω, −3

2
ω.

4. Twenty-one G4s with four substitutions each; for example

ω,
2ω + 2
−2ω + 2

, − 1
ω
,

2ω − 2
2ω + 2

.

5. Eight G7s with seven substitutions each; for example ω, ω + 1, . . ., ω + 6.
Among these groups, any two that have the same number of elements are

equivalent. For this reason, to prove each the following results, it is enough to
exhibit one example satisfying the given description.

1. Every S2 commutes with exactly four other S2s. These four fall into two
pairs such that the elements of each pair commute with each other .

Example: The substitution −1/ω commutes with

2ω + 3
3ω − 2

,
3ω − 2
−2ω − 3

,
2ω − 3
−3ω − 2

,
3ω + 2
2ω − 3

.

The first two of these commute, as do the last two.
2. Thus there are 14 groups G′4 of four elements such that every element

different from the identity has period two.5 Examples:

ω, − 1
ω
,

2ω + 3
3ω − 2

,
3ω − 2
−2ω − 3

,

5 [Such a group is called a four-group in my later terminology, which was picked up by
other authors. –K.]
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or

ω, − 1
ω
,

2ω − 3
−3ω − 2

,
3ω + 2
2ω − 3

.

These 14 groups are not all equivalent; seven are equivalent to one of the exam-
ples just given, and seven to the other. Every G2 is contained in a G′4 from each
class.

3. Every group G3 commutes with exactly three S2s. Thus there are 28 groups
G′6 of six elements, all of them equivalent . Each S2 is contained in four G′6s.
Example:

ω, −3ω
2
, −2ω

3
, − 1

ω
,

2
3ω
,

3
2ω
.

4. The four substitutions S2s that , by item 1 above, commute with a given S2

also commute with the G4 that contains the given S2. This gives 21 equivalent
groups G′8 containing eight elements.

Example: the four substitutions listed under item 4 on page 290, together
with the four listed under item 1 on page 290.

5. Each group G7 commutes with 14 S3s. This gives eight equivalent groups
G′21 with 21 elements. Each S3 lies in two of them.

Example: ω + k, −2
3(ω + k), −3

2 (ω + k), for k = 0, 1, . . . , 6; or again the set
of all substitutions of the form

αω

γω + δ
.

6. The 2·7 groups G′4 (see item 2 above) give rise to 2·7 groups G′′24 with 24
elements, as follows. We take one G′4 and add to it:

(a) the six S4s whose second iterates are in the chosen G′4;
(b) the six S2s that commute with some S2 from the G′4, but are not themselves

in the G′4;
(c) the compositions of the six S2s just mentioned, which together make four

pairs of S3s.

Adding up, we have 4 + 6 + 6 + 4·2 = 24.

For example, take G′4 to consist of ω,− 1
ω
,
2ω+3
3ω−2

,
3ω−2
−2ω−3

. Then:

S4s that belong to − 1
ω

:
2ω+2
−2ω+2

,
2ω−2
2ω+2

.

S4s that belong to
2ω+3
3ω−2

:
ω+1
ω+2

,
−2ω+1
ω−1

.

S4s that belong to
3ω−2
−2ω−3

:
3ω−3
−3ω+1

,
ω+3

3ω+3
.

New S2s that commute with − 1
ω

:
2ω−3
−3ω−2

,
3ω+2
2ω−3

.

New S2s that commute with
2ω+3
3ω−2

:
−ω+1
−2ω+1

,
ω+2
−ω−1

.
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New S2s that commute with
3ω−2
−2ω−3

:
3ω−1
3ω−3

,
−3ω−3
ω+3

.

Pairs of S3s that arise by composition:

−3ω−1
2

,
−2ω−1

3
;

2ω
ω−3

,
3ω
ω−2

;
2

3ω+1
,
−ω+2

3ω
;
−ω+3

2ω
,
−3

2ω+1
.

We see that the 24 substitutions making up a G′′24 are related in the same
way as the 24 permutations of four elements, or as the 24 rotations that take a
regular octahedron to itself. I will make use later of both of these comparisons.
These G′′24 are obviously none other than the groups that I used in [Klein 1879b].
I wrote about these groups at that time in reference to Betti’s work, in a slightly
different form: namely, I did not stipulate that αδ − βγ ≡ 1 (mod 7), but only
that αδ − βγ be congruent to a quadratic residue modulo 7—a distiction that
has no significance in the context of fractional substitutions.

7. Finally, one can show by well-known methods that the subgroups discussed
above are the only ones to be found in the group of 168 substitutions in question.6

2. The Function η(ω) and its Branching with Respect to J

Now let η be an algebraic function of J that is branched in such a way that,
considered as a function of ω, it has the following properties:

1. It is single-valued everywhere in the positive half-plane ω.

2. It is sent to itself by exactly those substitutions
αω + β

γω + δ
that are congruent

to the identity modulo 7.

I will denote by η(ω) one of the values corresponding to a given J . To obtain
all other such values, it is enough to substitute for ω each of the 167 expressions
αω + β

γω + δ
that differ from ω modulo 7, because all the values of ω corresponding

to the given J are of this form. It follows that:
η and J are related by an equation of degree 168 in η. We can denote the 168

roots (in some arbitrary order) by

η1, η2, . . . , η168.

Now the result of making J go around a closed path in the complex plane is

to replace any of the associated ωs by
α′ω + β′

γ′ω + δ′
. Accordingly, the ηs undergo a

certain permutation, as a result of the substitution of this fractional expression

for ω in η
(
αω + β

γω + δ

)
. If, after this permutation, one of the ηi coincides with

its initial value (assuming J to be generic), the substitution
(
α′

γ′
β′

δ′

)
must be

congruent to the identity modulo 7; therefore in this case all the ηi coincide with

6 [An unsigned footnote in the Abhandlungen corrects this by mentioning the alternating
group found within each symmetric group G′′24, and refers the reader to [Gierster 1881] –L.]
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their initial values. For, if S denotes any substitution
αω + β

γω + δ
and S0 any such

substitution congruent to the identity modulo 7, the substitution S′0 such that

SS0 = S′0S

is likewise congruent to the identity modulo 7. Another way to express this is:
All roots ηi are equally branched with respect to J .7

The branch points themselves can only be at J = 0, 1,∞, according to [Klein
1879a, § 2]. When J goes aroud 0, ω undergoes an elliptic substitution of period
2; when J goes around 1, ω undergoes an elliptic substitution of period 3; and
when J goes around ∞, an appropriately chosen ω undergoes the parabolic
transformation ω′ = ω + 1. It follows that:

At J = 0 the 168 leaves of the Riemann surface that represents η are grouped
into 56 cycles of three; at J = 1 they are grouped into 84 cycles of two; and at
J =∞, into 24 cycles of seven.

The genus of the equation that relates η and J is therefore found to be three:

p = 1
2(2− 2·168 + 56·2 + 84·1 + 24·6) = 3.

Two algebraic functions of J that have the same branching behavior are re-
lated by a rational expression in J . Thus:

Any root ηi of our equation is a rational function of any other root ηk and J .
Or, in other words:
One can construct 168 rational functions R(η, J) with numerical coefficients,

such that , if η is any of the roots, the others are given by

η1 = R1(η, J), η2 = R2(η, J), . . . , η168 = R168(η, J).

Thus, corresponding to the 168 substitutions studied in Section 1, there are
168 one-to-one transformations of our Riemann surface into itself . The conse-
quences that we are about to derive rest on the fact that we know the grouping
of these substitutions from Section 1, and that these groups must have counter-
parts in terms of the one-to-one transformations of the Riemann surface that we
will now consider.

We start with the following observation. The transformations take a point
in the Riemann surface to another point directly above or below it [that is, one
lying over the same J –L.]. If we ask, then, whether there are points that are
left fixed by some transformations (or, equivalently, that are sent to less than
168 distinct images), the answer is simply the branch points: for they are the

7 [The expression “equally branched” [gleichverzweigt] here means not merely that the
branch locus of each root has the same arrangement and number of sheets as that of any other,
but also that the relationship among the sheets for any two roots is the same. More precisely:
If a point P describes on the (say) N -sheeted Riemann surface any simple closed curve, and if
any other of the N − 1 points exactly above or below P is made to move on the surface so as
to always shadow P , it too will come back to itself. –B.-H.]
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only points that belong to more than one sheet at once. Given what we said a
moment ago about the branch locus, we conclude that:

Among the orbits of points arising from the group of transformations there is
one with 24 points of multiplicity seven, corresponding to J = ∞; one with 56
triple points, corresponding to J = 0; and one with 84 double points, correspond-
ing J = 1. There are no other multiple points.

I will give special names to these points, because of their importance: they
will be called a-points, b-points, and c-points, respectively. Each a-point is fixed
by a transformation of period 7, and thus by all the transformations of a G7.
Similarly, every b-point is fixed by a G3, and every c-point by a G2. But we
know that there are only eight groups G7, twenty-eight groups G3 and twenty-
one groups G2, apart from twenty-one groups G4. We conclude:

Each G7 leaves three a-points individually fixed ; each G3 leave two b-points
fixed ; and each G2 leaves four c-points fixed .

A G4 leaves no points fixed .
Every G7 was a normal subgroup of a G′21, which apart from that contained

only substitutions of period 3. The three a-points that are left fixed by a G7

cannot be fixed by the other transformations in this G′21; otherwise there would
be only eight a-points in total, not 24. Therefore the three a-points are permuted
by these other transformations, and since their period is three, the permutation
is cyclic. Thus:

Every G′21 has an associated triple of a-points that it leaves invariant as a set .
In the same way one concludes:
Every G′6 has an associated invariant pair of b-points.
Each G′6 contains transformations of period 3, which fix the b-points individ-

ually, and transformations of period 2, which permute the points of the pair.
Several other results along the same lines can be deduced. I will only mention

one more.
Every S2 commutes with exactly four other S2s, and with exactly four G3s.

This implies that:
Under a transformation of period two, in addition to the four individually fixed

c-points, there are also four quadruples of c-points and four pairs of b-points that
are invariant as sets.

Finally, recall that a G′′24 contains four G3s. Accordingly, we get four pairs of
related b-points, and by what has been said about the G′′24, it is clear that these
four pairs of points are permuted in every possible way by the transformations of
the G′′24.

In all the statements above it is implicit that there are no more of each type
of invariant set or fully permuted set than the ones stated.
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3. The Normal Curve of Order Four

As the variable η in our equation of degree 168 we can choose any algebraic
function that is single-valued on the Riemann surface just described and takes
168 distinct values on a generic orbit of the group of transformations. We will
in any case want to select the simplest function when it comes to actually con-
structing the equation, and therefore I will first deal with the problem of finding
the normal curve of lowest order from which the equation between η and J can
be derived. This problem is settled, as we will soon see, by means of a series of
simple deductions made possible by the fact that a lot is known about algebraic
functions of genus p = 3.8

Regarding the normal curve two types of algebraic functions of genus 3 should
be distinguished: hyperelliptic and general. In the hyperelliptic case the normal
curve is a [plane] curve C5 of the fifth order with a triple point, and in the general
case it is a [plane] curve of the fourth order [with no multiple points].9

I claim, first of all, that our normal curve cannot be hyperelliptic. For our
curve must, like the equation between J and η from which it is derived, be
mapped to itself by 168 one-to-one transformations forming a group whose struc-
ture we already know. But a hyperelliptic curve has a one-parameter family of
pairs of points that is invariant under one-to-one transformations (for the curve
C5, which has a triple point, this family is given by the intersection of the curve
with rays that go through the triple point). Therefore the pencil of rays emanat-
ing from the triple point would be mapped to itself in 168 ways.10 But a pencil
of rays is a rational one-dimensional variety; therefore (by a reasoning that I
have often used before) there must exist a group of 168 linear transformations
behaving in exactly the same way as the group of transformations of the surface.
In particular, there should be no transformation of period greater than seven.
But it is well-known that such a group cannot exist.

Thus our normal curve has order four .
Now the theory of algebraic functions11 says that in general, under a one-

to-one transformation of a curve to itself, what Riemann called the ϕ functions
transform linearly. For a curve of fourth order, the ϕ functions take a given value
at (generically) four points, and the quadruples thus determined can be regarded
as the intersections of the curve with lines going through a certain point of the
plane. Thus every linear transformation of ϕ gives rise to a map of the plane

8 See [Weber 1876].
9 [See the exposition in [Clebsch and Gordan 1866, p. 65] and in [Clebsch 1876, vol. 1,

pp. 687, 712]. –K.]
10 Conceivably some S2 might interchange the two intersection points on each ray, so there

would be only 84 transformations of the pencil of rays, not 168. The reasoning given in the
text would still work, but in any case this possibility does not arise because [such an S2 would
be central and –L.] our group is simple.

11 See [Brill and Nöther 1874].
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that associates to each straight line a straight line and to each point a point—in
other words, a collineation in the usual sense. Therefore:

Our curve of order four is sent to itself by a group of 168 collineations, hav-
ing the structure we already know . In particular, there exists a group of 168
collineations of the plane none of which has period greater than seven.12

On our curve of order four, most points are grouped in orbits of 168 points
each, under the action of these collineations. But there are three smaller orbits:
one with only 24 points (which we have labeled a), one with 56 points (labeled
b), and one with 84 points (labeled c).

On the other hand, one knows that a curve of order four has distinguished
sets with 24, 56 and 84 points: there are 24 inflection points, 56 contact points
of bitangents, and 84 sextatic points. [A point is sextatic if some conic makes
contact of order six with the curve there. For instance, if a smooth curve has an
axis of symmetry — say the y-axis — its intersections with this axis are sextatic
points: writing y as a function of x the first, third and fifth derivatives vanish, and
among the conics tangent to the surface at the point and symmetric with respect
to the same axis we still have two parameters with which to control the second
and fourth derivatives. –L.] Each of these sets is characterized by a property
that does not change under collineations, and therefore each is invariant, as a
set, under our group of 168 collineations. Consequently:

The points a are the inflection points, the points b are the contact points of
the bitangents, and the points c are the sextatic points.

One might object that conceivably the inflection points could be a subset of
the contact points of bitangents or of the sextatic points, or the last two could
be a subset of one another. But this cannot happen because, from what we know
about the Riemann surface, only orbits of 24, 56, or 84 points can occur, and 56
is not divisible by 24, nor is 84 a sum of multiples of 24 and 56.

We can also give a simple geometric interpretation to the triples of points a,
to the pairs of points b, and to the quadruples of points c.

Regarding the triples, note that every inflection tangent of our curve C4 in-
tersects the curve in exactly one other point. We thus obtain 24 points, one
corresponding to each inflection, and they form an orbit. Since the only 24-
point orbit consists of the inflection points themselves, the intersection points of
the inflection tangents coincide with the inflection points, in some permutation.
This permutation cannot fix any inflection point, otherwise the order of contact
there would be four, and the inflection points would not all be distinct from one
another, nor from the contact points of the bitangents. Thus:

An inflection tangent to the curve C4 intersects the curve in another inflection
point .

12 This group is missing from the list of all finite groups of linear substitutions in three
variables [that is, subgroups of SL(3,C ) –L.] given in [Jordan 1878]. (As Jordan has pointed
out to me, the error appears on page 167 of his article, line 8 from below, where Ω need not
be divisible by 9ϕ, only by 3ϕ. (Added in proof December 1878.))
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Now there exist collineations of C4 into itself that fix a given inflection point
a. Such a collineation must also fix the inflection point associated to that a by
the process just described, and the inflection point associated to that, and so
on. But the triples of points a are characterized precisely by the property that
a transformation that fixes one point of the triple fixes all three. [See page 294
–L.] We conclude that:

The 24 inflection points of C4 fall into eight triples, corresponding to the
triples of a-points. Each triple of inflection points forms the vertices of a triangle
whose edges are the inflection tangents.

Even simpler is the meaning of the pairs of b-points. If a collineation fixes one
of the contact points of a bitangent, it must also fix the other. Therefore:

The 28 pairs of b-points correspond to the 28 pairs of contact points of the
bitangents.

Finally, to interpret the quadruples of c-points, we use the easily proved fact
that any plane collineation of period two is a perspective transformation. Thus,
corresponding to an S2, we have a perspective center and axis. There are 21
such centers and axes. Each perspective axis intersects C4 in four points, and
these are the points fixed by the corresponding perspective. Thus:

The 84 sextatic points are the intersections of C4 with 21 straight lines. The
four points on each of these lines correspond to a quadruple of c-points.

Finally, we revisit the statements given at the end of Section 2. They have
the following counterparts:

Each perspective center lies on four perspective axes; conversely , each axis
contains four centers.

Each bitangent contains three centers, while each center lies on four bitan-
gents.

The 24 collineations of a G′′24 permute in all possible ways a certain set of four
bitangents.

4. Equations for the Curve of Order Four

The results already stated are more than enough to allow us to construct,
for the curve C4, several equations for which the different types of collineations
stand out.

First, we might choose as our coordinate triangle a triangle of inflection tan-
gents. Let its sides be λ = 0, µ = 0 and ν = 0, with the side λ = 0 osculating
the curve at the intersection with µ = 0, and so on cyclically. Then the equation
of the curve must have the form

Aλ3µ +Bµ3ν +Cν3λ+ λµν(Dλ+Eµ + Fν) = 0.

Now the curve is invariant under a cyclic permutation of λ, µ, ν. Replacing
λ, µ and ν by appropriate multiples, we can arrange to have A = B = C and
D = E = F . Next, the curve is sent to itself by six collineations of period seven
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that leave each side of the triangle invariant. These collineations can be expressed
analytically in such a way that the ratios λ : µ : ν are multiplied by appropriate
seventh roots of unity. Such a substitution cannot take the term λµν(λ+µ+ ν)
to a multiple of itself, so this term cannot in fact appear. Therefore the equation
reads simply

0 = f = λ3µ+ µ3ν + ν3λ. (1)

I will always express the collineations that take f to itself in such a way that
the determinant is one. We first have the collineation of period three given by

λ′ = µ, µ′ = ν, ν ′ = λ, (2)

and then the period-seven collineation

λ′ = γλ, µ′ = γ4µ, ν ′ = γ2ν, (3)

where γ = e2πi/7. If we combine these two collineations and their iterates in
all possible ways, we obtain the G′21 that leaves invariant the chosen inflection
triangle.

To highlight the six elements of a G′6 I will choose a new coordinate triangle,
whose sides are defined by the property of being each fixed by the permutations
(2). Thus I start by setting

x1 =
λ+ µ+ ν

α− α2
, x2 =

λ + αµ+ α2ν

α− α2
, x3 =

λ+ α2µ+ αν

α− α2
, (4)

where α = e2πi/3.
The equation of the curve becomes

0 = f = 1
3

(
x4

1 + 3x2
1x2x3 − 3x2

2x
2
3 + x1((1 + 3α2)x3

2 + (1 + 3α)x3
3)
)
. (5)

To get rid of the cube roots of unity, we further set

x1 =
y1
3
√

7
, x2 = y2

3
√

3α+ 1, x3 = y3
3
√

3α2 + 1 (6)

and get

0 = f =
1

21 3
√

7

(
y4

1 + 21y2
1y2y3 − 147y2

2y
2
3 + 49y1(y3

2 + y3
3)
)
. (6a)

We immediately see that y1 = 0 is a bitangent, with contacts at y2 = 0 and
y3 = 0, and that the six substitutions of the corresponding G′6 are generated by

y′1 = y1,

y′1 = −y1,

y′2 = αy2,

y′2 = −y3,

y′3 = α2y3,

y′3 = −y2

(7)

(8)

(the first of these coincides with (2)).
The three perspective centers lying on y1 = 0 are given by

y2 + y3 = 0, y2 + αy3 = 0, y2 + α2y3 = 0,

while the corresponding perspective axes have the equations

y2 − y3 = 0, y2 − αy3 = 0, y2 − α2y3 = 0.
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In order to locate a G′′24, I will first of all find the bitangents that go through
the perspective centers just listed. Each center lies on four bitangents, but one
of them is just the line y1 = 0, so there remain nine bitangents to be found.
First we consider those that go through the center y1 = y2 + y3 = 0, and which
therefore have an equation of the form

σy1 + (y2 + y3) = 0.

To determine σ, we substitute the value of y1 from the preceding equation into
the equation of the curve, then sort by powers of y2y3/(y2 + y3)2 to obtain a
quadratic equation in this quantity, and finally set its determinant to zero. We
get

28σ3 − 21σ2 − 6σ − 1 = 0,

whose roots are σ = 1 and σ = 1
8
(−1 ± 3

√
−1/7). We conclude that the bitan-

gents that go through the point y1 = y2 + y3 = 0 have equations

y1 + y2 + y3 = 0 and (−7± 3
√
−7)y1 + 56y2 + 56y3 = 0.

The remaining six bitangents (going through the other two centers) are obtained
from these three by two applications of (7).

Now I claim that y1 = 0, together with any three of the bitangents just dis-
cussed that are sent to one another by (7), form a quadruple of bitangents whose
eight contact points lie on a conic. More generally, the six points in any orbit
of the G′6, together with the contact points of y1 = 0, lie on a conic, because
the substitutions (7) and (8) preserve the quadratic expression y2

1 + ky2y3, for
each k. The preceding claim is a particular case of this fact, because the six
contact points form an orbit of the G′6 (each given bitangent goes through the
perspective center of an S2, and so is invariant under it, its two contact points
being interchagned).

In view of this, we can write the equation of our C4 in three different ways in
the form pqrs − w2 = 0, where p, q, r, s are bitangents and w is the conic that
goes through the contact points. The first such expression is

0 =
1

21 3
√

7

(
49y1(y1+y2+y3)(y1+αy2+α2y3)(y1+α2y2+αy3)− 3(4y2

1−7y2y3)2
)
,

(9)
and the other two are

0 =
1

21 3
√

7

(
y1

7·83

(
(−7± 3

√
−7)y1 + 56y2 + 56y3)

×
(
(−7± 3

√
−7)y1 + 56αy2 + 56α2y3)

×
(
(−7± 3

√
−7)y1 + 56α2y2 + 56αy3)

−3
(1± 3

√
−7

16
y2

1 − 7y2y3

)2
)
. (10)
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Equation (9) will be important in Section 15; the other one yields, as I will
now show , the substitutions in a G′′24. Set

z1 = (21 ∓ 9
√
−7)y1,

z2 = (−7± 3
√
−7)y1 + 56y2 + 56y3,

z3 = (−7± 3
√
−7)y1 + 56αy2 + 56α2y3,

z4 = (−7± 3
√
−7)y1 + 56α2y2 + 56αy3,

(11)

so that
∑

zi = 0. Then (10) becomes, apart from a scalar factor,(∑
z2
i

)2 − (14± 6
√
−7)z1z2z3z4 = 0, (12)

and this equation is invariant under the 24 collineations determined by the per-
mutations of the zi. These, therefore, are the collineations of the G′′24 in question.

We see that the collineations of a G′′24 always leave invariant a certain conic∑
z2
i = 0,

which goes through the contact points of the corresponding bitangents. Since
there are 2·7 groups G′′24 and all bitangents have equal title, there are 2·7 such
conics, and by taking any seven together and intersecting with the curve C4 we
get all the contact points of bitangents. These conics will be very important in
the sequel.

5. The 168 Collineations in Relation to the Inflection Triangle.
Other Formulas

From (4) and (6) we obtain the following equations connecting the variables
λ, µ, ν with y1, y2, y3:

−
√
−3 3
√

7λ = y1 + 3
√

7(3α+ 1) y2 + 3
√

7(3α2 + 1)y3,

−
√
−3 3
√

7µ = y1 + α2 3
√

7(3α+ 1) y2 + α 3
√

7(3α2 + 1)y3,

−
√
−3 3
√

7 ν = y1 + α 3
√

7(3α+ 1) y2 + α2 3
√

7(3α2 + 1)y3.

(12a)

If we now apply the substitution (8), replacing y1, y2, y3 by −y1, −y2,−y3, we
get

−
√
−3 3
√

7λ′ = y1 − 3
√

7(3α2 + 1)y2 − 3
√

7(3α+ 1) y3,

−
√
−3 3
√

7µ′ = y1 − α 3
√

7(3α2 + 1)y2 − α2 3
√

7(3α+ 1) y3,

−
√
−3 3
√

7 ν ′ = y1 − α2 3
√

7(3α2 + 1)y2 − α 3
√

7(3α+ 1) y3.

Eliminating y1, y2, y3 by combining the two systems, we obviously find the change
from one triangle of inflection tangents, λµν = 0, to another , λ′µ′ν ′ = 0. The
calculation yields a very simple result if we use the well-known expressions for
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the cube roots on the right-hand sides in terms of third and seventh roots of
unity.13 Setting

A =
γ5 − γ2

√
−7

, B =
γ3 − γ4

√
−7

, C =
γ6 − γ√
−7

, (13)

√
−7 = γ + γ4 + γ2 − γ6 − γ3 − γ5,

one easily gets 
λ′ = Aλ+ Bµ +Cν,

µ′ = Bλ +Cµ+ Aν,

ν ′ = Cλ+Aµ +Bν.

(14)

If we now combine this substitution (which has period two) in all possible ways
with arbitrary iterates of the substitutions (2) and (3),

λ′ = µ,

λ′ = γλ,

µ′ = ν,

µ′ = γ4µ,

ν ′ = λ,

ν ′ = γ2ν,

we get in explicit form all the 168 collineations that preserve our curve of order
four , or rather , the ternary quartic form

f = λ3µ+ µ3ν + ν3λ.

It follows from this result that the coordinates of all the singular elements
of our curve can be deduced without further ado: one need only determine the
coordinates of one element of the desired kind and apply to them these 168
collineations. In this way it is straightforward to compute the coordinates of the
inflection points and corresponding inflection tangents. As for the bitangents, let
me remark that the bitangent y1 = 0 of the preceding section, has the equation
λ + µ + ν = 0 in terms of our inflection triangle, and that the contact points
have coordinates 1 : α : α2 and 1 : α2 : α. Finally, in order to determine the
21 perspective axes and corresponding centers, it is enough to compute these
elements for the substitution (14). We find for the perspective axis

λ′ + λ = µ′ + µ = ν ′ + ν = 0, (15)

and for the corresponding perspective center

−B − C : B : C or B : −B − A : A or C : A : −C −A,

all of which indicate the same point.
In the sequel I will mainly use the expressions in λ, µ, ν that, when set to

zero, represent the eight inflection triangles and the two times seven conics,
respectively, discussed at the end of the preceding section. I will set down these

13 3
p

7(3α+1) = (γ+γ6)+α(γ2+γ5)+α2(γ4+γ3) and likewise with α and α2 interchanged.
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equations here as they arise from one another by means of the 168 substitutions
of determinant 1.

Denote by δ∞ the inflection triangle to be used as a coordinate triangle, and
write

δ∞ = −7λµν, (16)

introducing on the right a factor that will later prove convenient. The following
formulas then arise for the remaining inflection triangles, where x = 0, 1, . . . , 6:

δx = −7(Aγxλ+Bγ4xµ+Cγ2xν)(Bγxλ+Cγ4xµ+Aγ2xν)(Cγxλ+Aγ4xµ+Bγ2xν)

= +λµν− (γ3xλ3+γ5xµ3+γ6xν3) + (γ6xλ2µ+γ3xµ2ν+γ5xν2λ)

+ 2(γ4xλ2ν+γxν2µ+γ2xµ2λ).

(17)

Next we obtain equations for two of the 14 conics, by taking the equation∑
z2 = 0 of the preceding section and expressing it first in terms of the yi and

from there in terms of λ, µ, ν:

(λ2 + µ2 + ν2) +
−1±

√
−7

2
(µν + νλ+ λµ) = 0.

Correspondingly, if we denote the left-hand side of the conics by cx, for x =
0, 1, 2, . . . , 6, we get

cx = (γ2xλ2 + γxµ2 + γ4xν2) +
−1±

√
−7

2
(γ6xµν + γ3xνλ+ γ5xλµ). (18)

It is these two expressions that will later lead to the simplest resolvents of
eighth and seventh degree.

6. Construction of the Equation of Degree 16814

As already mentioned, for the role of the variable η in the equation of degree
168 we can choose any single-valued function on our C4 — and so any rational
function of λ : µ : ν— that takes in general distinct values at the 168 points of
an orbit of the group of collineations. It seems simplest to choose λ/µ or λ/ν.
But the result gains greatly in clarity if we introduce not one such ratio but both
at once, the two being connected by the equation

f = λ3µ+ µ3ν + ν3λ = 0.

For then J can be expressed as a rational function of order 42 of λ : µ : ν,

J = R(λ, µ, ν), (19)

where R has a very simple form, and the order-42 equation (19), together with
the order-four equation f = 0, replaces the one degree-168 equation that we have

14 [Sections 6 through 10 may be compared with [Klein 1879c], which appeared a half year
after the present article (March 1879) and is closely connected with it, but unfortunately had
to be separated from it in these collected works. –K.]
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been talking about so far . A similar procedure appears always to be appropriate
when one is dealing with the construction of an equation of genus p greater than
zero.

The function R(λ, µ, ν) must first of all have the property of invariance under
the 168 collineations. Thus, to find R, I will first discuss the construction of all
functions of λ, µ, ν that have this property. Here we assume, of course, that the
168 collineations have been chosen to have determinant one. We know one such
function,

f = λ3µ+ µ3ν + ν3λ;

we also know that the covariants of f always have the same invariance property.
A short argument then shows that the covariants of f can be covered by the
desired functions, and allows us at the same time to construct the whole system
of functions with the relations that hold between the forms of the system. The
rational function R proves to be the simplest combination of dimension zero that
can be formed from the covariants. This is the same method that Gordan and I
have repeatedly used in our recent works.

The first covariant of f is the Hessian ∇ of order six:

∇ =
1
54

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂λ2

∂2f

∂λ∂µ

∂2f

∂λ∂ν

∂2f

∂µ ∂λ

∂2f

∂µ2

∂2f

∂µ ∂ν

∂2f

∂ν ∂λ

∂2f

∂ν ∂µ

∂2f

∂ν2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 5λ2µ2ν2 − (λ5ν + ν5µ + µ5λ). (20)

When set equal to zero, this expression determines the 24 inflection points
on the surface f = 0, which indeed form an orbit. Now, there was no other
orbit having 24 points on f = 0, and none having fewer. We conclude that there
can be no invariant polynomial function of order less than six, and that any
invariant polynomial function of order six must be a multiple of ∇. For if there
were another function of order six, it would be expressible in the form

k∇+ lϕf,

where k and l are constants — since when set to zero it must determine on f = 0
the same 24 inflection points. Here ϕ would be an invariant function of degree
two, and such a function, as already remarked, does not exist. In exactly the
same way we conclude that the next higher invariant polynomial function has
degree 14 and , when set to zero, it determines on f = 0 the 56 contact points of
the bitangents.

There are different ways in which a covariant of order 14 can be constructed.
As is well known, Hesse has constructed for a general curve of order four a curve
of order 14 that goes through the contact points of the bitangents. In our case
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this property holds for any covariant of order 14 that is not a multiple of f2∇,
so we can choose any of them. I choose

C =
1
9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f

∂λ2

∂2f

∂λ∂µ

∂2f

∂λ∂ν

∂∇
∂λ

∂2f

∂µ ∂λ

∂2f

∂µ2

∂2f

∂µ ∂ν

∂∇
∂µ

∂2f

∂ν ∂λ

∂2f

∂ν ∂µ

∂2f

∂ν2

∂∇
∂ν

∂∇
∂λ

∂∇
∂µ

∂∇
∂ν

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ14 + µ14 + ν14) + · · · . (21)

I also form a function of degree 21, the functional determinant of f , ∇, and C:

K =
1
14

∣∣∣∣∣∣∣∣∣∣∣∣

∂f

∂λ

∂∇
∂λ

∂C

∂λ
∂f

∂µ

∂∇
∂µ

∂C

∂µ

∂f

∂ν

∂∇
∂ν

∂C

∂ν

∣∣∣∣∣∣∣∣∣∣∣∣
= −(λ21 + µ21 + ν21) + · · · . (22)

When set equal to zero, K determines the 84 sextatic points on f = 0. Again,
one can infer that apart from K there is no invariant function of order 21; for if
there were it would be expressible in the form

kK − lϕfν ,

where k and l are constants. Here ϕ would be an invariant function of degree
21− 4ν, and so when set to zero it would intersect f = 0 in a number of points
divisible by 4 but not by 8. But the only eligible orbits have 24 or 56 elements;
this yields a contradiction.

Now recall that earlier we found the 84 sextatic points as the intersections of
f = 0 with 21 straight lines, the 21 perspective axes; see (15). Therefore:

The equation K = 0 represents the union of the 21 axes.
If one wants to determine on f = 0 a general orbit of 168 points, it is clearly

sufficient to consider the pencil of curves

∇7 = k C3,

for varying k. From this it follows first of all that under the condition f = 0 we
have, for appropriate values of k and l, a relation of the form

∇7 = kC3 + lK2; (23)

and then it follows further that f , ∇, C, and K, which are connected by this one
equation, generate the whole system of forms under consideration, and a fortiori
the whole system of covariants of f .
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To determine the constants k and l that appear in (23), I start by setting
λ = 1, µ = 0, ν = 0. Formulas (20), (21), (22) yield

∇ = 0, C = 1, K = −1, (23a)

and moreover f = 0. Thus

k = −l.

Next I take f in the form (6a),

f =
1

21 3
√

7

(
y4

1 + 21y2
1y2y3 − 147y2

2y
2
3 + 49y1(y3

2 + y3
3)
)
,

and compute some terms of ∇, C, and K, obtaining

∇= 1
27

(72y6
3 − 3·5·7y1y2y

4
3 . . .), C =

23 ·75· 3
√

7
36

y2y
13
3 . . . , K=

−23 ·77

39
y21

3 . . . .

Now put y1 = 0, y2 = 0, y3 = 1 in these equations, to obtain, besides f = 0,

∇ =
72

33
, C = 0, K = −23 ·77

39
, (23b)

so that

l =
1

26·33
, k =

−1
26·33

.

Thus the relation among ∇, C and K is

(−∇)7 =
(
C

12

)3

− 27
(
K

216

)2

. (24)

Based on this relation the function R(λ, µ, ν) = J can now be determined
immediately. J must be equal to 0 at the contact points of the bitangents, equal
to 1 at the sextatic points, and equal to ∞ at the inflection points; it should
take any other value on some 168-point orbit, and only there. Thus we have the
equation

J : J−1 : 1 =
(
C

12

)3

: 27
(
K

216

)2

: −∇7, (25)

and this equation, together with f = 0, represents the problem of degree 168
that we had set out to formulate.

If we use, instead of J , the invariants g2, g3, ∆ of elliptic integrals, we can
write

g2 =
C

12
, g3 =

K

216
,

7
√

∆ = −∇. (26)
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7. Lower-Degree Resolvents

The group of 168 collineations contains subgroups G′21 and G′24 of 21 and
24 elements. Accordingly, our problem of degree 168 has resolvents of degree
eight and of degree seven. There can be no question about what is the simplest
form of these resolvents; they must be exactly the equations of degree eight
and seven given respectively in [Klein 1879a, Equation (15)] and [Klein 1879b,
Equations (5) to (7)], and which I constructed directly starting from the ω-
substitutions. So all that is left to find out is how to pass from our current
description to the equations given in those earlier articles. As always in such
cases, this can be done in two ways.

The first approach is to seek the simplest rational function r(λ, µ, ν) that
takes the same value at all the points of any orbit of the subgroup G′21 or G′24

under consideration, and then ask how this function is related to J .
The second is to find the lowest-degree polynomial function of λ, µ, ν that

remains invariant under the substitutions in the desired subgroup, and then
determine its relationship with ∇, C, K or with ∆, g2, g3.

Each method has its advantages, and in the sequel we use the second to
complement the first.

8. The Resolvent of Degree Eight

Consider the G′21 generated by the two substitutions

λ′ = µ,

λ′ = γλ,

µ′ = ν,

µ′ = γ4µ,

ν ′ = λ,

ν ′ = γ2ν.

It leaves invariant the inflection triangle δ∞ = −7λµν of (16), and of course ∇,
so also the rational function σ = δ2

∞/∇. The latter has the property that it
takes a prescribed value at only 21 points of the curve f = 0, because the pencil
of order-six curves δ2

∞−σ∇ has three fixed points (the vertices of the coordinate
triangle) in common with f = 0, each with multiplicity one. Thus, if we use σ
as a variable, J becomes a rational function of σ, of degree eight :

J =
ϕ(σ)
ψ(σ)

. (27)

Now we determine the multiplicity of the individual factors in ϕ, ψ, and ϕ−ψ,
as I have done several times in similar problems.
J becomes infinite with multiplicity seven at the 24 inflection points. At

three of these points— the vertices of the coordinate triangle —σ vanishes with
multiplicity seven, since δ∞ has a fourfold zero and ∇ a simple zero. At the
remaining 21 inflection points σ becomes infinite with multiplicity one because
of the denominator ∇. Therefore ψ(σ) consists of a simple factor and a sevenfold
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one, the first vanishing at σ = 0 and the second at σ = ∞. Thus, apart from a
constant factor , ψ(σ) equals σ.
J vanishes with multiplicity three at the 56 contact points of the bitangents.

With respect to the group G′21 the bitangents fall into two classes, one with 7 and
one with 21 elements,15 so the contact points are divided into two orbits with
7 points each and 2 with 21 each. At points of the first kind σ takes a certain
value with multiplicity three, and at points of the second with multiplicity one.
This means that ϕ contains two simple and two threefold linear factors.

Finally, J takes the value 1 with multiplicity two at the 84 sextatic points.
With respect to G′21 these points fall into four orbits of 21, and at each point
σ takes its value with multiplicity one. Therefore ϕ − ψ is the square of an
expression of degree four of nonzero discriminant .

Now these are the same conditions on ϕ, ψ, ϕ−ψ that led me in [Klein 1879a,
Abschnitt II, § 14] to the construction of the modular equation of degree eight:

J : J−1 : 1 = (τ2+13τ+49)(τ2+5τ+1)3 : (τ4+14τ3+63τ2+70τ−7)2 : 1728τ.
(28)

We arrive at this same equation in the present case, if we denote an appropriate
multiple of σ by τ .

To determine this multiple, I now return to the y-coordinate system of (12a).
The value of 72λ2µ2ν2 is (5 − 3α) ·72/33 when y1 = 0, y2 = 0, y3 = 1, and
(5−3α2)·72/33 when y1 = 0, y2 = 1, y3 = 0. In both cases ∇ = 72/33 by (23b), so
σ has the values (5−3α) and (5−3α2), respectively. But the points (y1, y2, y3) =
(0, 0, 1) and (0, 1, 0) are the contact points of the bitangent λ + µ + ν = 0,
which is one of the seven distinguished bitangents with respect to the chosen
G′21. Accordingly, J vanishes at these points and in particular the simple factor
τ2 +13τ +49 in (28) also vanishes. Its roots equal 3α−5 and 3α2−5. Therefore
we have simply

τ = −σ,

or, put another way:
One root τ of Equation (28) has the value

τ∞ = −δ
2
∞
∇ = −72λ2µ2ν2

∇ . (29)

Then (17) implies that the remaining roots τx have the values

τx = −δ
2
x

∇ = −

(
λµν− (γ3xλ3 +γ5xµ3 +γ6xν3)+(γ6xλ2µ+γ3xµ2ν+γ5xν2λ)

+2(γ4xλ2ν+γxν2µ+γ2xµ2λ)

)2

∇ .

(30)

15 This and similar statements can be verified easily using the formulas given earlier.
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and so, as promised in the introduction, we have expressed the roots of the mod-
ular equation of degree eight as a rational function of one point on the curve
f = 0.

As mentioned in [Klein 1879a, Abschnitt II, § 18], Equation (28) can be trans-
formed as follows: write z2 instead of τ , 27g2

3/∆ instead of J − 1, and take the
square root of both sides, to obtain

z8 + 14z6 + 63z4 + 70z2 − 216g3√
∆

z − 7 = 0. (31)

We can further replace 216g3/
√

∆ with K/
√
−∇7, by (26); and replacing also z

by its value δ/
√
−∇, given by (29), (30), the result is

δ8 − 14δ6∇+ 63δ4∇2 − 70δ2∇3 − δK − 7∇4 = 0. (32)

To see that the penultimate term should appear with a negative sign one can,
for example, set (λ, µ, ν) = (1, 0, 0) and replace δ by any of the values δx.

We would have arrived at the same equation (32) if we had taken the poly-
nomial approach. For the simplest polynomial function of λ, µ, ν that is left
invariant by G′21 is δ∞ = −7λµν. Under the 168 collineations δ takes eight dis-
tinct values, whose symmetric function must be a polynomial function of ∇, C,
K (since f is taken to equal 0). Therefore δ satisfies an equation of the eighth
degree, which, in view of the degrees of ∇, C, K, must have the form

δ8 + a∇δ6 + b∇2δ4 + c∇3δ2 + dKδ + e∇4 = 0,

and if the coefficients a, b, c, d, e are determined by substituting for δ, ∇, K their
values in terms of λ, µ, ν and taking into account that f = 0, we recover (32).
This derivation has the advantage that it shows a priori why only certain powers
of δ appear in (32).

9. Contact Curves of the Third Order.
Solution of the Equation of Degree 168.

The eight roots of (32) can be expressed as follows, by virtue of (16) and (17):
δ∞ = −7λµν,

δx = λµν − γ−x(ν3 − λ2µ)

+ 2γxν2µ

− γ−4x(λ3 − µ2ν)

+ 2γ4xλ2ν

− γ−2x(µ3 − ν2λ)

+ 2γ2xµ2λ.

(33)

Now, I have already stated in [Klein 1879a, Abschnitt II, end of § 18] that
Equation (31), and therefore also (32), is a Jacobian equation of degree eight,
that is, the square roots of its roots can be written in terms of four quantities
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A0, A1, A2, A3 as follows:16
√
δ∞ =

√
−7A0,√

δx = A0 + γρxA1 + γ4ρxA2 + γ2ρxA3

(34)

(where ρ is any integer not divisible by 7). One may ask how this assertion, which
I had deduced from the transcendent solution of (31) (loc. cit.) can be verified
algebraically. This is done by considering certain contact curves or order three17

of our curve f = 0, or, in other words, by considering certain root functions of
order three that exist on the curve f = 0.

It is known that a curve of order four possesses 64 triply infinite families of
contact curves of order three, of which 36 have even and 28 odd characteristic.18

In our case one family of even characteristic is singled out by the fact that it
contains the eight inflection triangles as contact curves.

We can certainly regard an inflection triangle as a contact curve of third order,
in that its 12 intersections with our curve of order four actually coalesce into only
three points, four at a time. Now consider, say, the triangle δ∞. Through its
intersections with C4 we place the triply infinite family of curves of third order
that have contact with C4 at those points; their equation is

kλµν + aλ2µ+ bµ2ν + cν2λ = 0. (35)

Each cubic meets the C4 in another six points, and it is well-known that these
are the contact points of another contact cubic belonging to the same family as
δ∞; and in this way one obtains all the cubics in the family. Now we have the
identity

(kλµν + aλ2µ+ bµ2ν + cν2λ)2 − (a2λµ + b2µν + c2νλ)f

= λµν
(
k2λµν − (a2µ3 + b2ν3 + c2λ3) + 2(bcµν2 + caνλ2 + abλµ2)

+ ((2ak − b2)λ2µ+ (2bk − c2)µ2ν + (2ck − a2)ν2λ)
)
. (36)

Therefore the totality of the contact cubics in this family is represented by the
equation

0 = k2λµν − (a2µ3 + b2ν3 + c2λ3) + 2(bcµν2 + caνλ2 + abλµ2)

+
(
(2ak − b2)λ2µ+ (2bk− c2)µ2ν + (2ck − a2)ν2λ

)
. (37)

16Regarding the degree-eight Jacobian equation, see [Brioschi 1868] and the commentary
in [Jung and Armenante 1869], as well as a remark at the end of [Klein 1878a] not yet used
in the text [and also [Brioschi 1879]]. I hope to return to subject in detail soon. [See [Klein
1879c].] [See also the recent [Brioschi 1878/79].]

17That is, curves of order three that have six first-order contacts with f = 0. [The devel-
opments in the text follow the investigations in [Hesse 1855].]

18[See [Riemann 1861/62] and Section 15 in this article.]
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If we set

k = 1, a = γ−x, b = γ−4x, c = γ−2x,

the right-hand side becomes the expression of δx, showing that all eight inflection
triangles belong to the same family of contact cubics, as claimed.19

Now the formulas in (34) easily follow from the statement that the set of
root functions for a family of even characteristic is linearly generated by four
independent elements. Indeed, choose the four root functions correponding to
the curves (37) for which, in turn,

k = 1, a = 0, b = 0, c = 0,

k = 0, a = 1, b = 0, c = 0, etc.,

and accordingly setA1 =
√
−µ3 − ν2λ,

A0 =
√
λµν,

A2 =
√
−ν3 − λ2µ, A3 =

√
−λ3 − µ2ν.

(38)

Then, by choosing the signs appropriately and using the condition f = 0, one
obtains {

A0A1 = λ2µ, A0A2 = µ2ν, A0A3 = ν2λ,

A1A2 = λµ2, A2A3 = µν2, A2A1 = νλ2, 20
(39)

and Equation (37) can be written in the following irrational form:

kA0 + aA1 + bA2 + cA3 = 0. (40)

In particular, taking (33) into account,
√
δ∞ =

√
−7A0,√

δx = A0 + γ−xA1 + γ−4xA2 + γ−2xA3.
(41)

These are exactly the same formulas as (34), except that the formerly unspecified
integer ρ now has been set to −1.

19That the family has even characteristic follows from the irrational form of its equation,
which we are about to state.

20Consequently A0, A1, A2, A3 satisfy a series of identities, all of which can be obtained
by setting to zero the determinants of the 3× 3 minors of

0
@
A1 A0 −A2 0
A2 0 A0 −A3

A3 −A1 0 A0

1
A .
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One can use these formulas to solve our equation of degree 168 explicitly in
terms of elliptic functions.21 The roots δ of (32) are proportional to the roots z
of (31), and for the latter an expression in q = eiπω was given in [Klein 1879a,
Abschnitt II, §§ 17, 18]. Using that expression we obtain here

δ∞ : δx = −7 6
√
q7
∏

(1− q14n)2 : 6
√
γxq1/7

∏
(1− γ2nxq2n/7)2. (42)

The products on the right can be rewritten using the series development

q1/12
∏

(1− q2n) =
∞∑
−∞

(−1)nq(6n+1)2/12,

so we can write the ratios among A0, A1, A2, A3 in terms of these series; using
the equations

λ

µ
=
A0

A2
,

µ

ν
=
A0

A3
,

ν

λ
=
A0

A1
, (43)

arising from (39), we obtain the following solutions for the equation of degree
168: 

λ

µ
= q4/7

∑∞
−∞(−1)h+1q21h2+7h∑∞

−∞(−1)hq21h2+h +
∑∞
−∞(−1)hq21h2+13h+2

,

µ

ν
= q2/7

∑∞
−∞(−1)h+1q21h2+7h∑∞

−∞(−1)h+1q21h2+19h+4 +
∑∞
−∞(−1)hq21h2+37h+16

,

ν

λ
= q1/7

∑∞
−∞(−1)h+1q21h2+7h∑∞

−∞(−1)hq21h2+25h+7 +
∑∞
−∞(−1)h+1q21h2+31h+11

.

(44)

It suffices to compute this one solution, since the other 167 can be obtained from
this one by applying the collineations of Section 5.

Here I have only computed the ratios λ : µ : ν; if one wishes to start from the
formulation represented by Equation (26), one of course gets formulas for the
actual values of λ, µ, ν.

21The equation should also be solvable by means of a linear differential equation of third
order; how is the latter to be constructed? [In the Abhandlungen this is complemented by a
reference to a long footnote to [Klein 1879c], which reads in part as follows: The corresponding
differential equation for f = 0 has been constructed by Halphen in a letter that reached me
on 11 June 1884 [Halphen 1884] and later by Hurwitz [1886]. Let J be as in the text and set
ηi = yi∇8/(C2K), for i = 1,2,3; then, according to Hurwitz, the ηi are certain solutions of

J2(J−1)2 d
3η

dJ3
+(7J−4)J(J−1)

d2η

dJ2
+
�

72
7

(J2−J)−20
9

(J−1)+3
4
J
� dη
dJ

+
�

792
73 (J−1)+5

8
+ 2

63

�
=0.

–L.]
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10. The Resolvent of Degree Seven

The substitutions of a G′′24 always leave invariant a conic cx that goes through
the contact points of four bitangents. By (18) we can write

cx = (γ2xλ2 + γxµ2 + γ4xν2) +
−1∓

√
−7

2
(γ6xµν + γ3xνλ+ γ5xλµ). (45)

Now form the rational function

ξ =
c3x
∇ . (46)

Since the numerator and denominator are invariant under the substitutions in
the G′′24, and since the pencil of sixth-order curves ∇ − ξ c3x = 0 has no fixed
intersection with the curve C4, we conclude that ξ takes a given value at exactly
the points of an orbit of the G′′24. Therefore:
J is a rational function of degree seven of ξ:

J =
ϕ(ξ)
ψ(ξ)

. (47)

We now consider again the values J =∞, 0, 1.
The 24 inflection points, where J becomes infinite with multiplicity seven,

form a single orbit of the G′′24, each point appearing once. Thus ψ(ξ) is the
seventh power of a linear factor. But ξ is itself infinite at the inflection points,
because of (46). Therefore ψ(ξ) is a constant .

Of the 56 contact points of the 28 bitangents eight lie on cx = 0, so ξ vanishes
with order three at those points. The other 48 split into 2 orbits of as 24 (each
corresponding to 12 tangents). Thus ϕ contains the simple factor ξ and the cube
of a quadratic factor of nonzero discriminant .

Finally, the 84 sextatic points fall into three orbits of 12 points each and two
of 24 points each. Thus ϕ−ψ contains a simple cubic factor and the square of a
quadratic factor .

Again, these are the requirements on ϕ and ψ that led in [Klein 1879b, § 7] to
the construction of the simplest equation of degree seven, which has the following
form:

J : J−1 : 1 = z
(
z2 − 22 ·72(7∓

√
−7)z + 25 ·74(5∓

√
−7)

)3
:
(
z3 − 22·7·13(7∓

√
−7)z2 + 26 ·73(88∓ 23

√
−7)z− 28 ·33·74(35∓ 9

√
−7)

)
×
(
z2 − 24 ·7(7∓

√
−7)z + 25 ·73(5∓

√
−7)

)2
: ∓227·33 ·710

√
−7. (48)

We conclude that the variable z coincides with ξ apart from a multiplicative
factor , though it is still in question whether the upper sign in front of the

√
−7

in (45) corresponds to the upper or the lower sign in (48).
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To eliminate this ambiguity, I first transform (48) by setting z = z3 and
J = g3

2/∆, and then I take the cube root of both sides:

z7 − 22 ·72(7∓
√
−7)z4 + 25 ·74(5∓

√
−7)∓ 29·3·73

√
−7

g2
3
√

∆
= 0. (49)

Now, following (26), we substitute C/(12 3
√
−∇7) for g2/

3
√

∆ and kc/ 3
√
∇ for z,

where k is a constant to be determined; the result is

k7c7 − 22·72(7∓
√
−7)k4∇c4 + 25 ·74(5∓

√
−7)k∇2c± 27·73

√
−7C = 0. (50)

This gives

k3
∑
c3x = 3·22·72(7∓

√
−7)

(
5λ2µ2ν2 − (λ5ν + ν5µ+ µ5λ)

)
,

k7
∏
cx = ∓27·73

√
−7(λ14 + µ14 + ν14 + · · · )

(naturally under the assumption that f = 0). So the two equations are reconciled
when we choose

k = ±2
√
−7

and make the sign of k correspond to the upper sign in (49) and to the lower sign
in (45).

In other words: The roots z of (49) and z of (48) have the following values in
terms of λ, µ, ν:

z= z1/3 =
±2
√
−7
(

(γ2xλ2+γxµ2+γ4xν2) +
−1∓

√
−7

2
(γ6xµν+γ3xνλ+γ5xλµ)

)
3
√
∇

,

(51)
and so, as promised in the introduction, we have explicitly written the z’s as
rational functions of one point on our C4.

Equation (50) becomes

c7 + 7
2(−1 ∓

√
−7)∇c4 − 7

(5∓
√
−7

2

)
∇2c−C = 0.22 (52)

Naturally, the polynomial approach would have led to the same equation. Indeed,
the lowest polynomial function of λ, µ, ν that remains invariant under a G′′24 is
exactly the corresponding cx, and this cx must satisfy an equation of degree
seven, whose coefficients are polynomials in ∇, C, K, and which therefore has
the form

c7 + α∇c4 + β∇2c+ γC = 0,

where α, β, γ are to be determined by the substitution of values for λ, µ, ν.
Again, this approach has the advantage of showing a priory a great number of
terms must be absent from (52) and (49).

22[The corresponding equation for f 6= 0 is given in [Klein 1879c, (12)].]
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11. Replacement of the Riemann Surface of Section 2
by a Regularly Tiled Cover

Now I would like to explain the relationship between the irrationality λ : µ : ν
and the absolute invariant J , as well as with the roots τ and z of the eighth-
and seventh-degree equations, in as visual and intuitive a way as possible, using
topology.

First recall the figures appearing in [Klein 1879a] for the eight-degree equation
and in [Klein 1879b] for the seventh-degree equation. [They are reproduced on
the next two pages. –L.] I will start with a general explanation concerning Rie-
mann surfaces that are related to their Galois resolvent by a rational parameter
[Klein 1879a, Abschnitt III]. Let F (η, z) = 0 be such a surface of degree N ; by
definition, it has the property that each root ηi is ramified with respect to the
parameter z exactly like any other root ηk, so the surface is mapped to itself by
N one-to-one transformations (compare Section 2).23

We regard the complex values of z as laid out on the plane, and denote by z1,
z2, . . . , zn the branch points. The branching is the same for all sheets; assume
that the sheets come together ν1 at a time at z1, ν2 at a time at z2, and so
on. Now draw on the z-plane any simple closed curve that goes once through
each of z1, z2, . . . , zn — in other words, a branch cut. It divides the z-plane
and each of the N sheets of the η Riemann surface stretched over it into two
regions. We think of the first region as being shaded, the second unshaded. Then
transform the surface, which lay in sheets above the z-plane, so it now sits in
space and is smoothly curved; but maintain the shading and the connectivity of
the regions. The resulting surface is therefore divided into 2N alternately shaded
and unshaded n-gons, which meet at the various vertices in groups of 2ν1, 2ν2,
. . . , 2νn wedges, and which are, in the topological sense, alternately identical with
and the mirror image of a given polygon; the edges of the polygons are the images
of the branch cut we drew on the z-plane. The N one-to-one transformations of
the equation F (η, z) = 0 into itself are reflected in that the surface thus obtained
can be mapped one-to-one onto itself in N ways. Indeed, fix a (say) shaded
polygon of the surface and map it to any chosen shaded polygon [preserving the
numbering of the vertices –L.]; then declare that adjacent polygons should map
to adjacent polygons. This assigns to each polygon a unique image in a consistent
way, and the resulting correspondence of polygons is determined by the initial
choice of an image for the base polygon. I will call covers that are divided in this
sense into alternating regions regularly [symmetric] tiled covers; they comprise
as particular cases, when the genus p is zero, the tilings of the sphere into 24, 48,
and 120 triangles, associated with the tetrahedron, octahedron, and icosahedron.

We can state the following general theorem:
Any Galois resolvent F (η, z) = 0 admits a regularly tiled cover .

23 [See footnote 7 on page 293. –B.-H.]
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Figure 11 of [Klein 1879a].

Figure 12 of [Klein 1879a].

[The top figure shows the fundamental polygon in the ω-plane for the modular equation
of degree eight. The identification of the sides is given by Klein as follows: ω′ = ω+7
maps 1 to 16, and ω′ = ω/(ω+1) maps 6, 7, 8 to 11, 10, 9; these are parabolic transfor-
mations. Then ω′ = (2ω−7)/(ω−3) maps 15, 14 to 12, 13, and ω′ = −(2ω+7)/(ω+3)
maps 2, 3 to 5, 4; these are elliptic transformations of period 3. The quotient of the
upper half-plane by the group Γ generated by these transformations is a (punctured)
sphere, parametrized by the variable τ ; the bottom figure shows how the edges of the
fundamental polygon become identified in the τ -plane (the figure is combinatorially
but not conformally accurate). Thus on the τ -plane there are two order-three branch
points of the quotient map (at the lower end of the edges 3 = 4 and 13 = 14) and one
cusp (at the upper end of the edge 8 = 9). The Klein surface — the quotient of the
ω-plane by the group Γ(7) of substitutions congruent to the identity modulo 7 — sits
between the ω-plane and the τ -plane: it covers the τ -plane with multiplicity 21, since
Γ(7) has index 21 in Γ (the quotient Γ/Γ(7) is the G′21 of Sections 2 and 8). –L.]
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Figure 4 of [Klein 1879b].
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Figure 5 of [Klein 1879b].

Figure 6 of [Klein 1879b].

[Top: fundamental polygon in the ω-plane for the modular equation of degree seven.
Middle: identification of the sides (plus 7, 8 go to 14, 13). Bottom: the z-plane. –L.]
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And conversely: Every regularly tiled cover defines a particular Galois resol-
vent with one parameter . This is because it defines a branching of η with respect
to z having the property that each root ηi can be expressed rationally in terms
of any other root ηk and of the parameter z.24

In the particular case we are considering, there are 168 sheets and three branch
points, J = 0, 1,∞. (I will continue to write J instead of z.) At J = 0 the sheets
are grouped in threes, at J = 1 in twos, and at J = ∞ in sevens. Thus our
surface is covered by 2·168 triangles, which come together in groups at 14 at 24
vertices, in groups of 6 at 56 vertices, and in groups of 4 at 84 vertices. The
vertices of these triangles are none other than the a-points, b-points, and c-points
of Section 2, and I will maintain this notation here.

From now on we assume that the branch cut in the J-plane is taken to coin-
cide with the real axis. Then the two types of triangles that cover our surface
correspond to the two J half-planes, and the edges of the triangles correspond
to real values of J . I will (as always in the past) shade those triangles that
correspond to the upper half-plane (ImJ > 0). Thus, for shaded triangles, we
have this sequence of vertices:

a

b

c

Figure 1.

If we compare this two-triangle surface with the decomposition of the ω-plane
into infinitely many triangles from [Klein 1879a] [reproduced at the top of the
next page; the labels correspond to the values of J –L.], it is clear that our
irrationality J moves over one shaded or unshaded triangle when ω traverses a
shaded or unshaded triangle, respectively.

Now, the figure at the top of page 315 explained the relation between ω and
the root τ of the modular equation of degree eight, and the top and middle figure
of page 316 did the same for the root z of the modular equation of degree seven.
If we move these figures onto our regularly tiled surface and observe that τ and
z are rational functions of λ : µ : ν, so that to any point of our surface there
corresponds only one value of τ and one of z, we obtain the following results:

24 I think it would be a very useful enterprise to list all the regularly tiled covers of low genus
p and find out the corresponding equations F (η, z) = 0. [This problem was solved by W. Dyck
in his Inaugural Dissertation [Dyck 1879]; see also the related [Dyck 1880a]. However, there is
an error common to those works and the present article: the distinction between regular and
regular symmetric tilings of surfaces had not been yet clearly grasped, and for this reason only
the latter type was considered. This error was corrected in [Dyck 1882]; see particularly page
30 and the note therein.

In this connection I would like to stress that Dyck had already devoted a monograph to
the study of Riemann surfaces that correspond to Galois resolvents of modular equations
and achieved a general way to describe them clearly; see [Dyck 1881]. See also [Klein 1923,
pp. 166 ff.]. –K.]
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J=∞︷ ︸︸ ︷

∞ ∞ ∞ ∞ ∞

1 1 1
0 0

1 1

0 0

1 1 11

Figure 7 of [Klein 1879a].

Our regularly tiled surface can be divided into 21 domains such as the one in
Figure 2. It can also be divided into 24 heptagons such as the one in Figure 3.25

bb

b

b

b

b

b

c

c

c c

c

c

a

c

a

c b

c

b

c

b

c
b

c

b

c

b

c

b
a

Figure 2. Figure 3.

Figure 2 is divided into two symmetric halves by its mid-
dle line. One of the halves is shown on the right. We can
therefore say that our surface is covered with 42 alternately
congruent and symmetric regions of the type defined by this
figure.26 I will use this decomposition to develop a com-
pletely visual and clear picture of the surface.

b

b

b

b

c

c

c

a

c

a

Figure 4.

25The grouping into 24 heptagons is analogous to taking the 120 triangles that tile the
icosahedron and considering the groups of 10 that surround each of the 12 vertices of the
icosahedron.

26Thus every region of this type corresponds to the right τ half-plane; see the bottom figure
on page 316.
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12. Explanation of the Main Figure

The regions just mentioned arrange themselves on our regularly tiled cover in
groups of three as follows:

b

c

a

b

c

a

b
c

a

b

c

a

b
c

a
b

c

a

b

c

a

b
c

a

b

c

a

b
c

a

b

c

a

b

c
a

Figure 5.

The Main Figure of this article, shown on the next page, is constructed by
placing fourteen of these large triangles, with alternate symmetry, around the
center point. For the sake of clarity I have made each small triangle out of arcs
of circle, having angles of π/7, π/3 and π/2. I now claim that this figure is a
depiction of our regularly tiled surface, provided we think of the 14 boundary arcs
as being identified with each other in the manner stated .

In fact, our figure contains 2 ·168 small curved triangles, which exhibit the
prescribed behavior at the points where they come together. Starting from this
observation, one can look for a suitable correspondence between the boundary
arcs, and then carry out the proof that there is no other possible grouping of the
2·168 triangles.

But in order not to make these considerations too abstract, I will resort again
to the ω-plane and show on it the same collection of elementary triangles that
makes up Figure 5. This is done in Figure 6.

If we now arrange 14 copies of this figure, with alternating symmetry, side
by side on the ω-plane, we get the same configuration of triangles shown in the
Main Figure. So we must check — and this can be done at once — that this
arrangement of 336 triangles in the ω-plane can serve as a fundamental polygon
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A′
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C′

D

D

D′

2
7

1
3

3
7

19
7

18
7

8
3

10 5

14
9

4
13

8
312

7

2

11

6
1

Vertices of one type

Edge identifications:
1 with 6
3 with 8
5 with 10
7 with 12
9 with 14

11 with 2
13 with 4

1 6

9

14

3

8

11

2 5
10

13

4

7

12

Vertices of the other type

Main Figure. [Note the three “eightfold ways”, discussed in Section 14. Klein’s original
drawing can be found on page 115. The Abhandlungen version is as shown here, differing
from the original by a π/7 rotation. (All the figures were redrawn for the Abhandlungen,
for the most part with less care; but Figure 5 was improved in that originally the
triangles had straight sides and widely different angles, so although combinatorially
correct it was harder to grasp than the later version. See also footnote 31, p. 326.) –L.]
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for our irrationality; that is, all 168 shaded triangles can be obtained from one
of them by means of substitutions

αω + β

γω + δ
,

all of which are distinct modulo 7; and
likewise for all 168 unshaded triangles.
We must also determine how the edges
labeled 1, 2, . . . , 14 in the Main Fig-
ure match up. Each such edge corre-
sponds on the ω-plane to a pair of semi-
circles meeting the real axis perpendic-
ularly; for example, edge 1 corresponds
to a semicircle with endpoints ω = 2

7 ,
1
3

and one with endpoints ω = 1
3 ,

3
7 . Thus,

when I claim that edges 1 and 6 match, I
must show that the corresponding pairs
of semicircles

2
7

1
3

3
7

18
7

8
3

19
7

Figure 7.

in the ω-plane are mapped to each other
by a substitution that is congruent to
the identity modulo 7. This is indeed
the case: the substitution

ω′ =
113ω − 35
42ω − 13

maps 2
7 to 19

7 and 1
3 to 8

3 , and so maps
the semicircle that meets the real axis at
2
7 and 1

3 to the semicircle that meets the
real axis at 19

7 and 8
3 .

a
0 a a a a

2
7

1
3

3
7

1
2

b

c

c

c

b
c
b c

b c
b c

Figure 6.Similarly, the substitution

ω′ =
55ω − 21
21ω − 8

maps 1
3

to 8
3

and 3
7

to 18
7

, which shows that the second halves of the pairs
of semicircles match. I have marked the points 2

7
, 1

3
, 3

7
and 18

7
, 8

3
, 19

7
at the

corresponding places in the Main Figure. This argument shows that edges 1 and
6 are to be identified in such a way that 2

7
coincides with 19

7
and 3

7
with 18

7
.
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In a similar way27 one finds that the following pairs of edges are to be identi-
fied :

1 with 6, 3 with 8, 5 with 10, 7 with 12, 9 with 14, 11 with 2, 13 with 4,

and in each case vertices of the same type come together . What I mean by
“vertices of the same type” is made clear by the figure; the small circles below
the Main Figure illustrate how the 14 vertices come together according to their
type, forming two a points.

If one were to actually bend the polygon of the Main Figure and glue the edges
together, the result would be a very confusing figure. It is better to remain on
the plane and complement the Main Figure with the edge identifications and the
two small figures showing the incidence at the vertices. In this way one reaches
the results compiled in the next section.

13. The 28 Symmetry Lines

By a symmetry line of our covering surface I will mean a line made up of
triangle edges and not having kinks anywhere — going straight, so to speak,
through a, b, and c-points. The surface is indeed symmetric with respect to
such lines: as an example of a symmetry line we can take the vertical center
line of the Main Figure, so long as we make it into a
closed curve by adding edge 5, or, equivalently, edge 10;
these two edges are symmetrically placed with respect
to the center line, and moreover the gluing scheme for
the remaining edges is symmetric with respect to this
line.

This example also shows that such a symmetry line
must contain six points of each type a, b, c, in the se-
quence indicated in Figure 8.

a

a

a a

a

a
b

b

b b

b

b
c

c

c

c

c

c

Figure 8.Next we have, most importantly:
There are 28 symmetry lines. Together they comprise all the triangle edges,

and so they exhaust the points on the surface that correspond to real values of J .
These symmetry lines are, for many purposes, the easiest means of orienta-

tion on our surface; I will use them here to characterize the groupings of a, b,

27 [Each point k+ 1
3

, for k = 0,1, . . . , 6, lies on the edge labeled 2k+1 on the Main Figure,

and each point k′− 1
3

, for k′ = 1,2, . . . , 7, lies on the edge 2k. When is a point k+ 1
3

equivalent
to a point k′ − 1

3
under our group? The condition

k + 1
3

=
(7a+ 1)(k′ − 1

3
) + 7b

7c(k′ − 1
3

) + (7d+ 1)

yields, when considered modulo 7,

k′ − k ≡ 2
3
≡ 3 (mod 7), or 2k′ − (2k + 1) ≡ 5 (mod 7);

that is, edges 2k+ 1 and 2k + 6 are to be identified. –B.-H.]
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and c points. Then it is easy to form an idea of the corresponding one-to-one
transformations of our surface into itself.

The 7 symmetry lines that meet at an a-point also meet at the other two points
in the same triple (coming from a G′21: see page 294). An example of such a triple
is given by the center of our figure together with the two a-points coming from
the two kinds of vertices along the boundary (seven of each kind). The process
for passing from the closed regularly tiled surface to the Main Figure can be
described as follows: Choose on the surface two out of a triple of a-points and
cut along the seven pieces of symmetry lines that go from one of these a-points
to the other. Since the surface has genus p = 3, the result is simply connected
and has one boundary curve, and when stretched out on the plane, it becomes
our Main Figure of page 320.

Clearly, any two triples of a-points determine exactly one symmetry line, on
which the points of the two triples alternate.

The 3 symmetry lines that meet at a b-point also meet at the other b-point
with which it forms a pair . Examples of pairs of b-points are given in the figure
by A,A′; B,B′; C,C ′; D,D′; we will return to them later. To each such triple
of symmetry lines, and so to each pair of b-points, is associated a symmetry line,
characterized by the fact that it intersects the lines of the triple in two c-points.
This gives a one-to-one correspondence between the 28 pairs of b-points and the
28 symmetry lines.

The 2 symmetry lines that meet at a c-point meet again at another c-point .
There are two more symmetry lines that do not intersect the first two and that
meet each other at another pair of c-points. In this way one obtains the quadru-
ples of c-points.

14. Definitive Shape of Our Surface

The more regular a figure is, the more it tends to be intuitive and easy to
grasp. Thus I would like to put our regularly tiled surface into a shape that
allows as many as possible of the 168 one-to-one transformations to be realized
as rotations. Now, we know all the finite groups that can be realized by rotations:
they correspond to the regular polyhedra. There is no group of 168 rotations [in
three-dimensional space] in the sense we are talking about. On the other hand,
we have already remarked in Section 1 that the 24 substitutions in a G′′24 stand
in the same relation to one another as the rotations that take an octahedron to
itself. This suggests that it may be possible to give our surface such a shape that
it is sent to itself by the rotations of an octahedron.

For this purpose we must first find four b-points that are permuted by the
substitutions of a G′′24. This can be accomplished easily if we group the 14
triangles that meet at each a-point, making 24 heptagons that together cover
the whole surface, as discussed earlier. Then there are 2·7 ways to choose four
pairs of b-points so that all 24 heptagons have one of the chosen b-points as a
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vertex .28 The four point pairs A,A′, B,B′, C,C ′, D,D′, already mentioned,
form such a quadruple. Six more are obtained by rotating the figure around the
center in multiples of 2π/7, and the remaining seven by reflecting the first seven
in any symmetry line, say the vertical center line.

Now cut the surface (after having glued
the three zigzag paths shown in the Main
Figure as thick lines weaving around the
dashed curves. The result is a sextu-
ply connected surface with six boundary
curves [a sphere minus six disks –L.], and
this surface can be stretched symmetri-
cally onto a sphere in such a way that the
eight points A, A′, etc. coincide with the
vertices of an inscribed cube, the vertices
of the dual octahedron remain uncovered,
and the twelve midpoints of the spheri-
cal octahedron’s edges coincide with the c-
points of the surface. For greatest clarity I
have sketched a drawing showing only one
of the octants of the sphere (see Figure 9). Figure 9.

The three heptagons that meet at the center of the octant fall partly outside
the octant. But since this is true also about the heptagons that cover the neigh-
boring octants, the only part of the octant that is not covered by the surface is
the corners.

To obtain an image of the surface as a whole we must know how the boundary
curves that surround the corners of the octahedron are to be joined together.
The answer can be read off by comparing with the earlier figure, and it is very
simple: each point must be identified with the diametrically opposed point .

These identifications can be carried out without breaking the desired octa-
hedral symmetry: one just has to bring together the boundary curves through
infinity in such a way that the intersection with the plane at infinity consists of
the curves shown in the Main Figure and in Figure 9 as dashed lines. Therefore
the heptagons that spread out from the center of the octant reach out in part
beyond infinity, so that a total of twelve c-points lie on the plane at infinity.
So the surface itself goes out to infinity in much the same way as the union of
three congruent hyperboloids of rotation whose axes meet at right angles.29 [See
Figure 8 of [Gray 1982], page 127 in this volume. –L.]

28 Also, the existence of the resolvent of degree eight can easily be proved using these
heptagons: There are eight ways to choose three heptagons so that the remaining 21 heptagons
are adjacent to one of the three.

29 [Dyck prepared at the time a nice model of the surface in this form, for the Mathematics
Institute of the Technische Hochschule München. –K.]
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If one wishes to check that the 24 transformations expressible by rotations
of the octahedron fix the number of points asserted earlier, one should keep in
mind that a rotation of period two fixes not only points on the rotation axis
but also points on the line at infinity that lies perperdicular to the rotation axis.
Our surface is not intersected by the diagonals of the octahedron, but it is
intersected four times by each line at infinity perpendicular to a diagonal of
the octahedron. The diameters going through the midpoints of the edges of the
octahedron intersect the surface twice, as do the lines at infinity perpendicular to
these diameters. Finally, the diagonals of the cube have exactly two intersections
with the surface. Therefore a rotation of period four fixes no points, one of period
two fixes four points, and one of period three fixes two points. This is all as it
should be.

15. The Real Points of the Curve of Order Four

I would like to conclude by showing how these relative positions stand out
when we consider the real points of the order-four curve

λ3µ+ µ3ν + ν3λ = 0.

The coordinate triangle may be taken to be equilateral, the coordinates being
proportional to the distance to the sides. Then the bitangent λ+µ+ν = 0 is the
line at infinity; its contact points 1 :α :α2 and 1 :α2 :α are the two cyclic points.
The line at infinity is therefore an isolated bitangent. The six collineations of
the corresponding G′6 are the only real ones among the 168; they consist of the
three rotations through 120 degrees about the center of the coordinate triangle
and of the reflections in three lines going through this same center. These lines
are the only three real perspective axes; the related perspective centers lie at
infinity, orthogonally to the lines. From the inflection triangle λµν = 0, the
three reflections give rise to a second real inflection triangle λ′µ′ν ′ = 0.

We now consider form (9) of the curve’s equation:

49y1(y1 + y2 + y3)(y1 + αy2 + α2y3)(y1 + α2y2 + αy3) − 3(4y2
1 − 7y2y3)2 = 0.

We replace y1 by 1 (since y1 = 0 is the line at infinity), and replace y2, y3 by
x + iy, x − iy, since the corresponding axes go through the cyclic points. We
obtain

49(2x+ 1)(−x +
√

3 y + 1)(−x−
√

3 y + 1)− 3(4− 7(x2 + y2))2 = 0.

The bitangents

2x+ 1 = 0, −x+
√

3 y + 1, −x−
√

3 y + 1 = 0

again form an equilateral triangle, of altitude 3
2

and side length
√

3. Its intersec-
tion with the circle of radius 2/

√
7 around the center consists of contact points of

bitangents, so we have three nonisolated bitangents. One can check that all other
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νν′

µ

µ′λ

λ′

Figure 10.

bitangents are imaginary. Thus our curve has one branch30 and is inscribed in
the triangle of nonisolated bitangents. The accompanying diagram31 (Figure 10)
shows, in addition to the bitangents in question, the circle through the contact
points, the three real perspective axes, and the two real inflection triangles.

The real curve so obtained has a very simple interpretation in terms of the
Riemann surface: it represents one of the 28 symmetry lines. Indeed, real values
of λ, µ, ν yield real values of J , and the symmetry lines are characterized by J
real.

30 See [Zeuthen 1874].
31 [The schematic illustration in the original was replaced in the reprint by a figure precisely

computed by Haskell, which appears in his Göttingen dissertation [Haskell 1891]. In this work,
done at my instigation, Haskell applies the ideas developed in [Klein 1874; 1876] to the curve
λ3µ+ µ3ν + ν3λ = 0 and clarifies the results with illustrations. –K.]
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This symmetry line is clearly associated with the isolated bitangent at infinity
and so, like the bitangent, it is sent to itself by the substitutions of a G′6. It
contains six each of the a, b, and c-points, and it can be seen in Figure 10 that
these points follow one another in the sequence expected for a symmetry line
(Figure 8).

Munich, early November 1878.

[Additional Remarks Concerning Some of the Literature]

[The mathematical literature concerning the fourth-order curve λ3µ + µ3ν +
ν3λ and the thus defined algebraic structure having 168 one-to-one transfor-
mations has multiplied since the publication of this article, particularly in its
geometric aspects. It is not possible to cover it in detail here, but I will at least
mention some highlights.

In what concerns the algebraic side of the question, we refer to Gordan’s
extensive investigations, discussed in [Klein 1922, pp. 426 ff.]. Here I will add a
discussion of the role played by n-th roots of unit, which come up in the articles
reprinted in the first half of [Klein 1923] and also in [Klein 1922]. When one
considers Galois problems, these are “natural” irrationalities: for example, the
fifth root of unity can be represented, by virtue of the icosahedral substitutions,
as a quotient of appropriately chosen roots of the icosahedral equation. The
same is true of the partition equations of elliptic functions, as a consequence of
the so-called “Abel relations”. See [Klein 1885, footnote 37]. For the modular
equations of the functions J(ω), however, the n-th roots of unity are no longer
“natural”, but the Gaussian sum

√
(−1)(n−2)/2n formed from them is. See,

for example, [Fricke 1922, p. 462]. This is also true of the special resolvents
of fifth, seventh, and eleventh degree, treated in [Klein 1879b; 1879d]. (Cf. for
instance [Fricke 1922, p. 482].) These results are important in order to determine
in individual cases not only the monodromy group,32 to which the exposition in
the text has limited itself, but also the Galois group, taking as a basis the domain
of rationality of the rational numbers.

Another line of research concerns the three globally finite integrals of our
fourth-order curve. It seems particularly remarkable that their periods can be
explicitly given. Poincaré [1883] and Hurwitz [1886, p. 123] find, for an appro-
priate choice of crosscuts, the period matrix

1 0 0 τ τ − 1 −τ
0 1 0 τ − 1 −τ τ

1 0 0 −τ τ τ − 1

32 [The concept of monodromy group was introduced by Hermite in [Hermite 1851]. The
name appears for the first time, so far as I know, in [Jordan 1870, p. 278]. –K.]
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where τ denotes the quadratic irrational number 1
4(1 + i

√
7). This implies, in

particular, that our Riemann surface has a multiple cover by an elliptic surface of
singular modulus ω = 1

2(−1+i
√

7) = (τ−1)/τ , and therefore having the rational
invariant J(ω) = −53/26. Moreover Hurwitz [1885] has studied the integral of
first type as a function of ω and in the coefficients of its power series development
in q2 = e2πiω he found those number-theoretic functions that Gierster ran into in
the construction of class number relations of rank seven. See [Klein 1923, p. 5].
More details on the subject can be found in the “Modular functions”.

Perhaps our curve achieves the greatest prominence in that the Main Figure
on page 320, when placed inside a disk whose boundary is orthogonal to its arcs,
provides the first concrete example of uniformization of an algebraic curve of
higher genus. For this reason it became for me the best prop in building the
general uniformization results in [Klein 1882a; 1882b; 1883].

The considerations in the text find an immediate continuation in a note by
Dyck [1880b] about the normal curve λ4 + µ4 + ν4 pertaining to the main con-
gruence group of rank eight and admitting 96 one-to-one transformations onto
itself, and particularly in Fricke’s investigations about the ternary Valentiner–
Wiman group and the transformation theory of triangle functions for a triangle
with angles π/5, π/2, π/4. (Published as an appendix in [Fricke and Klein 1912].
See also [Klein 1922, pp. 501–502].) –K.]
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