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"I" This paper was written in 1958-59 at King's College, Cambridge. It was first

read in Karl Popper's seminar in London in March 1959. The paper was then
mimeographed and widely circulated. An improved version has been included in
the author's Cambridge Ph.D. thesis prepared under Professor R. B. Braithwaite's
supervision (Essays in the Logic of Mathematical Discovery, 1061). The author also
received much help, encouragement and valuable criticism from Dr T. J. Smiley.
The thesis would not have been written but for the generous help of the Rockefeller
Foundation.

When preparing this latest version at the London School of Economics the author
tried to take note especially of the criticisms and suggestions of Dr J. Agassi, Dr L
Hacking, Professors W. C. Kneale and R. Montague, A. Musgrave, Professor M.
Polinyi and J. W. N. Watkins. The treatment of the exception-barring method was
improved under the stimulus of the critical remarks of Professors G. P6lya and B. L.
van dcr Waerden. The distinction between die methods of monster-barring and
monster-adjustment was suggested by B. MacLennan.

The paper should be seen against the background of P6lya's revival of mathema-
tical heuristic, and of Popper's critical philosophy.
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I. LAKATOS
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Introduction

IT frequently happens in the history of thought that when a powerful
new method emerges the study of those problems which can be dealt
with by the new method advances rapidly and attracts the limelight,
while the rest tends to be ignored or even forgotten, its study despised.

This situation seems to have arisen in our century in the Philosophy
of Mathematics as a result of the dynamic development of meta-
mathematics.

The subject matter of metamathematics is an abstraction of mathe-
matics in which mathematical theories are replaced by formal systems,
proofs by certain sequences of well-formed formulae, definitions by
' abbreviatory devices ' which are ' theoretically dispensable' but
' typographically convenient '.* This abstraction was devised by
Hilbert to provide a powerful technique for approaching some of the
problems of the methodology of mathematics. At the same time there
are problems which fall outside the range of metamathematical
abstractions. Among these are all problems relating to informal
(inhaltliche) mathematics and to its growth, and all problems relating to
the situational logic of mathematical problem-solving.

I shall refer to the school of mathematical philosophy which tends to
identify mathematics with its metamathematical abstraction (and the
philosophy of mathematics with metamathematics) as the ' formalist'
school. One of the clearest statements of the formalist position is to
be found in Carnap [1937].8 Carnap demands that (a) ' philosophy is
to be replaced by the logic of science . . . ' , (b) ' the logic of science is
nothing other than the logical syntax of the language of science . . . \

1 Church [1956] I, pp. 76-77. Also c£ Pcano [1894], p. 49 and Whitehead-Russell
[1910-13], I, p. 12. This is an integral part of the Euclidean programme as formulated
by Pascal [1657-58]: cf. Lakatos [1962], p. 158.

%

2 For full details of this and similar references see the list of works at the end of Part
of this article. '
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PROOFS A N D REFUTATIONS (I)

(c) ' metamathematics is the syntax of mathematical language ' (pp. xiii
and 9). Or: philosophy of mathematics is to be replaced by meta-
mathematics.

Formalism disconnects the history of mathematics from the philo-
sophy of mathematics, since, according to the formalist concept of
mathematics, there is no history of mathematics proper. Any formalist
would basically agree with Russell's ' romantically ' put but seriously
meant remark, according to which Boole's Laws of Thought (1854) was
' the first book ever written on mathematics'.1 Formalism denies the
status of mathematics to most of what has been commonly understood
to be mathematics, and can say nothing about its growth. None of
the ' creative' periods and hardly any of the ' critical' periods of
mathematical theories would be admitted into the formalist heaven,
where mathematical theories dwell like the seraphim, purged of all the
impurities of earthly uncertainty. Formalists, though, usually leave
open a small back door for fallen angels: if it turns out that for some
' mixtures of mathematics and something else' we can find formal
systems ' which include them in a certain sense ', then they too may be
admitted (Curry [1951], pp. 56-57). On those terms Newton had to
wait four centuries until Peano, Russell, and Quine helped him into
heaven by formalising the Calculus. Dirac is more fortunate:
Schwartz saved his soul during his lifetime. Perhaps we should
mention here the paradoxical plight of the metamathematician: by
formalist, or even by deductivist, standards, he is not an honest
mathematician. Dieudonne" talks about' the absolute necessity imposed
on any mathematician who cares for intellectual integrity ' [my italics] to
present his reasonings in axiomatic form ([1939], p- 225).

Under the present dominance of formalism, one is tempted to
paraphrase Kant: the history of mathematics, lacking the guidance of
philosophy, has become blind, while the philosophy of mathematics,
turning its back on the most intriguing phenomena in the history of
mathematics, has become empty.

' Formalism' is a bulwark of logical positivist philosophy. Accord-
ing to logical positivism, a statement is meaningful only if it is
' tautological' or empirical. Since informal mathematics is neither

1 B . Russell [1901]. The essay was republished as Chapter V of Russell's [1918],
under the title ' Mathematics and the Metaphysicians '. In the 1953 Penguin Edition
the quotation can be found on p. 74. In the preface of [1918] Russell says of the essay:
' Its tone is partly explained by the fact that the editor begged me to make the article
" as romantic as possible ".'
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I. LAKATOS

' tautological' nor empirical, it must be meaningless, sheer nonsense.1

The dogmas of logical positivism have been detrimental to the history
and philosophy of mathematics.

The purpose of these essays is to approach some problems of the
methodology of mathematics. I use the word ' methodology ' in a sense
akin to P6lya's and Bernays' ' heuristic '2 and Popper's ' logic of
discovery ' or ' siruational logic \ 8 The recent expropriation of the
term ' methodology of mathematics' to serve as a synonym for
' meta mathematics' has undoubtedly a formalist touch. It indicates
that in formalist philosophy of mathematics there is no proper place
for methodology qua logic of discovery.4 According to formalists,

1 According to Turquette, Godelian sentences are meaningless ([1950], p. 129).
Turquette argues against Copi who claims that since they are a priori truths but not
analytic, they refute the analytic theory of a priori ([1949] and [1950]). Neither of
them notices that the peculiar status of Godelian sentences from this point of view is
that these theorems are theorems of informal mathematics, and that in fact they
discuss the status of informal mathematics in a particular case. Neither do they notice
that theorems of informal mathematics are surely guesses, which one can hardly
classify dogmatist-wise as ' a priori ' and ' a posteriori' guesses.

* P6fya [1945], especially p. 102, and also [1954], [1962a]; Bemays [1947], csp.
p. 187

* Popper [1934], then [1945], especially p. 90 (or the fourth edition (1962) p. 97);
and also [1957], pp. 147 ft

4 One can illustrate this, e.g. by TarskL [1930a] and Tarski [19306]. In the first
paper Tarski uses the term' deductive sciences ' explicitly as a shorthand for ' formalised
deductive sciences '. He says: ' Formalised deductive disciplines form the field of
research of metamathematics roughly in the same sense in which spatial entities
form the field of research in geometry.' This sensible formulation is given an
intriguing imperialist twist in the second paper: ' The deductive disciplines constitute
the subject-matter of the methodology of the deductive sciences in much the same
sense in which spatial entities constitute the subject-matter of geometry and animals
that of zoology. Naturally not all deductive disciplines are presented in a form
suitable for objects of scientific investigation. Those, for example, are not suitable
which do not rest on a definite logical basis, have no precise rules of inference, and the
theorems of which are formulated in the usually ambiguous and inexact terms of
colloquial language—in a word those which are not formalised. Metamathematical
investigations are confined in consequence to the discussion of formalised deductive
disciplines.' The innovation is that while the first formulation stated that the
subject-matter of metamathematics is the formalised deductive disciplines, the second
formulation states that the subject-matter of metamathematics is confined to formalised
deductive disciplines only because non-formalised deductive sciences are not suitable
objects for scientific investigation at alL This implies that the pre-history of a forma-
lised discipline cannot be the subject-matter of a_saentific investigation—unlike the
pre-history of a zoological species, which can be the subject-matter of a very srirnrifir
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PROOFS AND REFUTATIONS (I)

mathematics is identical with formalised mathematics. But what can
one discover in a formalised theory? Two sorts of things. First, one
can discover the solution to problems which a suitably programmed
Turing machine could solve in a finite time (such as: is a certain
alleged proof a proof or not?). No mathematician is interested in
following out the dreary mechanical ' method' prescribed by such
decision procedures. Secondly, one can discover the solutions to
problems (such as: is a certain formula in a non-decidable theory a
theorem or not?), where one can be guided only by the ' method ' of
' unregimented insight and good fortune '.

Now this bleak alternative between the rationalism of a machine
and the irrationalism of blind guessing does not hold for live mathe-
matics:1 an investigation of informal mathematics will yield a rich
situational logic for working mathematicians, a situational logic which
is neither mechanical nor irrational, but which cannot be recognised
and still less, stimulated, by the formalist philosophy.

The history of mathematics and the logic of mathematical discovery,

theory of evolution. Nobody will doubt that some problems about a mathematical
theory can only be approached after it has been formalised, just as some problems
about human beings (say concerning their anatomy) can only be approached after
their death. But few will infer from this that human beings are ' suitable for scientific
investigation ' only when they are ' presented in " dead " form', and that biological
investigations are confined in consequence to the discussion of dead human beings—
although, I should not be surprised if some enthusiastic pupil of Vesalius in those
glorious days of early anatomy, when the powerful new method of dissection emerged,
had identified biology with the analysis of dead bodies.

In the preface of his [1941] Tarski enlarges on his negative attitude towards the
possibility of any sort of methodology other than formal systems: ' A course in the
methodology of empirical sciences . . . must be largely confined to evaluations and
criticisms of tentative gropings and unsuccessful efforts.' The reason is that empirical
sciences are unscientific: for Tarski defines a scientific theory ' as a system of asserted
statements arranged according to certain rules' (Ibid.).

1 One of the most dangerous vagaries of formalist philosophy is the habit of (1)
stating something—rightly—about formal systems; (2) then saying that this applies
to ' mathematics '—this is again right if we accept the identification of mathematics
and formal systems; (3) subsequently, with a surreptitious shift in meaning, using the
term ' mathematics' in the ordinary sense. So Quine says ([1951], p. 87), that ' this
reflects the characteristic mathematical situation: the mathematician hits upon his
proof by unregimented insight and good fortune, but afterwards other mathrma-
ticians can check his proof. But often the rtirrlring of an ordinary proof is a very
delicate enterprise, and to hit on a ' mistake ' requires as much insight and luck as to
hit on a jjioof: the discovery of' mistakes' in informal proofs may sometimes take
decades—if not centuries.

 at U
niversity of A

rizona on M
ay 31, 2015

http://bjps.oxfordjournals.org/
D

ow
nloaded from

 

http://bjps.oxfordjournals.org/


I. LAKATOS

i.e. .the phylogenesis and the ontogenesis of mathematical thought,1

cannot be developed without the criticism and ultimate rejection, of
formalism.

But formalist philosophy of mathematics has very deep roots. It is
the latest link in the long chain of dogmatist philosophies of mathe-
matics. For more than two thousand years there has been an argu-
ment between dogmatists and sceptics. The dogmatists hold that—by
the power of our human intellect and/or senses—we can attain truth
and know that we have attained it. The sceptics on the other hand
either hold that we cannot attain the truth at all (unless with the help
of mystical experience), or that we cannot know if we can attain it or
that we have attained it. In this great debate, in which arguments are
time and again brought up-to-date, mathematics has been the proud
fortress of dogmatism. Whenever the mathematical dogmatism of
the day got into a 'crisis ', a new version once again provided genuine
rigour and ultimate foundations, thereby restoring the image of
authoritative, infallible, irrefutable mathematics, ' the only Science
that it has pleased God hitherto to bestow on mankind ' (Hobbes [1651],
p. 15). Most sceptics resigned themselves to the impregnability of this
stronghold of dogmatist epistemology.2 A challenge is now overdue.

The core of this case-study will challenge mathematical formalism,
but will not challenge directly the ultimate positions of mathematical
dogmatism. Its modest aim is to elaborate the point that informal,
quasi-empirical, mathematics does not grow through a monotonous
increase of the number of indubitably established theorems but through
the incessant improvement of guesses by speculation and criticism, by
the logic of proofs and refutations. Since however metamathematics
is a paradigm of informal, quasi-empirical mathematics just now in
rapid growth, the essay, by implication, will also challenge modern
mathematical dogmatism. The student of recent history of meta-
mathematics will recognise the patterns described here in his own field.

1 Both H. Porncare1 and G. P6lya propose to apply E. Haeckel's ' fundamental
biogenetic law ' about ontogeny recapitulating phylogeny to mental development, in
particular to mathematical mental development. (Poincard [1908], p. 135, and
P6lya [19626].) To quote Poincari: 'Zoologists maintain that the embryonic
development of an animal recapitulates in brief the whole!, history of its ancestors
throughout geologic time. It seems it is the same in the development of minds. . . .
For this reason, the history of science should be our first guide' (C. B. Halsted's
authorised translation, p. +37).

2 For a discussion of the r61c of mathematics in the dogmatist-sceptic controversy,
cf. my [1962].

6
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PROOFS AND REFUTATIONS (I) '>/<S\ f)

The dialogue form should reflect the dialectic of the story ;Jt^ . A—'
meant to contain a sort of rationally reconstructed or ' distilled' ft^V. ^tW k*-T#\
The real history will chime in in the footnotes, most of which are to be taken,
therefore, as an organic part of the essay.

i A Problem and a Conjecture

The dialogue takes place in an imaginary classroom. ' The class gets
interested in a PROBLEM: is there a relation between the number of
vertices V, the number of edges E and the number offices F of poly-
hedra—particularly of regular polyhedra—analogous to the trivial
relation between the number of vertices and edges ofpolygons, namely,
that there are as many edges as vertices: V=E? This latter relation
enables us to classify polygons according to the number of edges (or
vertices): triangles, quadrangles, pentagons, etc. An analogous
relation would help to classify polyhedra.

After much trial and error they notice that for all regular polyhedra
V— E-\- F = 2.1 Somebody guesses that this may apply for any

1 First noticed by Euler [1750]. His original problem was the classification of
polyhedra, the difficulty of which was pointed out in the editorial summary: ' While
in plane geometry polygons [figurae rectilineae) could be classified very easily accord-
ing to the number of their sides, which of course is always equal to the number
of their angles, in stereometry the classification of polyhedra (corpora hedris plants
inchsa) represents a much more difficult problem, since the number of faces
alone is insufficient for this purpose.' The key to Euler's result was just the
invention of the concepts of vertex and edge: it was he who first pointed out that
besides the number of faces the number of points and lines on the surface of the
polyhedron determines its (topological) character. It is interesting that on the one
hand he was eager to stress the novelty of his conceptual framework, and that he had
to invent the term ' acies' (edge) instead of the old ' lotus' (side), since latus was a
polygonal concept while he wanted a polyhedral one, on the other hand he still
retained the term ' angulus solidus' (solid angle) for his point-like vertices. It has
been recently generally accepted that the priority of the result goes to Descartes. The
ground for this claim is a manuscript of Descartes [ca. 1639] copied by Leibniz in
Paris from the original in 1675-6, and rediscovered and published by Foucher de
Carcil in i860. The priority should not be granted to Descartes without a minor
qualification. It is true that Descartes states that the number of plane angles equals
2<f> + 2a — 4 where by <f> he means the number of faces and by a the number of solid
angles. It is also true that he states that there are twice as many plane angles as edges
(latera). The trivial conjunction of these two statements of course yields the Euler
formula. But Descartes did not see the point of doing so, since he still thought in
terms of angles (plane and solid) and faces, and did not make a conscious revolutionary
change to the concepts of o-dimensional vertices, i-dimensional edges and 2-dimen-
sional faces as a necessary and sufficient basis for the full topological characterisation of
polyhedra.

7
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I. LAKATOS

whatsoever. Others try to falsify this conjecture,
^ it in many different ways—it holds good. The results
corroborate the conjecture, and suggest that it could be proved. It is
at this point—after the stages problem and conjecture—that we enter
the classroom.1 The teacher is just going to offer a proof.

2. A Proof

TEACHER : In our last lesson we arrived at a conjecture concerning
polyhedra, namely, that for all polyhedra V— E-\- F= 2, where V is
the number of vertices, E the number of edges and F the number of
faces. We tested it by various methods. But we haven't yet proved
it. Has anybody found a proof?

PUPIL SIGMA: ' I for one have to admit that I have not yet been
able to devise a strict proof of this theorem. . . . As however the
truth of it has been established in so many cases, there can be no doubt
that it holds good for any solid. Thus the proposition seems to be
satisfactorily demonstrated.'2 But if you have a proof, please do
present it.

TEACHER : In fact I have one. It consists of the following thought-
experiment. Step 1: Let us imagine the polyhedron to be hollow, with
a surface made of thin rubber. If we cut out one of the faces, we can
stretch the remaining surface flat on the blackboard, without tearing it.
The faces and edges will be deformed, the edges may become curved,
but V, E and F will not alter, so that if and only if V—E-\- F= 2 for
the original polyhedron, then V— E-\- F = 1 for this flat network—
remember that we have removed one face. (Fig. 1 shows the flat
network for the case of a cube.) Step 2: Now we triangulate our map
—it does indeed look like a geographical map. We draw (possibly
curvilinear) diagonals in those (possibly curvihnear) polygons which

1 Euler tested the conjecture quite thoroughly for consequences. He checked it
for prisms, pyramids and so on. He could have added that the proposition that
there are only five regular bodies is also a consequence of the conjecture. Another
suspected consequence is the hitherto corroborated proposition that four colours are
sufficient to colour a map.

The phase of conjecturing and testing in the case of V— E-\- F = 2 is discussed in
P6rya ([1954], VoL I, the first five sections of the third chapter, pp. 35-41). P6lya
stopped here, and does not deal with the phase of proving—though of course he points
out the need for a heuristic of' problems to prove ' ([1945]. p. 144). Our discussion
starts where P6lya stops.

1 Euler ([1750], p. 119 and p. 124). But later [1751] he proposed a proof.

8
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PROOFS AND REFUTATIONS (I)

are not already (possibly curvilinear) triangles. By drawing each
diagonal we increase both E and F by one, so that the total V—±E-\- F
will not be altered (Fig. 2). Step 3: From the triangulated network
we now remove the triangles one by one. To remove a triangle we
either remove an edge—upon which one face and one edge disappear
(Fig. 3 a), or we remove two edges and a vertex—upon which one face,
two edges and one vertex disappear (Fig. 36). Thus if V— E-\- F = 1

FIG. 1 FIG. 2

FIG. 3 a FIG. 36

before a triangle is removed, it remains so after the triangle is removed.
At the end of this procedure we get a single triangle. For this
V— E-f- F — 1 holds true. Thus we have proved our conjecture.1

PUPIL DELTA: YOU should now call it a theorem. There is nothing
conjectural about it any more.2

PUPIL ALPHA: I wonder. I see that this experiment can be per-
formed for a cube or for a tetrahedron, but how am I to know that it
can be performed for any polyhedron? For instance, are you sure,
Sir, that any polyhedron, after having a face removed, can be stretched fiat on
the blackboard? I am dubious about your first step.

1 This proof-idea stems from Cauchy [1811].
8 Delta's view that this proof has established the ' theorem ' beyond doubt was

shared by many mathematicians in the nineteenth century, e.g. Crelle [1826-27], D,
pp. 668-671, Matthiessen [1863], p. 449, Jonquieres [1890a] and [1890*]. To quote a
characteristic passage: ' After Cauchy's proof, it became absolutely indubitable that
the elegant relation V-\- F= £ + 2 applies to all sorts of poh/hedra, just as Euler
stated in 1752. In 1811 all indecision should have disappeared.' Jonquieres [18900],
pp. 111-112.
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I. LAKATOS

PUPIL BETA: Are you sure that in triangulating the map one will

always get a new face for any new edge} I am dubious about your

second step.

PUPIL GAMMA: Are you sure that there are only two alternatives—

the disappearance of one edge or else of two edges and a vertex—when one

drops the triangles one by one? Are you even sure that one is left with

a single triangle at the end of this process? I am dubious about your

third step.1

TEACHER: Of course I am not sure.

ALPHA: But then we are worse off than before! Instead of one

conjecture we now have at least three! And this you call a ' proof'!

TEACHER: I admit that the traditional name ' proof for this

thought-experiment may rightly be considered a bit misleading. I

do not think that it establishes the truth of the conjecture.

DELTA: What does it do then? What do you think a mathematical

proof proves?

TEACHER: This is a subde question which we shall try to answer

later. Till then I propose to retain the time-honoured technical term

' p r o o f for a thought-experiment—or' quasi-experiment'—which suggests

a decomposition of the original conjecture into subconjedures or lemmas, thus

embedding it in a possibly quite distant body of knowledge. Our

' proof, for instance, has embedded the original conjecture—about

crystals, or, say, solids—in the theory of rubber sheets. Descartes or

Euler, die fathers of the original conjecture, certainly did not even

dream of this.2

1 The class is a rather advanced one. To Cauchy, Poinsot, and to many other
excellent mathematicians of the nineteenth century these questions did not occur.

2 Thought-experiment (deiknymi) was the most ancient pattern of mathematical
proof It prevailed in pre-Euclidean Greek mathematics (c£ A. Szab6 [1958]).

That conjectures (or theorems) precede proofs in the heuristic order was a
commonplace for ancient mathematicians. This followed from the heuristic pre-
cedence of ' analysis' over ' synthesis '. (For an excellent discussion set Robinson
[1936].) According to P r o c l o s , ' . . . it is . . . necessary to know beforehand what
is sought' (Heath [1925], L, p. 129). ' They said that a theorem is that which is
proposed with a view to the demonstration of the very thing proposed'—says
Pappus (ibid. L, p. 10). The Greeks did not think much of propositions which they
happened to hit upon in the deductive direction without having previously guessed
them. They called them porisms, corollaries, incidental results springing from the
proof of a theorem or the solution of a problem, results not directly sought but
appearing, as it were, by chance, without any additional labour, and constituting, as
Proclus says, a sort of windfall (ermaion) or bonus (kerdos) (ibid. I, p. 278). We read
in the editorial summary to Euler [1753] that arithmetical theorems ' were discovered

10
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PROOFS AND REFUTATIONS (I)

3. Criticism of the Proof by Counterexamples which are Local but not (Mqbal

TEACHER: This decomposition of the conjecture Suggested by
the proof opens new vistas for testing. The decomposition deploys
the conjecture on a wider front, so that our criticism has more targets.
We now have at least three opportunities for counterexamples instead
of one!

GAMMA : I already expressed my dislike of your third lemma (viz.
that in removing triangles from the network which resulted from the
stretching and subsequent triangulation, we have only two possi-
bilities: either we remove an edge or we remove two edges and a
vertex). I suspect that other patterns may emerge when removing a
triangle.

TEACHER : Suspicion is not criticism.
GAMMA : Then is a counterexample criticism?
TEACHER: Certainly. Conjectures ignore dislike and suspicion, but

they cannot ignore counterexamples.
THETA (aside): Conjectures are obviously very different from those

who represent them.
GAMMA : I propose a trivial counterexample. Take the triangular

network which results from performing the first two operations on a
cube (Fig. 2). Now if I remove a triangle from the inside of this net-
work, as one might take a piece out of a jigsaw puzzle, I remove one
triangle without removing a single edge or vertex. So the third lemma

long before their truth, has been confirmed by rigid demonstrations'. Both the
Editor and Euler use for this process of discovery the modern term' induction ' instead
of the ancient ' analysis' (ibid.). The heuristic precedence of the result over the
argument, of the theorem over the proof, has deep roots in mathematical folklore.
Let us quote some variations on a familiar theme: Chrysippus is said to have written
to Cleandies : 'Just send me the theorems, then I shall find the proofs' (cf. Diogenes
Laertius [ca. 200], VTL 179). Gauss is said to have complained: ' I have had my
results for a long time; but I do not yet know how I am to arrive at them' (cf.
Arber [1954], p. 47), and Riemann: ' If only I had the theorems! Then I should find
the proofs easily enough,' (C£ Holder [1924], p. 487.) P6lya stresses: 'You
have to guess a mathematical theorem before you prove i t ' ([1954], VoL I, p. vi).

The term ' quasi-experiment' is from the above-mentioned editorial summary to
Euler [1753]- According to the Editor: ' As we must refer the numbers to the pure
intellect alone, we can hardly understand how observations and quasi-experiments can
be of use in investigating the nature of the numbers. Yet, in fact, as I shall show
here with very good reasons, the properties of the numbers known today have been
mostly discovered by observation . . .'(P6rya's translation; he mistakenly attributes
the quotation to Euler in his [1954], L, p. 3).
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I. LAKATOS

is false—and not only in the case of the cube, but for all polyhedra
except the tetrahedron, in the flat network of which all the triangles
are boundary triangles. Your proof thus proves the Euler theorem
for the tetrahedron. But we already knew that V— E-\- F = 2 for
the tetrahedron, so why prove it?

TEACHES: YOU are right. But notice that the cube which is a
counterexample to the third lemma is not also a counterexample to
the main conjecture, since for the cube V— E-\- F= 2. You have
shown the poverty of the argument—the proof—but not the falsity of
our conjecture.

ALPHA: Will you scrap your proof then?
TEACHER: NO. Criticism is not necessarily destruction. I shall

improve my proof so that it will stand up to the criticism.
GAMMA: HOW?

TEACHER: Before showing how, let me introduce the following
terminology. I shall call a ' local counterexample' an example which
refutes a lemma (without necessarily refuting the main conjecture),
and I shall call a ' global counterexample ' an example which refutes the
main conjecture itself. Thus your counterexample is local but not
global. A local, but not global, counterexample is a criticism of the
proof, but not of the conjecture.

GAMMA: SO, the conjecture may be true, but your proof does not
prove it.

TEACHER: But I can easily elaborate, improve the proof, by replacing
the false lemma by a slightly modified one, which your counter-
example will not refute. I no longer contend that the removal of any
triangle follows one of the two patterns mentioned, but merely that at each
stage of the removing operation the removal of any boundary triangle follows
one of these patterns. Coming back to my thought-experiment, all
that I have to do is to insert a single word in my third step, to wit, that
' from the triangulated network we now remove the boundary triangles
one by one '. You will agree that it only needed a trifling observation
to put the proof right1

GAMMA: I do not think your observation was so trifling; in fact it
was quite ingenious. To make this clear I shall show that it is false.
Take the flat network of the cube again and remove eight of the ten

1 Lhuilicr, when correcting in a similar way a proof of Euler, says that he made
only a ' trifling observation' ([1812-13], P- 179)- Euler himself, however, gave the
proof up, since he noticed the trouble but could not make that' trifling observation'.
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PROOFS AND REFUTATIONS (I)

triangles in the order given in Fig. 4. At the removal of the eighth
triangle, which is certainly by then a boundary triangle, we removed
two edges and no vertex—this changes V— E-\- F by 1. And we are
left with the two disconnected triangles 9 and 10.

7 , Yi
-/

FIG. 4

TEACHER: Well, I might save face by saying that I meant by a
boundary triangle a triangle whose removal does not disconnect the
network. But intellectual honesty prevents me from making sur-
reptitious changes in my position by sentences starting with ' I meant
. . . ' so I admit that now I must replace the second version of the
triangle-removing operation with a third version: that we remove the
triangles one by one in such a way that V— E-\- F does not alter.

KAPPA: I generously agree that the lemma corresponding to this
operation is true: namely, that if we remove the triangles one by one
in such a way that V— E-\- F does not alter, then V— E-\- F does
not alter.

TEACHER: N O . The lemma is that the triangles in our network can
be so numbered that in removing them in the right order V— E-\- F will not
alter till we reach the last triangle.

KAPPA: But how should one construct this right order, if it exists
at all?1 Your original thought-experiment gave the instructions:
remove the triangles in any order. Your modified thought-experi-
ment gave the instruction: remove boundary triangles in any order.
Now you say we should follow a definite order, but you do not say
which and whether that order exists at all. Thus the thought-experi-
ment breaks down. You improved the proof-analysis, i.e. the list of
lemmas; but the thought-experiment which you called ' the proof
has disappeared.

RHO : Only the third step has disappeared.
1 Cauchy thought that the instruction to find at each stage a triangle which can be

removed either by removing two edges and a vertex or one edge can be trivially
carried out for any polyhedron ([1811], p. 79). This is of course connected with his
inability to imagine a polyhedron that is not homeomorphic witti the sphere.
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I. LAKATOS

KAPPA: Moreover, did you improve the lemma? Your first two
simple versions at least looked trivially true before they were refuted;
your lengthy, patched up version does not even look plausible. Can
you really believe that it will escape refutation?

TEACHER: ' Plausible ' or even ' trivially true ' propositions are
usually soon refuted: sophisticated, implausible conjectures, matured in
criticism, might hit on the truth.

OMEGA : And what happens if even your ' sophisticated con-
jectures ' are falsified and if this time you cannot replace them by
unfalsified ones? Or, if you do not succeed in improving the argu-
ment further by local patching? You have succeeded in getting over a
local counterexample which was not global by replacing the refuted
lemma. What if you do not succeed next time?

TEACHES: Good question—it will be put on the agenda for to-

morrow.

4. Criticism of the Conjecture by Global Counterexamples

ALPHA : I have a counterexample which will falsify your first lemma
—but this will also be a counterexample to the main conjecture, i.e.
this will be a global counterexample as well.

TEACHER : Indeed! Interesting. Let us see.
ALPHA: Imagine a solid bounded by a pair of nested cubes—a pair

of cubes, one of which is inside, but does not touch the other (Fig. 5).

FIG. $

This hollow cube falsifies your first lemma, because on removing a
face from the inner cube, the polyhedron will not be stretchable on to
a plane. Nor will it help to remove a face from the outer cube instead.
Besides, for each cube V— £ + F= 2, so that for the hollow cube
V-E+F=4.

TEACHER: Good show. Let us call it Counterexample 1.1 Now
what?

1 This Counterexample 1 was first noticed by Lhuilier ([1812-13], p. 194). But
Gergonne, the Editor, added (p. 186) that he himself noticed this long before Lhuilier's
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PROOFS AND REFUTATIONS (I)

(<j) Rejection of the conjecture. The method of surrender

GAMMA: Sir, your composure baffles me. A single counter-
example refutes a conjecture as effectively as ten. The conjecture and
its proof have completely misfired. Hands up! You have to sur-
render. Scrap the false conjecture, forget about it and try a radically
new approach.

TEACHER : I agree with you that the conjecture has received a severe
criticism by Alpha's counterexample. But it is untrue that the proof
has ' completely misfired'. If, for the time being, you agree to my
earlier proposal to use the word ' proof for a ' thought-experiment
which leads to decomposition of the original conjecture into sub-
conjectures ', instead of using it in the sense of a ' guarantee of certain
truth', you need not draw this conclusion. My proof certainly
proved Euler's conjecture in the first sense, but not necessarily in the
second. You are interested only in proofs which ' prove ' what they
have set out to prove. I am interested in proofs even if they do not
accomplish their intended task. Columbus did not reach India but he
discovered something quite interesting.

ALPHA : So according to your philosophy—while a local counter-
example (if it is not global at the same time) is a criticism of the proof,
but not of the conjecture—a global counterexample is a criticism of the
conjecture, but not necessarily of the proof. You agree to surrender
as regards the conjecture, but you defend the proof. But if the
conjecture is false, what on earth does the proof prove?

GAMMA : Your analogy with Columbus breaks down. Accepting
a global counterexample must mean total surrender.

(b) Rejection of the counterexample. The method of monster-barring
DELTA: But why accept the counterexample? We proved our

conjecture—now it is a theorem. I admit that it clashes with this
so-called ' counterexample'. One of them has to give way. But
why should the theorem give way, when it has been proved? It is
the ' criticism ' that should retreat. It is fake criticism. This pair of

paper. Not so Cauchy, who published his proof just a year before. And this
counterexample was to be rediscovered twenty years later by Hessel ([1832], p. 16).
Both Lhuilier and Hessel were led to their discovery by mineralogical collections in
which they noticed some double crystals, where -the inner crystal is not translucent,
but die outer is. Lhuilier acknowledges the stimulus of the crystal collection of his
friend Professor Pictet ([1812-13], p. 188). Hessel refers to lead sulphide cubes
enclosed in translucent calcium fluoride crystals ([1832], p. 16).
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I. LAKATOS

nested cubes is not a polyhedron at all. It is a monster, a pathological
case, not a counterexample.

GAMMA: W h y not? A polyhedron is a solid whose surface consists of
polygonal faces. And my counterexample is a solid bounded by
polygonal faces.

TEACHER: Let us call this definition Def. 1}
DELTA: Your definition is incorrect. A polyhedron must be a

surface: it has faces, edges, vertices, it can be deformed, stretched out
on a blackboard, and has nothing to do with the concept o f solid '.
A polyhedron is a surface consisting of a system of polygons.

TEACHER: Call this Def. 2}
DELTA: SO really you showed us two polyhedra—two surfaces, one

completely inside the other. A woman with a child in her womb is
not a counterexample to the thesis that human beings have one head.

ALPHA: SO! My counterexample has bred a new concept of
polyhedron. Or do you dare to assert that by polyhedron you
always meant a surface?

TEACHER : For the moment let us accept Delta's Def. 2. Can you
refute our conjecture now if by polyhedron we mean a surface?

ALPHA: Certainly. Take two tetrahedra which have an edge in
common (Fig. 6a). Or, take two tetrahedra which have a vertex in
common (Fig. 6b). Both these twins are connected, both constitute
one single surface. And, you may check that for both V — E -\- F = 3

TEACHER: Counterexamples 2a and 2b.3

1 Definition 1 occurs first in the eighteenth century; e.g.: ' One gives the name
polyhedral solid, or simply polyhedron, to any solid bounded by planes or plane faces'
(Legendre [1794], p. 160). A similar definition is given by Euler ([1750]). Euclid,
while defining cube, octahedron, pyramid, prism, does not define the general term
polyhedron, but occasionally uses it (eg. Book XII, Second Problem, Prop. 17).

* We find Definition 2 implicitly in one of Jonquieres' papers read to the French
Academy against those who meant to refute Euler's theorem. These papers are a
thesaurus of monsterbarring techniques. He thunders against Lhuilier's monstrous
pair of nested cubes: ' Such a system is not really a polyhedron, but a pair of distinct
polyhedra, each independent of the other. . . . A polyhedron, at least from the
classical point of view, deserves the name only if, before all else, a point can move
continuously over its entire surface; here this is not the case . . . This first exception
ofT.hnilicr can therefore be discarded' ([18906], p. 170). Thu definition—as opposed
to Definition I—goes down very well with analytical topologists who are not inter-
ested at all in the theory of polyhedra as such but as a tianrlmairlpn for the theory of
surfaces.

8 Counterexamples 2a and 2b were missed by Lhuilicr and first discovered only by
Hessel([i832], p. 13).
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PROOFS AND REFUTATIONS (I)

DELTA: I admire your perverted imagination, but of course I did

not mean that any system of polygons is a polyhedron. By polyhedron

I meant a system of polygons arranged in such a way that (i) exactly two

polygons meet at every edge and (2) it is possible to get from the inside of any

polygon to the inside of any other polygon by a route which never crosses any

edge at a vertex. Your first twins will be excluded by the first criterion

in my definition, your second twins by the second criterion.

FIG. 6a FIG. 6b

TEACHER: Def. 3.1

ALPHA: I admire your perverted ingenuity in inventing one

definition after another as barricades against the falsification of your

pet ideas. Why don't you just define a polyhedron as a system of

polygons for which the equation V—E-\- F= 2 holds, and this

Perfect Definition. . . .

KAPPA: Def P.2

ALPHA: . . . would settle the dispute for ever? There would be

no need to investigate the subject any further.

DELTA : But there isn't a theorem in the world which couldn't be

falsified by monsters.

1 Definition 3 first turns up to keep out twintetrahedra in Mobius ([1865], p. 32).
We find his cumbersome definition reproduced in some modem textbooks in the
usual authoritarian ' take it or leave i t ' way; the story of its monsterbarring back-
ground—that would at least explain it—is not told (e.g. Hilbert-Cohn Vossen [1956],
p. 290).

2 Definition P according to which Eulerianness would be a definitional character-
istic of polyhedra was in fact suggested by R. Baltzer: ' Ordinary poryhedra are
occasionally (following Hessel) called Eulerian polyhedra. It would be more
appropriate to find a special name for non-genuine (uneigentliche) polyhedra ' ([i860],
Vol. II, p. 207). The reference to Hessel is unfair: Hessel used the term ' Eulerian '
simply as an abbreviation for polyhedra for which Euler's relation holds in contra-
distinction to the non-Eulerian ones ([1832], p. 19). For Def. P see also the Schlafli
quotation in footnote pp. 18-19.
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I. LAKATOS

TEACHER : I am sorry to interrupt you. As we have seen, refuta-
tion by counterexamples depends on the meaning of the terms in
question. If a counterexample is to be an objective criticism, we have
to agree on the meaning of our terms. We may achieve such an
agreement by defining the term where communication broke down.
I, for one, didn't define ' polyhedron '. I assumed familiarity with the
concept, i.e. the ability to distinguish a thing which is a polyhedron
from a thing which is not a polyhedron—what some logicians call
knowing the extension of the concept of polyhedron. It turned out
that the extension of the concept wasn't at all obvious: definitions are
frequently proposed and argued about when counterexamples emerge. I
suggest that we now consider the rival definitions together, and leave
until later the discussion of the differences in the results which
will follow from choosing different definitions. Can anybody ofier
something which even the most restrictive definition would allow as a
real counterexample?

KAPPA: Including Def. P?
TEACHER: Excluding Def P.
GAMMA: lean. Look at this Counterexample 3: a star-polyhedron

—I shall call it urchin (Fig. 7). This consists of 12 star-pentagons
(Fig. 8). It has 12 vertices, 30 edges, and 12 pentagonal faces—you

FIGS. 7 and 8. Kepler (Fig. 7) shaded each face in a different way to show
which triangles belong to the same pentagonal face.

may check it if you like by counting. Thus the Descartes-Euler thesis
is not true at ah1, since for this polyhedron V — E -f- F = — 6.1

1 The ' urchin ' was first discussed by Kepler in his cosmological theory ([1619],
Lib. II, XDC and XXVI, on p. 52 and p. 60 and Lib. V, Cap. I, p. 182, Cap. in,
p. 187 and Cap. DC, XLVTI). The name' urchin * is Kepler's (' mi notnen Echinofeci").
Fig. 7 is copied from his book (p. 52) which contains abo another picture on p. 182.
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PROOFS AND REFUTATIONS (I)

DELTA: Why do you think that your ' urchin ' is a polyhedron?
GAMMA: DO you not see? This is a polyhedron, whose faces are

the twelve star-pentagons. It satisfies your last definition: it is ' a
system of polygons arranged in such a way that (i) exactly two
polygons meet at every edge, and (2) it is possible to get from every
polygon to every other polygon without ever crossing a vertex of the
polyhedron '.

DELTA: But then you do not even know what a polygon is! A
star-pentagon is certainly not a polygon! A polygon is a system of
edges arranged in such a way that (1) exactly two edges meet at every vertex,
and (2) the edges have no points in common except the vertices.

TEACHER: Let us call this Def. 4.
GAMMA: I don't see why you include the second clause. The

right definition of the polygon should contain the first clause only.
TEACHER: Def. 4 .

GAMMA : The second clause has nothing to do with the essence of
a polygon. Look: if I lift an edge a little, the star-pentagon is already
a polygon even in your sense. You imagine a polygon to be drawn in
chalk on the blackboard, but you should imagine it as a wooden
structure: then it is clear that what you think to be a point in common
is not really one point, but two different points lying one above the
other. You are misled by your embedding the polygon in a plane—
you should let its limbs stretch out in space !x

Poinsot independently rediscovered it, and it was he who pointed out that the Euler
formula did not apply to it ([1809], p. 48). The now standard term ' small stellated
polyhedron ' is Cayley's ([1859], p. 125). Schlafli admitted star-polyhedra in general,
but nevertheless rejected our small stellated dodecahedron as a monster. According
to him ' this is not a genuine polyhedron, for it does not satisfy the condition

F - E + F = 2 ' ( [ i 8 j 2 ] , § 3 4 ) .
1 The dispute whether polygon should be defined so as to include star-polygons

or not {Def. 4 or Def. 4') is a very old one. The argument put forward in our dialogue
—that star-polygons can be embedded as ordinary polygons in a space of higher
dimensions—is a modem topological argument, but one can put forward many others.
Thus Poinsot defending his star-polyhedra argued for the admission of star-polygons
with arguments taken from analytical geometry: " . . . all these distinctions (between
" ordinary " and " star "-polygons) are more apparent than real, and they completely
disappear in the analytical treatment, in which the various species of polygons are
quite inseparable. To the edge of a regular polygon there corresponds an equation
with real roots, which simultaneously yields die edges of all the regular polygons of
the same order. Thus it is not possible to obtain the edges of a regular inscribed
heptagon, without at the same time filing edges of heptagons of the second and third
species. Conversely, given the edge of a regular heptagon, one may determine the
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I. LAKATOS

DELTA: Would you mind telling me what is the area of a
star-pentagon? Or would you say that some polygons have no
area?

GAMMA : Was it not you yourself who said that a polyhedron has
nothing to do with the idea of solidity? Why now suggest that the
idea of polygon should be linked with the idea of area? We agreed
that a polyhedron is a closed surface with edges and vertices—then
why not agree that a polygon is simply a closed curve with vertices?
But if you stick to your idea I am willing to define the area of a star-
polygon.1

TEACHER: Let us leave this dispute for a moment, and proceed as
before. Consider the last two definitions together—Def. 4 and Def.
4. Can anyone give a counterexample to our conjecture that will
comply with both definitions of polygons?

ALPHA: Here is one. Consider a picture-frame like this (Fig. 9).
This is a polyhedron according to any of the definitions hitherto pro-
posed. Nonetheless you will find, on counting the vertices, edges and
faces, that V— E+ F = o.

radius of a circle in which, it can be inscribed, but in so doing, one will find three
different circles corresponding to the three species of heptagon which may be con-
strutted on the given edge; similarly for other polygons. Thus we are justified in
giving the name " polygon " to these new starred figures ' ([1809], p. 26). Schroder
uses the Hankelian argument: 'The extension to rational fractions of the power
concept originally associated only with the integers has been very fruitful in Algebra;
this suggests that we try to do the same thing in geometry whenever the opportunity
presents itself . . . ' ([1862], p. 56). Then he shows that we may find a geometrical
interpretation for the concept of plqsided polygons in the star-polygons.

1 Gamma's claim that he can define the area for star-polygons is not a bluff. Some
of those who defended the wider concept of polygon solved the problem by putting
forward a wider concept of the area of polygon. There is an especially obvious way
to do this in the case of regular star-polygons. We may take the area of a polygon
as the sum of the areas of the isosceles triangles which join the centre of the inscribed
or circumscribed circle to die sides. In this case, of course, some ' portions ' of the
star-polygon will count more than once. In the case of irregular polygons where we
have not got any one distinguished point, we may still take any point as origin and
treat negatively oriented triangles as having negative areas (Meister [1769-70], p. 179).
It turns out—and this can certainly be expected from an ' area'—that the area thus
defined will not depend on the choice of the origin (Mobius [1827], p. 218). Of
course there is liable to be a dispute with those who think that one is not justified in
calling the number yielded by this calculation an ' area ' ; though the defenders of the
Meister-Mobius definition called i t ' the right definition ' which ' alone is scientifically
justified' (R. Haussner's notes [1906], pp. 114-115). Essentialism has been a per-
manent feature of definitional quarrels.
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PROOFS AND REFUTATIONS (I)

TEACHER: Counterexample 4.1

BETA: SO that's the end of our conjecture. It really is a pity, since
it held good for so many cases. But it seems that we have just wasted
our time.

ALPHA: Delta, I am flabbergasted. You say nothing? Can't you
define this new counterexample out of existence? I thought there was
no hypothesis in the world which you could not save from falsification
with a suitable linguistic trick. Are you giving up now? Do you
agree at last that there exist non-Eulerian polyhedra? Incredible!

\
1
1
1
1
1
1
1

/\--A
- -,1

FIG. 9

DELTA : You should really find a more appropriate name for your
non-Eulerian pests and not mislead us all by calling them ' polyhedra '.
But I am gradually losing interest in your monsters. I turn in disgust
from your lamentable ' polyhedra', for which Euler's beautiful
theorem doesn't hold.2 I look for order and harmony in mathematics,
but you only propagate anarchy and chaos.3 Our attitudes are ir-
reconcilable.

1 We find Counterexample 4 too in Lhuilier's classical [1812-13], on P-185—Gergonnc
again added that he knew it. But Grunert did not know it fourteen years later
([1827]) and Poinsot forty-five years later ([1858], p. 67).

2 This is paraphrased from a letter of Hennite's written to Stieltjes: ' I turn aside
with a shudder of horror from this lamentable plague of functions which have no
derivatives' ([1893]).

3 ' Researches baling with . . . functions violating laws which one hoped were
universal, were regarded almost as the propagation of anarchy and chaos where past
generations had sought order and harmony' (Saks [1933], Preface). Saks refers
here to the fierce battles of monsterbarrers (like Hermite!) and of refutationists that
characterised in the last decades of the nineteenth century (and indeed in the
beginning of the twentieth) the development of modern real function theory,' the
branch of mathematics which deals with counterexamples' (Munroe [1953], Preface).
The similarly fierce battle that raged later between the opponents and protagonists of
modem mathematical logic and set-theory was a direct continuation of this. Sec
also footnote 2 on p. 24 and 1 on p. 25.
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LAKATOS

ALPHA: YOU are a real old-fashioned Tory! You blame the
wickedness of anarchists for the spoiling of your ' order ' and ' har-
mony ', and you ' solve ' the difficulties by verbal recommendations.

TEACHER : Let us hear the latest rescue-definition.
ALPHA: YOU mean the latest linguistic trick, the latest contraction

of the concept of ' polyhedron'! Delta dissolves real problems,
instead of solving them.

FIG. IO

FIG. I ia FIG. n t

DELTA: I do not contract concepts. It is you who expand them.
For instance, this picture-frame is not a genuine polyhedron at all.

ALPHA: Why?
DELTA : Take an arbitrary point in the' tunnel'—the space bounded

by the frame. Lay a plane through this point. You will find that
any such plane has always two different cross-sections with the
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PROOFS AND REFUTATIONS (I)

picture-frame, making two distinct, completely disconnected
polygons! (Fig. 10).

ALPHA: SO what?
DELTA : In the case of a genuine polyhedron, through any arbitrary

point in space there will be at least one plane whose cross-section with the
polyhedron will consist of one single polygon. In the case of convex
polyhedra all planes will comply with this requirement, wherever we
take the point. In the case of ordinary concave polyhedra some planes
will have more intersections, but there will always be some that have
only one. (Figs, n a and lib) In the case of this picture-frame, if
we take the point in the tunnel, all the planes will have two cross-
sections. How then can you call this a polyhedron?

TEACHER: This looks like another definition, this time an implicit
one. Call it Def 5.1

ALPHA : A series of counterexamples, a matching series of defini-
tions, definitions that are alleged to contain nothing new, but to be
merely new revelations of the richness of that one old concept, which
seems to have as many ' hidden ' clauses as there are counterexamples.
For all polyhedra V—E-\- F = 2 seems unshakable, an old and ' eternal'
truth. It is strange to think that once upon a time it was a wonderful
guess, full of challenge and excitement. Now, because of your weird
shifts of meaning, it has turned into a poor convention, a despicable
piece of dogma. (He leaves the classroom.)

DELTA : I cannot understand how an able man like Alpha can waste
his talent on mere heckling. He seems engrossed in the production of
monstrosities. But monstrosities never foster growth, either in the
world of nature or in the world of thought. Evolution always follows
an harmonious and orderly pattern.

GAMMA : Geneticists can easily refute that. Have you not heard
that mutations producing monstrosities play a considerable role in
macroevolution? They call such monstrous mutants ' hopeful

1 Definition 5 was put forward by the indefatigable monsterbarrer E. de Jonquieres
to get Lhuilier's polyhedron with a tunnel (picture-frame) out of the way: ' Neither
is this polyhedral complex a true polyhedron in the ordinary sense of the word, for if
one takes any plane through an arbitrary point inside one of the tunnels which pass
right through the solid, the resulting cross-section will be composed of two distinct
polygons completely unconnected with each other; this can occur in an ordinary
polyhedron for certain positions of the intersecting plane, namely in the case of some
concave polyhedra, but not for all of them ' ([1890/1], pp. 170-171). One wonden
whether dc Jonquieres has noticed that his Def. 5 excludes also some concave spheroid
polyhedra.
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I. LAKATOS

monsters'. It seems to me that Alpha's counterexamples, though
monsters, are ' hopeful monsters '-1

DELTA: Anyway, Alpha has given up the struggle. No more
monsters now.

GAMMA : I have a new one. It complies with all the restrictions in
Defs. i, 2, 3, 4, and 5, but V— E-\- F= 1. This Counterexample 5
is a simple cylinder. It has 3 faces (the top, the bottom and the
jacket), 2 edges (two circles) and no vertices. It is a polyhedron
according to your definition: (1) exactly two polygons at every edge
and (2) it is possible to get from the inside of any polygon to the
inside of any other polygon by a route which never crosses any edge at
a vertex. And you have to accept the faces as genuine polygons, as they
comply with your requirements: (1) exactly two edges meet at every
vertex and (2) the edges have no points in common except the vertices.

DELTA: Alpha stretched concepts, but you tear them! Your
' edges ' are not edges! An edge has two vertices!

TEACHES: Def. 6?

GAMMA : But why deny the status of' edge ' to edges with one or
possibly zero vertices? You used to contract concepts, but now you
mutilate them so that scarcely anything remains!

DELTA: But don't you see the futility of these so-called refutations?
' Hitherto, when a new polyhedron was invented, it was for some
practical end; today they are invented expressly to put at fault the
reasonings of our fathers, and one never will get from them anything
more than that. Our subject is turned into a teratological museum
where decent ordinary polyhedra may be happy if they can retain a
very small comeir

1 'We must not forget that what appears to-day as a monster will be to-morrow
the origin of a line of special adaptations. . . . I further emphasized the importance
of rare but extremely consequential mutations affecting rates of decisive embryonic
processes which might give rise to what one might term hopeful monsters, monsters
which •would start a new evolutionary line if fitting into some empty environmental
niche ' (Goldschmidt [1933], pp. 544 and 547). My attention was drawn to this paper
by Karl Popper.

2 Paraphrased from Poincare' ([1908], pp. 131-132). The original full text is this:
' Logic sometimes makes monsters. Since hah0 a century we have seen arise a crowd
of bizarre functions which seem to try to resemble as little as possible the honest
functions which serve some purpose. No longer continuity, or perhaps continuity,
but no derivatives, etc Nay more, from the logical point of view, it is these strange
functions which are the most general, those one meets without seeking no longer
appear except as particular cases. There remains for them only a very small corner.
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PROOFS AND REFUTATIONS (I)

GAMMA : I think that if we want to learn about anything really
deep, we have to study it not in its ' normal', regular, usual form, but
in its critical state, in fever, in passion. If yo_u want to know the normal
healthy body, study it when it is abnormal, when it is ill. If you
want to know functions, study their singularities. If you want to
know ordinary polyhedra, study their lunatic fringe. This is how
one can carry mathematical analysis into the very heart of the subject.1

But even if you were basically right, don't you see the futihty of your
ad hoc method? If you want to draw a borderline between counter-
examples and monsters, you cannot do it in fits and starts.

TEACHER: I think we should refuse to accept Delta's strategy for
dealing with global counterexamples, although we should congratulate
him on his skilful execution of it. We could aptly label his method
the method of monsterbarring. Using this method one can eliminate any
counterexample to the original conjecture by a sometimes deft but
always ad hoc redefinition of the polyhedroD, of its defining terms, or
of the defining terms of its defining terms. We should some-
how treat counterexamples with more respect, and not stubbornly
exorcise them by dubbing them monsters. Delta's main mistake is
perhaps his dogmatist bias in the interpretation of mathematical proof:
he thinks that a proof necessarily proves what it has set out to prove.
My interpretation of proof will allow for a false conjecture to be
' proved', i.e. to be decomposed into subconjectures. If the con-
jecture is false, I certainly expect at least one of the subconjectures to be
false. But the decomposition might still be interesting! I am not
perturbed at finding a counterexample to a ' proved ' conjecture;
I am even willing to set out to ' prove ' a false conjecture!

THETA: I don't follow you.
KAPPA: He just follows the New Testament: ' Prove all things;

hold fast that which is good ' (i Thessalonians 5: 21).

(to be continued)

' Heretofore when a new function was invented, it was for some practical end;
to-day they are invented expressly to put at fault the reasonings of our fathers, and
one never will get from them anything more than that.

' If logic were the sole guide of the teacher, it would be necessary to begin with
the most general functions, that is to say with the most bizarre. It is the beginner
that would have to be set grappling with this teratological museum . . . ' (G. B.
Halsted's authorised translation, pp. 435-436). Poincare' discusses the problem widi
respect to the situation in the theory of real functions—but that does not make any
difference.

1 Paraphrased from Denjoy ([1919], p. 21).
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PROOFS AND REFUTATIONS (II) *

I. LAKATOS

(c) Improving the conjecture by exception-barring methods. Piecemeal
exclusions. Strategic withdrawal or playing for safety

BETA: I suppose, sir, you are going to explain your puzzling
remarks. But, with all apologies for my impatience, I must get this
off my chest.

TEACHER: GO on.

(ALPHA re-enters.)

BETA: I find some aspects of Delta's arguments silly, but I have
come to believe that there is a reasonable kernel to them. It now
seems to me that no conjecture is generally valid, but only valid in a
certain restricted domain that excludes the exceptions. I am against
dubbing these exceptions ' monsters ' or ' pathological cases '. That
would amount to the methodological decision not to consider these as
interesting examples in their own right, worthy of a separate investiga-
tion. But I am also against the term' counterexample'; it rightly admits
them as examples on a par with the supporting examples, but somehow
paints them in war-colours, so that, like Gamma, one panics when
facing them, and is tempted to abandon beautiful and ingenious proofs
altogether. No: they are just exceptions.

SIGMA : I could not agree more. The term ' counterexample ' has
an agressive touch and offends those who have invented the proofs.
' Exception ' is the right expression. ' There are three sorts of mathe-
matical propositions:

' i. Those which are always true and to which there are neither
restrictions nor exceptions, e.g. the angle sum of ah1 plane triangles is
always equal to two right angles.

' 2. Those which rest on some false principle and so cannot be
admitted in any way.

' 3. Those which, although they hinge on true principles, neverthe-
less admit restrictions or exceptions in certain cases. . . . '

EPSILON : What?
SIGMA : ' . . . One should not confuse false theorems with theorems

* Part I appeared in the previous number.
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PROOFS AND REFUTATIONS (II)

subject to some restriction.'1 As the proverb says: The exception
proves the rule.

EPSILON ((o KAPPA): Who is this muddlehead? He should learn
something about logic.

KAPPA (to EPSILON) : And about non-Euclidean plane triangles.
DELTA: I find it embarrassing to have to predict that in this discus-

sion Alpha and I shall probably be on the same side. We both
argued on the basis of a proposition's being either true or false and
disagreed only on whether the Euler theorem, in particular, is true or
false. But Sigma wants us to admit a third category of propositions
that are ' in principle ' true but ' admit exceptions in certain cases '.
To agree to a peaceful coexistence of theorems and exceptions means
to yield to confusion and chaos in mathematics.

ALPHA: D'accord.

ETA: I did not want to interfere with the brilliant argumentation
of Delta, but now I think it may be profitable if I briefly explain the
story of my intellectual development. In my schooldays I became—
as you would put it—a monsterbarrer, not as a defence against Alpha-
types but as a defence against Sigma-types. I remember reading in a
periodical about the Euler theorem: ' Brilliant mathematicians have
put forward proofs of the general validity of the theorem. Neverthe-
less it suffers exceptions . . . it is necessary to draw attention to these
exceptions since even recent authors do not always recognise them
explicitly.'2 This paper was not an isolated exercise in diplomacy.
' Although in geometry textbooks and lectures it is always pointed
out that Euler's beautiful theorem V-\- F= E-\- 2 is subject to
"restriction" in some cases, or "does not seem to be valid", one does
not learn the real reason for these exceptions.'8 Now I looked at the

1 Be"rard [1818-19], p. 347 and p. 349
2 Hessel [1832], p. 13. Hessel rediscovered Lhuilier's ' exceptions ' in 1832. Just

after submitting his manuscript he came across Lhuilier's [1812-13]. He nevertheless
decided not to withdraw the paper, most of whose results thus turned out to have
already been published, because he thought that the point should be driven home to
the ' recent authors ' ignoring these exceptions. One of these authors, by the way,
happened to be the Editor of the Journal to which Hessel submitted the paper : A. L.
Crelle. In his [1826-27] textbook he ' proved ' that Euler's theorem was true for all
polyhedra (Vol. II, pp. 668-671).

3 Matthiessen ([1863], p. 449). Matthiessen refers here to Heis and Eschweiler's
Lchrbuch der Geometric and to Grunert 's Lehrbuch der Stereometric. Matthiessen

however does not solve the problem—like Eta.—by monsterbarrrng, but—like Rho—
by monster-adjustment (cf. footnote 1, p. 135).
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I. LAKATOS

' exceptions ' very carefully and I came to the conclusion that they do
not comply with the true definition of the entities in question. So the
proof and the theorem can be reinstated and the chaotic coexistence of
theorems and exceptions vanishes.

ALPHA: Sigma's chaotic position may serve as an explanation for
your monsterbarring, but not as an excuse, let alone a justification.
Why not eliminate the chaos by accepting the credentials of the
counterexample and rejecting the ' theorem ' and the ' proof?

ETA: Why should I reject the proof? I cannot see anything
wrong with it. Can you? My monsterbarring seems more rational
to me than your proof-barring.

TEACHER: This debate showed that monsterbarring may get a more
sympathetic audience when it stems from Eta's dilemma. But let us
come back to Beta and Sigma. It was Beta who rechristened the
counterexamples exceptions. Sigma agreed with Beta. . . .

BETA: I am glad that Sigma agreed with me, but I am afraid that
I cannot agree with him. There are certainly three types of pro-
positions: true ones, hopelessly false ones and hopefully false ones.
This last type can be improved into true propositions by adding a
restrictive clause which states the exceptions. I never ' attribute to
formulae an undetermined domain of validity. In reality most of
the formulae are true only if certain conditions are fulfilled. By
determining these conditions and, of course, pinning down precisely
the meaning of the terms I use, I make all uncertainty disappear.'1

So, as you see, I do not advocate any sort of peaceful coexistence
between unimproved formulae and exceptions. I improve my
formulae and turn them into perfect ones, like those in Sigma's first
class. This means that I accept the method of monsterbarring in so far
as it serves for finding the domain of validity of the original conjecture; I
reject it in so far as it functions as a linguistic trick for rescuing 'nice'
theorems by restrictive concepts. These two functions of Delta's
method should be kept separate. I should like to baptise my method,
which is characterised by the first of these functions only,' the exception-
barring method'. I shall use it to determine precisely the domain in
which the Euler conjecture holds.

TEACHER: What is the ' precisely determined domain ' of Eulerian
polyhedra you promised? What is your ' perfect formula '?

BETA : For all polyhedra that have no cavities (like the pair of nested
cubes) and tunnels (like the picture-frame), V— E-\- F = 2.

1 This is from Cauchy's introduction to his celebrated [1821].
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P R O O F S A N D R E F U T A T I O N S (II)

TEACHER: Are you sure?
BETA: Yes, I am sure.
TEACHER: What about the twintetrahedra?
BETA : I am sorry. For all polyhedra that have no cavities, tunnels or

' multiple structure ', V— E-\- F = 2.1

TEACHER: I see. I agree with your policy of improving the
conjecture instead of just taking or leaving it. I prefer it both to the
method of monsterbarring and to that of surrender. However, I have
two objections. First I contend that your claim that your method not
only improves, but ' perfects ' the conjecture, that i t ' renders it strictly
correct', that' it makes all uncertainties disappear ' is untenable. The
adhocness of your method destroys its chance of achieving certainty.

BETA: Indeed?
TEACHER: YOU must admit that each new version of your con-

jecture is only an ad hoc elimination of a counterexample which has
just cropped up. When you stumble upon nested cubes you exclude
polyhedra with cavities. When you happen to notice a picture-frame,
you exclude polyhedra with tunnels. I appreciate your open and
observant mind; to take notice of these exceptions is all very well, but
I think it would be worth while to inject some method into your bund
groping for ' exceptions '. It is good to admit that 'All polyhedra are
Eulerian ' is only a conjecture. But why give 'All polyhedra without
cavities, tunnels and what not are Eulerian' the status of a theorem that is
not conjectural any more? How can you be sure that you have
enumerated all exceptions?

BETA: Can you give one that I did not take into account?
ALPHA: What about my urchin?
GAMMA: And my cylinder?

1 Lhuilier and Gergonnc seem to have been sure that Lhuilier's list had enumerated
all the exceptions. We read in the introduction to this part of the paper: ' One
will easily be convinced that Euler's Theorem is true in general, for all poly-
hedra, whether they are convex or not, except for those instances that will be specified
. . . ' (Lhuilier [1812-13], p. 177). Then we read again in Gergonnc's comment:
' . . . the specified exceptions which seem to be the only ones that can occur. . . . "
(ibid. p . 188). But in fact Lhuilier missed the twintetrahedra, which were only noticed

twenty years later by Hessel ([1832]). That some leading mathematicians even
mathematicians with a lively interest in methodology like Gergonne, could believe
that one could rely upon the exception-barring method, is noteworthy. The belief
is analogous to the ' method of division' in inductive logic, according to which
there can be a complete enumeration of possible explanations of a phenomenon, and
therefore the method of experimentum crucis, which eliminates all but one, proves this
last one.
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TEACHEH: I do not even need a concrete new ' exception' for my
argument. My argument was for the possibility of further exceptions.

BETA: YOU may well be right. One should not just shift one's
position whenever a new counterexample turns up. One should not
say: ' If no exception occur from phenomena, the conclusion may be
pronounced generally. But if at any time afterwards any exception
should occur, it may then begin to be pronounced with such exceptions
as occur.'1 Let me think. We first guessed that for all polyhedra
V— E-\- F— 2, because we found it to be true for cubes, octahedra,
pyramids, and prisms. We certainly cannot accept ' this miserable
way of inferring from the special to the general '.a No wonder
exceptions cropped up; it is rather surprising that many more were
not found much earlier. To my mind this was because we were mostly
occupied with convex polyhedra. As soon as other polyhedra entered,
our generalisations did not work any more.8 So instead of barring
exceptions piecemeal, I shall draw the borderline modestly, but safely:
All convex polyhedra are Eukrian* And I hope you will grant that this
has nothing conjectural about it: that it is a theorem.

1 L Newton [1717], p. 380
a Abel [1826]. His criticism seems to be directed against Eulerian inductivism.
3 This too is paraphrased from the quoted letter, in which Abel was concerned

to eliminate the exceptions to general ' theorems' about functions and thereby
establish absolute rigour. The original text (including the previous quotation) is
this: ' In Higher Analysis very few propositions are proved with definitive rigour.
One finds everywhere the miserable way of inferring from the special to the general, and it is
a marvel that such procedure leads only rarely to what are called paradoxes. It is
really very interesting to look for the reason. In my opinion the reason is to be
found in the fact that analysts have been mostly occupied with Junctions that can be expressed
as power series. As soon as other Junctions enter—which certainly is rarely the case—one
does not get on any more and as soon as one starts drawing false conclusions, an in-
finite multitude of mistakes will follow, all supporting each other . . . ' (my
italics). Poinsot discovered that inductive generalisations ' often ' break down in the
theory of polyhedra, just as in number theory: 'Most properties are individual and
do not obey any general laws' ([1809], § 45). The intriguing characteristic of this
caution, towards induction is that it puts down its occasional breakdown to the
fact that the universe (of facts, numbers, polyhedra) of course contains miraculous
exceptions.

4 This again is very much in keeping with Abel's method. In the same way Abel
restricted the domain of suspect theorems about functions to power-series. In the
story of the Euler conjecture this restriction to convex polyhedra was fairly common
Legendre, for instance, after giving his rather general definition of polyhedron (cf.
footnote 1 p. 16), presents a proof which on the one hand certainly does not apply to
all his general polyhedra, but on the other hand applies to more than convex ones.
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GAMMA: What about my cyUnder? It is convex!
BETA: It is a joke!
TEACHER : Let us forget about the cylinder for the moment. We

can offer some criticism even without the cylinder. In this new,
modified version of the exception-barring method, which, Beta
devised so briskly in answer to my criticism, piecemeal withdrawal
has been replaced by a strategic retreat into a domain hoped to be a
stronghold of the conjecture. You are playing for safety. But are
you as safe as you claim to be? You still have no guarantee that there
will not be any exceptions inside your stronghold. Besides, there is
the opposite danger. Could you have withdrawn too radically,
leaving lots of Eulerian polyhedra outside the walls? Our original
conjecture might have been an overstatement, but your ' perfected'
thesis looks to me very much hke an understatement; yet you still
cannot be sure that it is not an overstatement as well.

But I should also hke to put forward my second objection: your
argument forgets about the proof; in guessing the domain of validity
of the conjecture, you do not seem to need the proof at all. Surely
you do not believe that proofs are redundant?

BETA: 1 have never said that.
TEACHER: NO, you did not. But you discovered that our proof

did not prove our original conjecture. Does it prove your improved
conjecture? Tell me.

BETA: Well . . .x

Nevertheless, in an additional note, in fine print (an afterthought after having
stumbled on exceptions never stated?), he withdraws, modestly but safely, to convex
polyhedra ([1809], pp. 161, 164, 228).

1 Many working mathematicians are puzzled about what proofs are for if they do
not prove. On the one hand they know from experience that proofs are fallible but
on the other hand they know from their dogmatist indoctrination that genuine
proofs must be infallible. Applied mathematicians usually solve this dilemma by a
shamefaced but firm belief that the proofs of the pure mathematicians are ' complete ',
and so really prove. Pure mathematicians, however, know better—they have such
respect only for the ' complete proofs ' of logicians. If asked what is then the use, the
function, of their ' incomplete proofs', most of them are at a loss. For instance,
G. H. Hardy had a great respect for the logicians' demand for formal proofs, but
when he wanted to characterise mathematical proof' as we working mathematicians
are familiar with i t ' , he did it in the following way: ' There is strictly speaking no
such thing as mathematical proof; we can, in the last analysis, do nothing but point;
. . . proofs are what Littlewood and I calicos, rhetorical flourishes designed to affect
psychology, pictures on the board in the lecture, devices to stimulate the imagination
of pupils' ([1928], p. 18). R. L. Wilder thinks that a proof is ' only a testing process
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ETA: Thank you, sir, for this argument. Beta's embarrassment
clearly displays the superiority of the defamed monsterbarring method.
For we say that the proof proves what it has set out to prove and our
answer is unequivocal. We do not allow wayward counterexamples
to destroy respectable proofs at liberty, even if they are disguised as
meek ' exceptions '.

BETA: I do not find it embarrassing at all that I have to elaborate,
improve, and—excuse me, sir—perfect my methodology on the
stimulus of criticism. My answer is this. I reject the original con-
jecture as false because there are exceptions to it. I also reject the proof
because the same exceptions are exceptions to at least one of the
lemmas. (In your terminology this would be: a global counter-
example is necessarily also a local counterexample.) Alpha would
stop at this point since refutations seem to satisfy his intellectual needs
completely. But I go on. By suitably restricting both conjecture and
proof to the proper domain, I perfect the conjecture which will now be
true, and perfect the basically sound proof which will now be rigorous
and will obviously contain no more false lemmas. For instance we
saw that not all polyhedra can be stretched flat onto a plane after having
a face removed. But all convex polyhedra can. I can rightly call my
perfected and rigorously proved conjecture a theorem. I state it again:
' All convex polyhedra are Eulerian.' For convex polyhedra all the

lemmas will be manifestly true and the proof, which was not rigorous
in its false generality, will be rigorous for the restricted domain of
convex polyhedra. So, sir, I have answered your question.

TEACHER : So the lemmas, which once looked manifestly true before
the exception was discovered, will again look manifestly true . . .
until the discovery of the next exception. You admit that ' All
polyhedra are Eulerian ' was guesswork; you admitted just now that
' All polyhedra without cavities and tunnels are Eulerian ' was also
guesswork; why not admit that ' All convex polyhedra are Eulerian '
is guesswork once again!

BETA: Not'guesswork ' this time, but insightl
TEACHER: I abhor your pretentious ' insight'. I respect conscious

guessing, because it comes from the best human qualities: courage and
modesty.

that we apply to suggestions of our intuition ' ([1944], p. 318). G. P6lya points out
that proofs, even if incomplete, establish connections between mathematical facts and
this helps us to keep them in our memory: proofs yield a mnemotechnic system
([i945], PP- 190-191)-
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BETA : I proposed a theorem: ' All convex polyhedra are Eulerian.'
You offered only a sermon against it. Could you offer a counter-
example?

TEACHER: YOU cannot know that I shall not. You improved the
original conjecture, but you cannot claim to have perfected the con-
jecture, to have achieved perfect rigour in your proof.

BETA: Can you?
TEACHER : I cannot either. But I think that my method of im-

proving conjectures will be an improvement on yours for I shall
establish a unity, a real interaction, between proofs and counter-
examples.

BETA : I am ready to learn.

(d) The method of monster-adjustment

RHO: Sir, may I get a few words in edgeways?
TEACHER: By all means.
RHO: I agree that we should reject Delta's monster-barring as a

general methodological approach, for it doesn't really take 'monsters'
seriously. Beta doesn't take his ' exceptions' seriously either, for he
merely lists them and then retreats into a safe domain. Thus both
these methods are interested only in a limited, privileged field. My
method does not practise discrimination. I can show that ' on closer
examination the exceptions turn out to be only apparent and the Euler
theorem retains its validity even for the alleged exceptions.'1

TEACHER: Really?
ALPHA: HOW can my counterexample 3, the ' urchin ' (Fig. 5), be

an ordinary Eulerian polyhedron? It has 12 star-pentagonal faces. . . .
RHO: I don't see any 'star-pentagons'. Don't you see that in

actual fact this polyhedron has ordinary triangular faces? There are 60
of them. It also has 90 edges and 32 vertices. Its' Euler characteristic '
is 2.2 The 12 ' star-pentagons ', their 30 ' edges ' and 12 ' vertices ',
yielding the ' characteristic' — 6, are only your fancy. Monsters

1 L. Matthiessen [1863].
* The argument that the ' urchin ' is ' really ' an ordinary, prosaic Eulerian poly-

hedron with 60 triangular faces, 90 edges and 32 vertices —' un hexacontaMre sans
ipithite '—was put forward by the staunch champion of the infallibility of the Euler
theorem, E. de Jonquieres ([1890a], p. 115). The idea of interpreting non-Eulerian
star-polyhedra as triangular Eulerian polyhcdra does not however stem from Jon-
quieres but has a dramatic story (cf footnote 2, p. 128).
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don't exist, only monstrous interpretations. One has to purge one's
mind from perverted illusions, one has to learn how to see and how to
define correctly what one sees. My method is therapeutic: where
you—erroneously—' see ' a counterexample, I teach you how to
recognise—correctly—an example. I adjust your monstrous
vision. . . .*

ALPHA: Sir, please explain your method, before Rho brainwashes
us.2

TEACHER : Let him go on.

RHO: I have made my point.
GAMMA: Could you enlarge on your criticism of Delta's method?

Both of you exorcised ' monsters '. . . .
RHO: Delta was taken in by your hallucinations. He agreed that

your 'urchin' has 12 faces, 30 edges and 12 vertices, and is non-Eulerian.
His thesis was that it is not a polyhedron either. But he erred on both
counts. Your ' urchin' is a polyhedron and is Eulerian. But its

1 Nothing is more characteristic of a dogmatist epistemology than its theory of
error. For if some truths are manifest, one must explain how anyone can be mistaken
about them, in other words, why the truths are not manifest to everybody. Accord-
ing to its particular theory of error, each dogmatist epistemology offers its particular
therapeutics to purge mindj from error. Cf. Popper [1963], Introduction.

2 Poinsot certainly was brainwashed some time between 1809 and 1858. It was
Poinsot who rediscovered star-polyhedra, first analysed them from the point of view
of Euleriannes, and stated that some of them, like our small stellated dodecahedron,
do not comply with Eider's formula ([1809]). Now this very Poinsot states cate-
gorically in bis [1858] that Euler's formula ' is not only true for convex polyhedra, but
for any polyhedron whatsoever, including star-polyhedra' (p. 67—Poinsot uses the
term poly&lres d'espece supfaieure for star polyhedra). The contradiction is obvious.
What is the explanation? What happened to the star-polyhedral counterexamples?
The clue is in the first casual-looking sentence of the paper: ' One can reduce the
whole theory of polyhedra to the theory of polyhedra with triangular faces '. That is,
Poinsot-Alpha was brainwashed and turned into Poinsot-Rho: now he sees only
triangles where he previously saw star-polygons: now he sees only examples where he
previously saw counterexamples. The self-criticism had to be surreptitious,
cryptic, because in scientific tradition there are no patterns available for articulating
such volte-faces. One also wonders, did he ever come across ring-shaped faces and
if so, did he knowingly reinterpret them with his triangular vision?

The change of vision need not always operate in the same direction. For example
J. C. Becker in his [1869]—fascinated by the new conceptual framework of simply-
and multiply-connected domains (Riemann [1851])—allowed for ring-shaped polygons
but remained blind to star-polygons (p. 66). Five years after this paper—in which he
claimed to have brought the problem to a ' definitive' solution—he broadened his
vision and recognised star-polygonal and star-polyhedral patterns where he previously
saw only triangles and triangular polyhedra ([1874]).
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P R O O F S A N D R E F U T A T I O N S (II)

star-polyhedral concept was a misinterpretation. If you don't mind,
it is not the imprint of the urchin on a healthy, pure mind, but its
distorted imprint on a sick mind, twisting in pain.1

KAPPA : But how can you distinguish healthy minds from sick ones,
rational from monstrous interpretations? 2

RHO : What puzzles me is how you can mix them up!
SIGMA: DO you really think, Rho, that Alpha never noticed that

his ' urchin ' might be interpreted as a triangular polyhedron? Of
course it might. But a closer look reveals that' these triangles always
he in fives in the same plane and surround a regular pentagon hiding—
like their heart—behind a solid angle. Now the five regular triangles
together with the inner heart—the regular pentagon—form a so-called
"pentagramma" that according to Theophrastus Paracelsus was the
sign of health. . . .'s

RHO : Superstition!
SIGMA: And so for the healthy mind the secret of the urchin will be

revealed: that it is a new, hitherto undreamt-of regular body, with
regular faces and equal solid angles, the beautiful symmetry of which
might reveal to us the secrets of universal harmony. . . .*

ALPHA: Thank you, Sigma, for your defence which again con-
vinces me that opponents are less embarrassing than allies. Of course
my polyhedral figure can be interpreted either as a triangular poly-
hedron or as a star-polyhedron. I am willing to admit both interpreta-
tions on a par. . . .

KAPPA: Are you?
1 This is part of a Stoic theory of error, attributed to Chrysippos (cf. Aetius [c.

150], IV.12.4; also Sextus Empiricus [c. 190], I. 249).
According to the Stoics the ' urchin' would be part of external reality, which

produces an imprint upon the soul: the phmtasia or uisum. A wise man will not give
uncritical assent (synkatathesis or adsensus) to a phantasia unless it matures into a clear
and distinct idea [phantasia kataleptilte or comprehensio), which it cannot do if it is false.
The system of dear and distinct ideas forms science (episteme). In our case the imprint
of the ' urchin ' on Alpha's mind would be the small stellated dodecahedron, while on
Rho's mind it would be the triangular hexacontaeder. Rho would claim that
Alpha's star-polyhedral vision cannot possibly mature into a clear and distinct idea,
obviously since it would upset the ' proved' Euler formula. Thus the star-poly-
hedral interpretation would fail and the ' only ' alternative to it, namely the triangular
interpretation, would become clear and distinct.

* This is a standard Sceptic criticism of the Stoic claim that they can distinguish
phantasia from phantasia kataliptike (e.g. Sextus Empiricus [c. 190], I. 405).

3 Kepler [1619], l ib. II. Propositio XXVL
4 This is a fair exposition of Kepler's view.
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I. LAKATOS

DELTA : But surely one of them is the true interpretation!
ALPHA : I am willing to admit both interpretations on a par, but one

of them will certainly be a global counterexample to Euler's conjecture.
Why admit only the interpretation that is ' well-adjusted' to Rho's
preconceptions? Anyway, Sir, will you now explain your method?

(e) Improving the conjecture by the method of lemma-incorporation. Proof-
generated theorem versus naive conjecture

TEACHER : Let us return to the picture-frame. I for one recognise
it as a genuine global counterexample to the Euler conjecture, as well
as a genuine local counterexample to the first lemma of my proof.

GAMMA: Excuse me, Sir—but how does the picture-frame refute
the first lemma?

TEACHER: First remove a face and then try to stretch it flat on the
blackboard. You will not succeed.

ALPHA: TO help your imagination, I will tell you that those and
only those polyhedra which you can inflate into a sphere have the
property that, after a face is removed, you can stretch the remaining
part onto a plane.

It is obvious that such a ' spherical' polyhedron is stretchable onto
a plane after a face has been cut out; and vice versa it is equally
obvious that, if a polyhedron minus a face is stretchable onto a plane,
then you can bend it into a round vase which you can then cover with
the missing face, thus getting a spherical polyhedron. But our picture
frame can never be inflated into a sphere; but only into a torus.

TEACHER : Good. Now, unlike Delta, I accept this picture-frame
as a criticism of the conjecture. I therefore discard the conjecture in
its original form as false, but I immediately put forward a modified,
restricted version, namely this: the Descartes-Euler conjecture holds
good for ' simple ' polyhedra, i.e. for those which, after having had a
face removed, can be stretched onto a plane. Thus we have rescued
some of the original hypothesis. We have: The Euler characteristic of
a simple polyhedron is 2. This thesis will not be falsified by the nested
cube, by the twin-tetrahedra, or by star-polyhedra—for none of these
is ' simple.'

So while the exception-barring method restricted both the domain
of the main conjecture and of the guilty lemma to a common domain
of safety, thereby accepting the counterexample as criticism both of the
main conjecture and of the proof, my method of lemma-incorporation

130

 at D
eakin U

niversity L
ibrary on O

ctober 23, 2015
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


PROOFS AND REFUTATIONS (II)

upholds the proof but reduces the domain of the main conjecture to
the very domain of the guilty lemma. Or, while a counterexample
which is both global and local made the exception-barrer revise both
the lemmas and the original conjecture, it makes me revise the original
conjecture, but not the lemmas. Do you understand?

ALPHA: Yes, I think I do. To show that I understand, I shall
refute you.1

TEACHER: My method or my improved conjecture?
ALPHA: Your improved conjecture.
TEACHER: Then you may still not understand my method. But

let us have your counterexample.

:
: - .

i—

FIG. 12

ALPHA : Consider a cube with a smaller cube sitting on top of it
(Fig. 12). This complies with all our definitions—Def. o, 1, 2, 3, 3a,
4—so it is a genuine polyhedron. And it is ' simple ', in that it can be
stretched on to the plane. Thus, according to your modified con-
jecture, its Euler characteristic should be 2. Nonetheless it has 16
vertices, 24 edges and 11 faces, and its Euler characteristic is 16— 24
+ 1 1 = 3 . I t i s a global counterexample to your improved con-
jecture and, by the way, also to Beta's first' exception-barring' theorem.
This polyhedron, in spite of having no cavities, tunnels or ' multiple
structure ', is not Eulerian.

DELTA : Let us call this crested cube Counterexample 6?

1 1 recall Karl Popper distinguishing three levels of understanding. The lowest
was the pleasant feeling of having grasped the argument. The medium level was when
one could repeat it. The top level was when one could refute it.

1 Counterexample 6 was noticed by Lhuilier ([1812-13], p. 186); Gergonne for
once admits the novelty of his discovery! But almost fifty years later Poinsot had
not heard of it [1858] while Matthiessen [1863] and, eighty yean later, de Jonquderes
[1890!)] treated it as a monster. (Cf. footnotes 2, p. 128, 1, p. 135.) Primitive
exceptionrbarrers of the nineteenth century listed it as a curiosity together with other
exceptions: ' As an example one is usually shown the case of a three sided pyramid
attached to a face of a tetrahedron so that no edges of the former coincide with an
edge of the latter. " Oddly enough, in this case V— E-\- F = 3 " is what is written
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I. LAKATOS

TEACHER: YOU have falsified my improved conjecture, but you
have not destroyed my method of improvement. I shall re-examine
the proof, and see why it broke down over your polyhedron. There
must be another false lemma in the proof.

BETA: Of course there is. I have always suspected the second
lemma. It presupposes that in the triangulating process, by drawing a
new diagonal edge, you always increase by one the number of edges and
of faces. This is false. If we look at the plane network of our crested
polyhedron, we shall find a ring-shaped face (Fig. 13a). In this case
no single diagonal edge will increase the number of faces (Fig. 13b):
we need an increase of two edges to increase the number of faces by one
(Kg. 13c).

• •
(b) (c)

FIG. 13

TEACHER: My congratulations. I certainly must restrict our
conjecture further. . . .

BETA: I know what you are going to do. You are going to say
t ha t ' Simple polyhedra with triangular faces are Eulerian'. You will take
triangulation for granted; and you will turn this lemma again into a
condition.

TEACHER : No, you are mistaken. Before I point out your mistake
concretely, let me enlarge upon my comment on your method of
exception-barring. When you restrict your conjecture to a ' safe'
domain, you do not examine the proof properly, and, in fact, you do
not need to for your purpose. The casual statement that in your
restricted domain all the lemmas will be true whatever they are, is

in my college notebook. And that ended the matter ' (Matthiessen [1863], p. 449).
Modern mathematicians tend to forget about ring-shaped faces, which may be irrele-
vant for the classification of manifolds but can become relevant in other contexts.
H. Steinhaus says in his [i960]: ' Let us divide the globe into F countries (we shall
consider seas and oceans as land). Then we shall have V-\- F = E + 2, whatever the
political situation may b e ' (p. 273). But one wonders whether Steinhaus would
destroy West Berlin or San Marino simply because their existence refutes Euler's
theorem. (Though of course he may prevent seas like the Baikal from falling
completely in one country by denning them as lakes, since he has said that only seas
and oceans are to be considered as land.)
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PROOFS AND REFUTATIONS (II)

enough for your purpose. But this is not enough for mine. I build
the very same lemma which was refuted by the counterexample into
the conjecture, so that I have to spot it and formulate it as precisely as
possible, on the basis of a careful analysis of the proof. The refuted
lemmas thus will be incorporated in my improved conjecture. Your
method does not force you to give a painstaking elaboration of the proof,
since the proof does not appear in your improved conjecture, as it does
in mine. Now I return to your present suggestion. The lemma which
was falsified by the ring-shaped face was not—as you seem to think—
that ' all faces are triangular ' but that ' any face dissected by a diagonal
edge falls into two pieces'. It is this lemma which I turn into a condition.
Calling the faces which satisfy it ' simply-connected', I can offer a
second improvement on my original conjecture: ' For a simple poly-
hedron, with all its faces simply-connected, V— E-\- F = 2.' The reason
for your rash mis-statement was that your method did not teach you
careful proof-analysis. Proof-analysis is sometimes trivial, but some-
times very difficult indeed.

BETA: I see your point. I should also add a self-critical note to
your comment, for it seems to me to reveal a whole continuum of
exception-barring attitudes. The worst merely bars some exceptions
without looking at the proof at all. Hence the mystification when we
have the proof on the one hand and the exceptions on the other. In
the mind of such primitive exception-barrers, the proof and the
exceptions exist in two completely separate compartments. Some
others may now point out that the proof will work only in the re-
stricted domain, and thereby claim to dispel the mystery. But their
' conditions' will still be extraneous to the proof-idea.1 Better
exception-barrers will glance quickly at the proof and gain, as I did
just now, some inspiration for stating the conditions which determine
a safe domain. The best exception-barrers do a careful analysis of the
proof and, on this basis, give a very fine delineation of the prohibited

1 ' . . . Lhuilier's memoir consists of two very distinct parts. In the first the author
offers an original proof of Euler's theorem. In the second his aim is to point out the
exceptions to which this theorem is subjected.' (Gergonne's editorial comment on
Lhuilier's paper in Lhuilier's [1812-13], p. 172, my italics.)

M. Zacharias in his [1914-31] gives an uncritical but faithful description of this
compartmentalisation: ' In the 19th century, geometers, besides finding new proofs
of the Euler theorem, were engaged in establishing the exceptions which it suffers
under certain conditions. Such exceptions were stated, e.g. by Poinsot. S. Lhuilier
and F. Ch. Hessel tried to classify the exceptions . . . " (p. 1052).
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I. LAKATOS

area. In fact your method is, in this respect, a limiting case of the
exception-barring method. . . .

IOTA: . . . and it displays the fundamental dialectical unity of
proof and refutations.

TEACHES: I hope that now all of you see that proofs, even though
they may not prove, certainly do help to improve our conjecture.1 The
exception-barrers improved it too, but improving was independent of proving.
Our method improves by proving. This intrinsic unity between the ' logic of
discovery' and the ' logic of justification' is the most important aspect of
the method of lemma-incorporation.

BETA : And of course I now understand your previous pulling
remarks about your not being perturbed by a conjecture being both
' proved ' and refuted and about your willingness to ' prove ' even a
false conjecture.

KAPPA [aside]: But why call a ' proof what in fact is an ' improof"?
TEACHER: Mind you, few people will share this willingness.

Most mathematicians, because of ingrained heuristical dogmas, are
incapable of setting out simultaneously to prove and refute a conjecture.
They would either prove it or refute it. Moreover, they are particularly
incapable of improving conjectures by refuting them if the conjectures
happen to be their own. They want to improve their conjectures without
refutations; never by reducing falsehood but by the monotonous increase of
truth; thus they purge the growth of knowledge from the horror of counter-
examples. This is perhaps the background to the approach of the best
sort of exceptionbarrers: they start by ' playing for safety ' by devising
a proof for the ' safe' domain and continue by submitting it to a
thorough critical investigation, testing whether they have made use of
each of the imposed conditions. If not, they ' sharpen ' or ' general-
ise ' the first modest version of their theorem, i.e. specify the lemmas
on which the proof hinges, and incorporate them. For instance, after
one or two counterexamples they may formulate the provisional
exception-barring theorem: 'All convex polyhedra are Eulerian',
postponing non-convex instances for a cur a posterior; next they devise
Cauchy's proof and then, discovering that convexity was not really
' used ' in the proof, they build up the lemma-incorporating theorem !2

1 Hardy, Iittlewood, Wilder and P61ya seem to have missed this point (see foot-
note i, p. 12s).

* This standard pattern is essentially the one described in the classic of P6lya
and Szego [1927], p. vii: ' One should scrutinise each proof to see if one has in
fact made use of all the assumptions; one should try to get the same consequence
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There is nothing heuristically unsound about this procedure which
combines provisional exception-barring with successive proof-analysis
and lemma-incorporation.

BETA: Of course this procedure does not abolish criticism, it only
pushes it into the background: instead of directly criticising an over-
statement, they criticise an under-statement.

TEACHER: I am delighted, Beta, that I convinced you. Rho and
Delta, how do you feel about it?

RHO: I for one certainly think that the problem of' ring-shaped
faces ' is a pseudoproblem. It stems from a monstrous interpretation
of what constitute the faces and edges of this soldering of two cubes
into one—which you called a ' crested cube '.

TEACHEH: Explain.
RHO: The ' crested cube ' is a polyhedron consisting of two cubes

soldered to one another. Will you agree?
TEACHER: I don't mind.

/

'A1\ \
FIG. 14. Three versions of the ring-
shaped face: (a) de Jonquieres, (b)
Matthiessen, (c) the 'untrained eye'.

(a) (c)

RHO: NOW you misinterpreted ' soldering '. ' Soldering ' consists
of edges connecting the vertices of the bottom square of the small cube
to the corresponding vertices of the top square of the large cube. So
there is no ' ring-shaped face ' at all.

BETA : The ringshaped face is there! The dissecting edges you are
talking about are not there!

RHO : They are just hidden from your untrained eyes.1

from fewer assumptions . . . and one should not be satisfied until counterexamples
show that one has arrived at the boundary of the possibilities.'

1 This ' soldering ' of the two polyhedra by hidden edges is argued by de Jon-
quieres ([1890&], pp. 171-172), who uses monsterbarring against cavities and tunnels
but monster-adjustment against crested cubes and star-poryhedra. The first pro-
tagonist of using monster-adjustment in defence of dieEuler theorem was Matthiessen
[1863]. He uses monster-adjustment consistently: he succeeds in displaying hidden
edges and faces to explain away everything that is non-Eulerian, including polyhedra
with tunnels and cavities. While de Jonquieres' soldering is a complete trianguktion
of the ring-shaped face, he solders with economy, by drawing only the minimal
number of edges that split the face into simply-connected sub-faces (Fig. 14).

Matthiessen is remarkably confident about his method of turning revolutionary
counterexamples into well-adjusted bourgeois Eulerian examples. He claims that
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BETA: Do you expect us to take your argument seriously? What
/ see is superstition, but your ' hidden ' edges are reality?

RHO: Look at this salt crystal. Would you say this it a cube?
BETA: Certainly.
RHO : A cube has 12 vertices, hasn't it?
BETA : Yes, it has.

RHO : But on this cube there are no edges at all. They are hidden.
They appear only in your rational reconstruction.

BETA: I shall think about this. One thing is clear. The Teacher
criticised my conceited view that my method leads to certainty, and also
for forgetting about the proof. These criticisms apply just as much to
your ' monster-adjustment' as to my ' exception-barring '.

TEACHER: Delta, what about you? How would you exorcise the
ring-shaped faces?

DELTA: I would not. You have converted me to your method.
I only wonder why you don't make sure and also incorporate the
neglected third lemma? I propose a fourth, and I hope, final formula-
tion: ' All polyhedra are Eulerian, which are (a) simple, (b) have each
face simply-connected, and (c) are such that the triangles in the plane
triangular network, resulting from stretching and triangulating, can be
so numbered that, in removing them in the right order, V— E-\- F
will not alter until we reach the last triangle.'1 I wonder why you did
not propose this at once? If you really took your method seriously,
you would have turned all the lemmas immediately into conditions.
Why this ' piecemeal engineering 'P2

' any polyhedron can be analysed in such a way that it corroborates Euler's theorem
. . . ' . He enumerates the alleged exceptions noted by the superficial observer and
then states: ' In each such case we can show that the polyhedron has hidden faces and
edges, which, if counted, leave the theorem V— E-\- F= 2 untarnished even for
these seemingly recalcitrant cases.'

The idea that, by drawing additional edges or faces, some non-Eulerian polyhedra
can be transformed into Eulerian ones, stems however not from Matthiessen, but from
Hessel. Hessel illustrates diis point widi three examples using nice figures ([1832],
pp. 14-15). But he did not use diis method to 'adjust' but, on die contrary, to
' elucidate the exceptions ' by showing ' rather similar polyhedra for which Euler's
law is valid'.

l rrhis last lemma is unnecessarily strong. It would be enough for die pur-
pose of die proof to replace it by die lemma diat' for die plane triangular network
resulting from stretching and triangulating V—E-\-F=i'. Cauchy does not
seem to have noticed the difference.

1 The students arc obviously quite knowledgeable about recent social philosophy.
The term was coined by K. R. Popper ([1957], p. 67).
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ALPHA : Tory turned into revolutionary! Your suggestion strikes
me as rather Utopian. For there aren't just three lemmas. Why not
add, with many others, conditions like ' (4) if 1 + x = 2 ', and ' (5) if
all triangles have three vertices and three edges', since we certainly
use these lemmas? I propose that we turn only those lemmas into
conditions for which a counterexample has been found.

GAMMA: This seems to me too accidental to be accepted as a
methodological rule. Let us build in all those lemmas against which
we can expect counterexamples, i.e. which are not obviously, indubi-
tably true.

DELTA: Well, does our third lemma strike anyone as obvious?
Let us turn it into a third condition.

GAMMA : What if the operations expressed by the lemmas of our
proof are not all independent? If some of the operations can be
performed, it may be that the rest must necessarily be able to be per-
formed. I, for one, suspect that if a polyhedron is simple then there
always exists an order of deletion of triangles in the resulting flat network
such that V— E-\- F will not alter. If there is, then incorporating the
first lemma into the conjecture would exempt us from incorporating
the third.

DELTA : You claim that the first condition implies the third. Can
you prove this?

EPSILON: I can.1

ALPHA : The actual proof, however interesting, will not help us in
solving our problem: how far should we go in improving our con-
jecture? I may admit that you have the proof you claim to have—but
that will only decompose this third lemma into some new sub-lemmas.
Should we now turn these into conditions? Where should we stop?

KAPPA: There is an infinite regress in proofs; therefore proofs do
not prove. You should realise that proving is a game, to be played
while you enjoy it and stopped when you get tired of it.

EPSILON: NO, this is no game but a serious matter. The infinite
regress can be halted by trivially true lemmas, which need not be
turned into conditions.

GAMMA : This is just what I meant. We do not turn those lemmas
into conditions which can be proved from trivially true principles.

1 Actually, such a proof was first proposed by H. Reichardt ([1941], p. 23). Also
cf. B. L. van dcrWaerden [1951]. Hilbert and Cohn-Vossen were satisfied that the
truth of Beta's assertion is ' easy to see ' ([1932], English translation, p. 292).
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Nor do we incorporate those lemmas which can be proved—possibly
with the help of such trivially true principles—from previously
specified lemmas.

ALPHA: Agreed. We can then stop improving our conjecture
after we have turned the two non-trivial lemmas into conditions.
In fact I do think that this method of improvement, by lemma-
incorporation, is flawless. It seems to me that it not only improves
but perfects the conjecture. And I learned something important from
it: that it is wrong to assert that' the aim of a " problem to prove " is to
show conclusively that a certain clearly stated assertion is true, or else
to show that it is false'.1 The real aim of a ' problem to prove ' should
be to improve—in fact, perfect—the original, ' naive ' conjecture into a
genuine ' theorem '.

Our naive conjecture was ' All polyhedra are Eulerian '.
The monsterbarring method defends this naive conjecture by

reinterpreting its terms in such a way that at the end we have a monster-
barring theorem: ' All polyhedra are Eulerian '. But the identity of the
linguistic expressions of the naive conjecture and the monster-
barring theorem hides, behind surreptitious changes in the meaning of
the terms, an essential improvement.

The exception-barring method introduced an element which is
really extraneous to the argument: convexity. The exception-barring
theorem was: ' All convex polyhedra are Eulerian.'

The lemma-incorporating method relied on the argument—i.e.
on the proof—and on nothing else. It virtually summed up the proof in
the lemma-incorporating theorem: ' All simple polyhedra with simply-
connected faces are Eulerian.'

This shows that (now I use the term ' proving ' in the traditional
sense) one does not prove what one has set out to prove. Therefore no
proof should conclude with the words: ' Quod erat demonstrandum.'*

BETA : Some people say that theorems precede proofs in the order
of discovery: ' You have to guess a mathematical theorem before you
prove it.' Others deny this, and claim that discovery proceeds by
drawing conclusions from a specified set of premisses and noting the
interesting ones—if you are lucky enough to find any. Or, to use a
delightful metaphor of a friend of mine, some say that the heuristic
' zip fastener' in a deductive structure goes upwards from the

], P-I42)
2 This last sentence i5 fiom Alice Ambrose's interesting paper ([1959], p. 438).
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bottom—the conclusion—to the top—the premisses,1 others say that
it goes downwards from the top to the bottom. What is your
position?

ALPHA: That your metaphor is inapplicable to heuristic. Dis-
covery does not go up or down, but follows a zig-zag path: prodded by
counterexamples, it moves from the naive conjecture to the pre-
misses and then turns back again to delete the naive conjecture and
replace it by the theorem. Naive conjecture and counterexamples
do not appear in the fully fledged deductive structure: the zig-zag of
discovery cannot be discerned in the end-product.

TEACHER: Very good. But let us add a note of caution. The
theorem does not always differ from the naive conjecture. We do
not necessarily improve by proving. Proofs improve when the proof-
idea discovers unexpected aspects of the naive conjecture which
then appear in the theorem. But in mature theories this might not be
the case. It is certainly the case in young, growing theories. This
intertwining of discovery and justification, of improving and proving
is primarily characteristic of the latter.

KAPPA [ayufe]: Mature theories can be rejuvenated. Discovery
always supersedes justification.

SIGMA: This classification corresponds to mine! My first type of
propositions was the mature type, the third the growing type. . . .

GAMMA [interrupts him]: The theorem is false! I found a
counterexample to it.

1 Cf. Part I, footnote 2, p. 10. The metaphor of the ' zip fastener ' was invented
by R. B. Braithwaite; however, he talks only o f logical' and ' epistemological' zip
fasteners, but not o f heuristic ' ones ([1953], esp. p. 352).

(To be continued)
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5 Criticism of the Proof-analysis by Counterexamples which are Global but

not Local. The Problem of Rigour.

[a) Monsterbarring in defence of the theorem

GAMMA: I have just discovered that my Counterexample 5, the

cylinder, refutes not only the naive conjecture but also the theorem.

Although it satisfies both lemmas, it is not Eulerian.

ALPHA: Dear Gamma, do not become a crank. The cylinder was

a joke, not a counterexample. No serious mathematician will take

the cylinder for a polyhedron.

GAMMA: Why didn't you protest against my Counterexample 3, the

urchin? Was that less ' crankish' than my cylinder?1 Then of

course you were criticising the naive conjecture and welcomed refuta-

tions. Now you are defending the theorem and abhor refutations!

Then, when a counterexample emerged, your question was: what is

wrong with the conjecture? Now your question is: what is wrong with

the counterexample?

DELTA: Alpha, you have turned into a monsterbarrer! Aren't

you embarrassed? 2

(b) Hidden lemmas

ALPHA: I am. I may have been a bit rash. Let me think. There

are three possible types of counterexamples. W e have already discussed

* Part I and Part II appeared in the preceding numbers. The table of con-
tents given with Part I has been slightly altered.

1 The urchin and the cylinder were discussed previously in Part I, pp. 18 and 24.
1 Monsterbarring in defence of the theorem is an important pattern in informal

madiematics: ' What is wrong with the examples in which Euler's formula fails?
Which geometrical conditions, rendering more precise the meaning of F, V, and E,
would ensure the validity of Euler's formula? ' (P6lya [1954], I, Exercise 29.) The
cylinder is given in Exercise 24. The answer i s : ' . . .an edge . . . should terminate
in comers . . . ' (p. 225). P6lya formulates this generally: "The situation, not
infrequent in mathematical research is this: A theorem has been already formulated
but we have to give a more precise meaning to the terms in which it is formulated
in order to render it strictly correct' (p. 55).
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I. LAKATOS

the first, which is local but not global—it certainly would not refute
the theorem.1 The second, which is both global and local, does not
require any action: far from refuting the theorem, it confirms it.2

Now there may be a third type, which is global but not local. This
would refute the theorem. I did not think that this was possible.
Now Gamma claims that the cylinder is one. If we do not want to
reject it as a monster, we have to admit that it is a global counter-
example: V— E-\- F= <t. But is it not of the second harmless type?
I bet it does not satisfy at least one of the lemmas.

GAMMA: Let us check. It certainly satisfies the first lemma: if I
remove the bottom face, I can easily stretch the rest on to the black-
board.

ALPHA: But if you happen to remove the jacket, the thing falls into
two pieces!

GAMMA: SO what? The first lemma required that the polyhedron
be ' simple ', i.e. ' after having had a face removed, it can be stretched
on to a plane'. The cylinder satisfies this requirement even if you
start by removing the jacket. What you are claiming is that the
cylinder should satisfy an additional lemma, namely that the resulting
plane network also be connected. But who has ever stated this lemma?

ALPHA : Everybody has interpreted ' stretched' as ' stretched in
one piece', ' stretched without tear'. . . . We decided not to in-
corporate the third lemma because of Epsilon's proof that it followed
from the first two.3 But just have a look at that proof: it hinges on
the assumption that the result of the stretching is a connected network!
Otherwise for the triangulated network V— E-\- F would not be i.

GAMMA: Why then didn't you insist on stating it explicitly?
ALPHA : Because we took it to be stated implicitly.
GAMMA: YOU, for one, certainly did not. For you proposed that

' simple' stand for ' pumpable into a ball '.* The cylinder can be
pumped into a ball—so according to your interpretation it does comply
with the first lemma.

ALPHA: Well. . . . But you have to agree that it does not
satisfy the second lemma, namely, that ' any face dissected by a diagonal
falls into two pieces'. How will you triangulate the circle or the
jacket? Are these faces simply-connected?

1 Local but not global counterexamples were discussed in Part I, pp. 11-14.
2 This corresponds to the paradox of confirmation (Hempel [1945]).
3 See Part n, p. 137
4 See Part n, p. 130
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PROOFS AND REFUTATIONS (III)

GAMMA : Of course they are.
ALPHA: But on the cylinder one cannot draw diagonals at all! A

diagonal is an edge that connects two non-adjacent vertices. But
your cylinder has no vertices!

GAMMA: Don't get upset. If you want to show that the circle is not
simply-connected, draw a diagonal which does not create a new face.

ALPHA: Don't be funny; you know very well that I cannot.
GAMMA : Then would you admit that ' there is a diagonal of the

circle that does not create a new face ' is a false statement?
ALPHA: Yes, I would. What are you up to now?
GAMMA: Then you are bound to admit that its negation is true,

namely, that ' all diagonals of the circle create a new face', or, that
' the circle is simply-connected '.

ALPHA: YOU cannot give an instance of your lemma that' all diag-
onals of the circle create a new face'—therefore it is not true, but
meaningless. Your conception of truth is false.

KAPPA [asi'Je]: First they quarrelled about what is a polyhedron,
now about what is truth!x

GAMMA : But you already admitted that the negation of the lemma
was false! Or can a proposition A be meaningless while Not-A is
meaningful and false"? Your conception of meaning does not make
sense!

Mind you, I see your difficulty; but we can overcome it by a slight
reformulation. Let us call a face simply-connected if' for all x, ifx is
a diagonal then x cuts the face into two'. Neither the circle nor the jacket
can have diagonals, so that in their case, whatever x is, the antecedent
will always be false. Therefore the conditional will be instanti-
ated by any object, and will be both meaningful and true. Or, both
the circle and the jacket are simply-connected—the cylinder satisfies
the second lemma.

ALPHA: N O ! If you cannot draw diagonals and thereby triangu-
late the faces, you will never arrive at a flat triangular network and
you will never be able to conclude the proof. How can you then
claim that the cylinder satisfies the second lemma? Don't you see
that there must be an existential clause in the lemma? The correct
interpretation of the simply-connectedness of a face must be: 'for all
x, ifx is a diagonal, then x cuts the face into two; and there is at least one x
that is a diagonal'. Our original formulation may not have spelt it

1 Gamma's vacuously true statements were a major innovation of the nineteenth
century. Its problem-background has not yet been unfolded.
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I. LAKATOS

out but it was there as an unconsciously made ' hidden assumption '.*
All the faces of the cylinder fail to meet it; therefore the cylinder is a
counterexample which is both global and local, and it does not refute
the theorem.

GAMMA: First you modified the stretching lemma by introducing
' connectedness', now the triangulating lemma by introducing your
existential clause! And all this obscure talk about ' hidden assump-
tions ' only hides the fact that my cylinder made you invent these
modifications.

ALPHA: What obscure talk? We already agreed to omit, that is,
' hide', trivially true lemmas.2 Why then should we state and
incorporate trivially false lemmas—they are just as trivial and just as
boring! Keep them in your mind (en thyme) but do not state them.
A hidden lemma is not an error: it is shrewd shorthand pointing to
our background knowledge.

KAPPA [aside]: Background knowledge is where we assume that
we know everything but in fact know nothing.8

GAMMA: If you did make conscious assumptions, they were that
(a) removing a face always leaves a connected network and (b) any

1 ' Euclid employs an axiom of which he is wholly unconscious ' (Russell [1903],
p. 407). ' To make [sic] a hidden assumption ' is a common phrase among mathe-
maticians and scientists. See also Gamow's discussion of Cauchy's proof ([1953],
p. 56) or Eves-Newsom on Euclid ([1958], p. 84). 2 See Part II, pp. 137-8

8 Good textbooks in informal mathematics usually specify their ' shorthand ', Le.
those lemmas, either true or false, which they regard so trivial as not to be worth
mentioning. The standard expression for this is ' we assume familiarity with lemmas
of type x'. The amount of assumed familiarity decreases as criticism turns back-
ground knowledge into knowledge. Cauchy, e.g. did not even notice that his cele-
brated [1821] presupposed ' familiarity ' with the theory of real numbers. He would
have rejected as a monster any counterexample which made lemmas about the nature
of irrational numbers explicit. Not soWeierstrass and his school: textbooks of in-
formal mathematics now contain a new chapter on the theory of real numbers where
these lemmas are collected. But in their introductions ' familiarity with the theory
of rational numbers' is usually assumed. (See eg. Hardy's Pure Mathematics from the
second edition (1914) onwards—the first edition still relegated the theory of real
numbers to background knowledge; or Rudin [1953]). More rigorous textbooks
narrow down background knowledge even further: Landau, in the introduction to
his famous [1930], assumes familiarity only widi ' logical reasoning and German
language '. It is ironical that at the very same time Tarski showed that die absolutely
trivial lemmas thus omitted may not only be false but inconsistent—German being
a semantically closed language. One wonders when ' the author confesses ignorance
about die field x' will replace die authoritarian euphemism ' the audior assumes
familiarity with the field x ': surely only when it is recognised that knowledge has no
foundations.
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non-triangular face can be dissected into triangles by diagonals.
While they were in your subconscious, they were listed as trivially true—
the cylinder however made them somersault into your conscious list
as trivially false. Before being confronted by the cylinder you could
not even conceive that the two lemmas could be false. If you now
say that you did, then you are rewriting history to purge it from error.1

THETA: Not long ago, Alpha, you ridiculed the ' hidden ' clauses
which cropped up in Delta's definitions after each refutation. Now
it is you who make up ' hidden' clauses in the lemmas after each
refutation, it is you who shift your ground and try to hide it to save
face. Aren't you embarrassed?

KAPPA: Nothing amuses me more than the dogmatist at bay.
After donning the militant sceptic's robe to demolish a lesser brand of
dogmatism, Alpha becomes frantic when he in turn is cornered by the
same sort of sceptical arguments. He now plays fast and loose:
trying to fight off Gamma's counterexample first with the defence-
mechanism he himself had exposed and forbidden (monsterbarring),
then by smuggling a reserve of' hidden lemmas ' into the proof and
corresponding ' hidden conditions ' into the theorem. What is the
difference?

TEACHER: The trouble with Alpha was certainly the dogmatist
turn in his interpretation of lemma-incorporation. He thought that
a careful inspection of the proof would yield a perfect proof-analysis

1 When it is first discovered, the hidden lemma is considered an error. When
J. C. Becker first pionted out a ' hidden' (stilhchweigcnd) assumption in Cauchy's
proof (he quoted the proof second-hand from Baltzer's [i^gf-27]), he called it an
' error ' ([1869], pp. 67-68). He drew attention to the fart that Cauchy thought that
all polyhedra were simple: his lemma was not only hidden but also false. Historians
however cannot imagine that great mathematicians should make such errors. A
veritable programme of how to falsify history can be found in Poincare"s [1908]: ' A
demonstration which is not rigorous is nothingness. I think no one will contest this
truth. But if it were taken too literally, we should be led to conclude that before
1820, for example, there was no mathematics; this would be manifestly excessive;
the geometers of that time understood voluntarily what we explain by prolix discourse.
This does not mean that they did not see it at all; but they passed over it too rapidly,
;nd to see it well would have necessitated taking the pains to say i t ' (p. 374).
Becker's report about Cauchy's ' error' had to be rewritten 1984-wise: ' double-
plusungood refs unerrors rewrite fullwise.' The rewriting •was done by E. Steinitz
who insisted that' the fart that the theorem was not generally valid could not possibly
remain unnoticed ' ([1914-31], p. 20). Poincard himself applied his programme to
the Euler-theorem: ' It is known that Euler proved that V— E-\- F= 2 for convex
polyhedra ' ([1893])—Euler of course stated his theorem for all polyhedra.
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I. LAKATOS

containing all the false lemmas (just as Beta thought he could enumer-
ate all the exceptions). He thought that by incorporating them he
could attain not only an improved theorem, but a perfected theorem,1

without bothering about counterexamples. The cylinder showed him to
be wrong but, instead of admitting it, he now wants to call a proof-
analysis complete if it contains all the relevant false lemmas.

(c) The method of proof and refutations

GAMMA: I propose to accept the cylinder as a genuine counter-
example to the theorem. I invent a new lemma (or lemmas) that
will be refuted by it and add the lemma(s) to the original list. This of
course is exactly what Alpha did. But instead of' hiding' them so
that they become hidden, I announce them publicly.

Now the cylinder which was a puzzling, dangerous global but
not local counterexample (the third type) in respect of the old proof-
analysis and of the corresponding old theorem, will be a harmless,
global and local counterexample (the second type) in respect of the
new proof-analysis and the corresponding new theorem.

Alpha thought that his classification of counterexamples was
absolute—but in fact it was relative to his proof-analysis. As proof-
analysis grows, counterexamples of the third type turn into counter-
examples of the second type.

LAMBDA: That is right. A proof-analysis is ' rigorous ' or ' valid '
and the corresponding mathematical theorem true if, and only if,
there is no ' third-type ' counterexample to it. I call this criterion the
Principle of Bxtransmission of Falsity because it demands that global
counterexamples be also local: falsehood should be retransmitted from
the naive conjecture to the lemmas, from the consequent of the theorem
to its antecedent. If a global but not local counterexample violates
this principle, we restore it by adding a suitable lemma to the proof-
analysis. The Principle of Retransmission of Falsity is therefore a
regulative principle for proof-analysis in statu nascendi, and a global but
not local counterexample is a fermenting agent in the growth of proof-
analysis.

GAMMA: Remember, even before finding a single refutation we
managed to pick out three suspicious lemmas and go ahead with the
proof-analysis!

1 Sec Part n, p. 138
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PROOFS AND REFUTATIONS (III)

LAMBDA : That is true. Proof-analysis may start not only under the
pressure of global counterexamples but also when people have already
learned to be on guard against ' convincing ' proofs.1

In the first case all global counterexamples appear as counter-
examples of the third-type, and all the lemmas start their career as
' hidden lemmas '. They lead us to a gradual build-up of the proof-
analysis and so turn one by one into counterexamples of the second-
type.

In the second case—when we are already in a suspicious mood and
look out for refutations—we may arrive at an advanced proof-analysis
without any counterexamples. Then there are two possibilities.
The first possibility is that we succeed in refuting—by local counter-
examples^—the lemmas listed in our proof-analysis. We may very
well find that these are also global counterexamples.

ALPHA: This is how I discovered the picture-frame: looking for
a polyhedron that, after having a face removed, could not be stretched
flat onto a plane.

SIGMA: Then not only do refutations act as fermenting agents for
proof-analysis, but proof-analysis may act as a fermenting agent for
refutations! "What an unholy alliance between seeming enemies!

LAMBDA: That is right. If a conjecture seems very plausible or
even self-evident, one should prove it: one may find that it hinges on
very sophisticated and dubious lemmas. Refuting the lemmas may lead
to some unexpected refutation of the original conjecture.

SIGMA: TO proof-generated refutations!
GAMMA: Then ' the virtue of a logical proof is not that it compels

belief, but that it suggests doubts '.*
LAMBDA : But let me come back to the second possibility: when we

do not find any local counterexamples to the suspected lemmas.
SIGMA: That is, when refutations do not assist proof-analysis!

What would happen then?
1 Our class was a rather advanced one—Alpha, Beta, and Gamma suspected three

lemmas when no global counterexamples turned up. In actual history proof-
analysis came many decades later: for a long period the counterexamples were either
hushed up or exorcised as monsters, or listed as exceptions. The heuristic move from
the global counterexample to proof-analysis—the application of the Principle of
Retransmission of Falsity—was virtually unknown in the informal mathematics of
the early nineteenth century.

2 H. G. Forder [1927], p. viii. Or : ' It is one of the chief merits of proofs that they
instil a certain scepticism as to the result proved.' (Russell [1903], p. 360. He also
gives an excellent example.)
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LAMBDA: We would be branded cranks. The proof would
acquire absolute respectability and the lemmas would shake off sus-
picion. Our proof-analysis would soon be forgotten.1 Without
refutations one cannot sustain suspicion: the searchlight of suspicion
soon switches off if a counterexample does not reinforce it, directing
the limelight of refutation onto a neglected aspect of the proof that
had scarcely been noticed in the twilight o f trivial truth '.

All this shows that one cannot put proof and refutations into

1 It is well known that criticism may cast doubt on, and eventually refute, ' a priori
truths ' and so turn proofs into mere explanations. That lack of criticism or of refutation
may turn implausible conjectures into ' a priori truths' and so tentative explanations
into proofs is not so well-known but just as important. Two major examples of this
pattern are the emergence and fall of Euclid and Newton. The story of their fall is
well-known, but the story of their emergence is usually misrepresented.

Euclid's geometry seems to have been proposed as a cosmological theory (c£ Popper
[1952], pp. 147-148). Both its ' postulates ' and ' axioms ' (or ' common notions')
were proposed as bold, provocative propositions, challenging Parmenides and Zeno,
whose doctrines entailed not only the falsity, but even the logical falsity, the inconceiv-
ability, of these ' postulates '. Only later were the ' postulates ' taken to be indubi-
tably true and the bold anti-Parmenidean ' axioms' (such as ' the whole is greater
than the part') taken to be so trivial that they were omitted in later proof-analysis
and turned into ' hidden lemmas '. This process started with Aristotle: he branded
Zeno a quarrelsome crank, and his arguments ' sophistry '. This story was recently
unfolded in exciting detail by Arpid Szab6 ([i960], pp. 65-84). Szab6 showed that
in Euclid's time the word ' axiom '—like ' postulate '—meant a proposition in the
critical dialogue (dialectic) put forward to be tested for consequences without being ad-
mitted as true by the discussion-partner. It is the irony of history that its meaning
was turned upside down. The peak of Euclid's authority was reached in the Age of
Enlightenment. Clairaut urges his colleagues not to ' obscure proofs and disgust
readers ' by stating evident truths: Euclid did so only in order to convince ' obstinate
sophists ' ([1741], pp. x and xi).

Again, Newton's mechanics and theory of gravitation was put forward as a faring
guess, which was ridiculed and called ' occult' by Leibnitz and suspected even by
Newton himself. But a few decades later—in the absence of refutations—his axioms
came to be taken as indubitably true. Suspicions were forgotten, critics branded
' eccentric ' if not ' obscurantist'; some of his most doubtful assumptions came to
be regarded as so trivial that textbooks never even stated them. The debate—from
Kant to Poincare'—was no longer about the truth of Newtonian theory but about
the nature of its certainty. (This volteface in the appraisal of Newtonian theory was
first pointed out by Karl Popper—see his [1963], passim.)

The analogy between political ideologies and scientific theories is then more far-
reaching than is commonly realised: political ideologies which first may be debated
(and perhaps accepted only under pressure) may turn into unquestioned background
knowledge even in a single generation: the critics are forgotten (and perhaps executed)
until a revolution vindicates their objections.
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separate compartments. This is why I would propose to rechristen our
' method of lemma-incorporation ' the ' method of proof and refutations'.
Let me state its main aspects in three heuristic rules:
Rule i . If you have a conjecture, set out to prove it and to refute it. Inspect
the proof carefully to prepare a list of non-trivial lemmas [proof-analysis);
find counterexamples both to the conjecture {global counterexamples) and to the
suspect lemmas {local counterexamples).
Rule 2. If you have a global counterexample discard your conjecture, add to
your proof-analysis a suitable lemma that will be refuted by it, and replace
the discarded conjecture by an improved one that incorporates that lemma as a
condition} Do not allow a refutation to be dismissed as a monster? Make
all' hidden lemmas ' explicit*
Rule 3. If you have a local counterexample, check to see whether it is not
also a global counterexample. If it is, you can easily apply Rule 2.

(d) Proof versus proof-analysis. The relativisation of the concepts of
theorem and rigour in proof-analysis

ALPHA: What did you mean by ' suitable ' in your Rule 2?
GAMMA : It is completely redundant. Any lemma which is refuted

by the counterexample in question can be added—for any such lemma
will restore the validity of the proof-analysis.

LAMBDA : What! So a lemma like ' All polyhedra have at least
17 edges ' would take care of the cylinder! And any other random
ad hoc conjecture would do just as well, so long as it happened to be
refuted by the counterexample.

GAMMA: Why not?
LAMBDA: We already criticised monster-barrers and exception-

barrers for forgetting about proofs/ Now you are doing the same,
inventing a real monster: proof-analysis without proof\ The only
difference between you and the monsterbarrer is that you would have
Delta make his arbitrary definitions explicit and incorporate them into

1 This rule seems to have been stated for the first time by Ph. L. Seidel ([1847], p.

* ' I have the right to put forward any example that satisfies the conditions of your
argument and I strongly suspect that what you call bizarre, preposterous examples
are in fact embarrassing examples, prejudicial to your theorem ' (G. Darboux [1874]).

8 ' I am terrified by the hoard of implicit lemmas. It will take a lot of work to
get rid of them ' (G. Darboux [1883]).

* See Part II, 125 and 133
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the theorem as lemmas. And there is no difference between exception-
barring and your proof-analysing. The only safeguard against such
ad hoc methods is to use suitable lemmas, i.e. lemmas in accordance with
the spirit of the thought-experiment! Or would you drop the beauty
of the proofs from mathematics and replace it by a silly formal
game?

GAMMA : Better than your ' spirit of the thoughtexperiment'! I
am defending the objectivity of mathematics against your psycholo-
gism.

ALPHA: Thank you, Lambda, you restated my case: one does not
invent a new lemma out of the blue to cope with a global but not local
counterexample: rather, one inspects the proof with increased care
and discovers the lemma there. So I did not, dear Theta, ' make up '
hidden lemmas, and I did not, dear Kappa, ' smuggle ' them into the
proof. The proof contains all of them—but a mature mathematician
understands the entire proof from a brief outline. We should not
confuse infallible proof with inexact proof-analysis. There is still the
irrefutable master-theorem: ' All polyhedra on which one can perform the
thought-experiment, or briefly, all Cauchy-polyhedra, are Eulerian.' My
approximate proof-analysis drew the borderline of the class of Cauchy-
polyhedra with a pencil that—I admit—was not particularly sharp.
Now eccentric counterexamples teach us to sharpen our pencil. But
first: no pencil is absolutely sharp (and if we overdo sharpening it will
break); secondly, pencil-sharpening is not creative mathematics.

GAMMA: I am lost. What is your position? First you were a
champion of refutations.

ALPHA : Oh, my growing pains! Mature intuition brushes contro-
versy aside.

GAMMA : Your first mature intuition led you to your ' perfect
proof-analysis'. You thought that your 'pencil' was absolutely
sharp.

ALPHA : I forgot about the difficulties of linguistic communication
—especially with pedants and sceptics. But the heart of mathematics
is the thought-experiment—the proof. Its linguistic articulation—the
proof-analysis—is necessary for communication but irrelevant. lam
interested in polyhedra, you in language. Don't you see the poverty
of your counterexamples? They are linguistic, not polyhedral.

GAMMA : Then refuting a theorem only betrays our failure to grasp
the hidden lemmas in it? So a ' theorem' is meaningless unless we
understand its proof?
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ALPHA: Since the vagueness of language makes the rigour of proof-
analysis unattainable, and turns theorem-formation into an unending
process, why bother about the theorem? Working mathematicians
certainly do not. If yet another petty ' counterexample ' is produced
they do not admit that their theorem is refuted, but at most that its
' domain of validity ' should be suitably narrowed down.

LAMBDA : So you are not interestea either in counterexamples, or
in proof-analysis, or in lemma-incorporation?

ALPHA : That is right. I reject all your rules. I propose one
single rule instead: Construct rigorous (crystal-clear) proofs.

LAMBDA: YOU argue that the rigour of proof-analysis is unattainable.
Is the rigour of proof attainable? Cannot ' crystal-clear' thought-
experiments lead to paradoxical or even contradictory results?

ALPHA: Language is vague, but thought can achieve absolute
rigour.

LAMBDA: But surely ' at each stage of the evolution our fathers also
thought they had reached it? If they deceived themselves, do we not
Likewise cheat ourselves? >x

ALPHA: ' Today absolute rigour is attained.'2

[Giggling in the classroom.9]
GAMMA: This theory of ' crystal-clear ' proof is sheer psycholo-

gism!4

1 Poincan? [1905], p. 21^
2 Ibid. p. 216. Changes in the criterion of' rigour of the proof engender major

revolutions in mathematics. Pythagoreans held that rigorous proofs can only be
arithmetical. They however discovered a rigorous proof that ^ 2 was ' irrational'.
When this scandal eventually leaked out, die Criterion was changed: arithmetical
' intuition' was discredited and geometrical intuition took its place. This meant a
major and complicated reorganisation of mathematical knowledge (e.g. the theory of
proportions). In die eighteenth century ' misleading ' figures brought geometrical
proofs into disrepute, and the nineteenth century saw arithmetical intuition re-
enthroned with the help of die cumbersome theory of real numbers. Today the
main dispute is about what is rigorous and what not in set-dieoretical and meta-
mathematical proofs, as shown by the well-known discussions about the admissi-
bility of Zermelo's and Gentzen's dioughtexperiments.

3 As was already pointed out, the class is very advanced.
* The term ' psychologism ' was coined by Husserl ([1900]). For an earlier ' criti-

cism ' of psychologism see Frege [1893], pp. xv-xvi. Modern intuitionists (unlike
Alpha) openly embrace psychologism: ' A mathematical theorem expresses a purely
empirical fact, namely the success of a certain construction . . . mathematics is a
study of certain functions of the human mind ' (Hey ting [1956], pp. 8 and 10). How
diey reconcile psychologism with certainty is their well-kept secret
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ALPHA : Better than the logico-linguistic pedantry of your proof-
analysis ! *

LAMBDA: Swearwords apart, I too am sceptical about your con-
ception of mathematics as ' an essentially languageless activity of the
mind '.2 How can an activity be true or false? Only articulated thought
can try for truth. Proof cannot be enough: we also have to state what
the proof proved. The proof is only a stage of the mathematician's
work which has to be followed by proof-analysis and refutations and
concluded by the rigorous theorem. We have to combine the ' rigour
of proof' with the ' rigour of proof-analysis '.

ALPHA: Are you still hoping that at the end you will arrive at a
perfectly rigorous proof-analysis? If so, tell me why you did not
start by formulating your new theorem ' stimulated ' by the cylinder?
You only indicated it. Its length and clumsiness would have made us
laugh in despair. And this only after the first of your new counter-
examples! You replaced our original theorem by a succession of
ever more precise theorems—but only in theory. What about the
practice of this relativisation? Ever more eccentric counterexamples
will be countered by ever more trivial lemmas—yielding a ' vicious
infinity ' 3 of ever longer and clumsier theorems.4 If criticism was
felt to be invigorating while it seemed to lead to truth, now it is cer-
tainly frustrating when it destroys any truth whatsoever and drives us

1 That even if we had perfect knowledge we could not perfectly articulate it, was
a commonplace for ancient sceptics (see Sextus Empiricus [c. 19^, I. 83-87), but was
forgotten in the Enlightenment. It was rediscovered by the intuitionists: they
accepted Kant's philosophy of mathematics but pointed out that ' between the per-
fection of mathematics proper and the perfection of mathematical language no dear
connection can be seen' (Brouwer [1952], p. 140). 'Expression by spoken or written
word—though necessary for communication—is never adequate . . . The task of
science is not to study languages, but to create ideas' (Heyting [1939], pp. 74-75).

2 Brouwer [',952], p. 141
3 English has the term ' infinite regress', but this is only a special case of' vicious

infinity ' (schlechte Unendlichkeit) and would not apply here. Alpha obviously
coined this phrase with ' vicious circle ' in mind.

1 Usually mathematicians avoid long dieorems by the alternative device of long
definitions, so that in the theorems only the defined terms (eg. ' ordinary poly-
hedron ') appear—this is more economical since one definition abbreviates many
theorems. Even so, the definitions take up enormous space in ' rigorous' exposi-
tions, diough the monsters which lead to diem are seldom mentioned. The definition
of an ' Euler polyhedron ' (widi the definitions of some of die defining terms) takes
about 2 j lines in Forder [1927] (pp. 67 and 29); the definition of' ordinary polyhedron '
in the 1962 edition of the Encyclopaedia Britannica fi11< 45 lines.
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PROOFS AND REFUTATIONS (III)

endlessly without purpose. I stop this vicious infinity in thought—
you will never stop it in language.

GAMMA: But I never said that there have to be infinitely many
counterexamples. At a certain point we may reach truth and then the
flow of refutations will stop. But of course we shall not know when.
Only refutations are conclusive—proofs are a matter of psychology.1

LAMBDA: I still trust that the light of absolute certainty will flash
up when refutations peter out!

KAPPA: But will they? What if God created polyhedra so that
all true universal statements about them—formulated in human lang-
uage—are infinitely long? Is it not blasphemous anthropomorphism
to assume that (divine) true theorems are of finite length?

Be frank: for some reason or other you are all bored with refuta-
tions and piecemeal theorem-formation. Why not call it a day and
stop the game? You already gave up ' Quod ex at demonstrandum'.
Why not give up ' Quod erat demonstratum' too? Truth is only for God.

THETA [aside]: A religious sceptic is the worst enemy of science!
SIGMA: Let's not overdramatise! After all, only a narrow pe-

numbra of vagueness is at stake. It is simply that, as I said before,
not all propositions are true or false. There is a third class which I would
now call ' more or less rigorous '.

THETA [aside]: Three-valued logic—the end of critical rationality!
SIGMA: . . . and we state their domain of validity with a rigour that

is more or less adequate.
ALPHA: Adequate for what?
SIGMA: Adequate for the solution of the problem which we want

to solve.
THETA [aside]: Pragmatism! Has everybody lost interest in truth'?
KAPPA : Or adequate for the Zeitgeist! ' Sufficient unto the day is

the rigour thereof.' i

THETA: Historicism! [Faints].
ALPHA : Lambda's rules for ' rigorous proof-analysis ' deprive mathe-

matics of its beauty, present us with the hairsplitting pedantry of long,
clumsy theorems filling dull thick books, and will eventually land us
in vicious infinity. Kappa's escape-route is convention, Sigma's
mathematical pragmatism. What a choice for a rationalist!

GAMMA: SO a rationalist ought to relish Alpha's ' rigorous proofs',
inarticulate intuition, ' hidden lemmas ', derision of the Principle of

1 Logic make* us reject certain arguments, but it cannot make us believe any
argument' (Lebesgue [1928], p. 328). *E. H. Moore [1902], p. 411
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I. LAKATOS

Retransmission of Falsity, and elimination of refutations? Should
mathematics have no relation to criticism and logic? r

BETA: Whatever the case, I am fed up with all this inconclusive
verbal quibble. I want to do mathematics and I am not interested in the
philosophical difficulties of justifying its foundations. Even if reason
fails to provide such justification my natural instinct reassures me.1

I understand Omega has an interesting collection of alternative
proofs—I would rather listen to him.

OMEGA : But I shall put them into a ' philosophical' framework!
BETA: I don't mind packing if there is something else in the packet.

Note. In this section I have tried to show how the emergence of mathemat-
ical criticism has been the driving force in the search for the ' foundations '
of mathematics.

The distinction that we made between proof and proof-analysis and the
corresponding distinction between the rigour of proof and the rigour of proof-
analysis seems to be crucial. About 1800 the rigour of proof (crystal-dear
thought experiment or construction) was contrasted with muddled argument
and inductive generalisation. This was what Euler meant by ' rigida
demonstratio ', and Kant's idea of infallible mathematics too was based on this
concept (see his paradigm case of a mathematical proof in his [1781], pp.
716-717). It was also thought that one proves what one has set out to
prove. It did not occur to anybody that the verbal articulation of a thought-
experiment involves any real difficulty. Aristotelian formal logic and
madiematics were two completely separate disciplines—mathematicians
considered the former as utterly useless. The proof or thoughtexperiment
carried full conviction without any deductive pattern or ' logical' structure.

In the early nineteenth century the flood of counterexamples brought
confusion. Since proofs were crystal-dear, refutations had to be miraculous
freaks, to be completely segregated from the indubitable proofs. Cauchy's
revolution of rigour rested on the heuristic innovation that the mathematician
should not stop at the proof: he should go on and find out what he has
proved by enumerating the exceptions, or rather by stating a safe domain
where the proof is valid. But Cauchy—or Abel—did not see any connection

1 ' Nature confutes die sceptics, reason confutes the dogmatists' (Pascal [1654],
Aff)- Few mathematicians would confess—like Beta—that reason is too weak to
justify itself! Most of them adopt some brand of dogmatism, historicism or confused
pragmatism and remain curiously blind to its untenability; for example: ' Mathemat-
ical truths are in fact the prototype of the completely incontestable. . . . But the rigor of
maths is not absolute; it is in a process of continual development; the principles of
maths have not congealed once and for all but have a life of their own and may even
be the subject of scientific quarrels '(A. D. Alexandrov [1947], p. 7). (This quotation
may remind us that dialectic tries to account for change without using criticism:
truths are in ' in continual development' but always ' completely incontestable '.)
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PROOFS AND REFUTATIONS (III)

between the two problems. It never occurred to them that if they discover an
exception, they sh ould have another look at the proof. (Others practised monster-
barring, monster-adjustment or even ' turning a blind eye '—but all agreed
that the proof was taboo and had nothing to do with the ' exceptions '.)

The nineteenth century union of logic and mathematics had two main
sources: Non-Euclidean geometry and the Weierstrassian revolution of rigour.
They brought about the integration of proof (thoughtexperiment) and
refutations and started to develop proof-analysis, gradually introducing
deductive patterns in the proof-thoughtcxperiment. What we called the
' method of proof and refutations ' was their heuristic innovation: it united
logic and mathematics for the first time. Weierstrassian rigour triumphed over
its reactionary monster-barring and lemma-hiding opponents who used
slogans like ' the dullness of rigour',' artificiality versus beauty ', etc. The
rigour of proof-analysis superseded the rigour of proof, but most mathematicians
put up with its pedantry only so long as it promised them complete certainty.

Cantor's set-theory—with yet another crop of unexpected refutations of
' rigorous ' theorems—turned many of the Weierstrassian Old Guard into
dogmatists, ever ready to combat the ' anarchists' by barring the new
monsters or referring to * hidden lemmas' in their theorems which repre-
sented ' the last word in rigour' while still chastising the older type ' reac-
tionaries ' for like sins.

Then some mathematicians realised that the drive for rigour of proof-
analysis in the method of proofs and refutations leads to vicious infinity. An
' intuitionist' counter-revolution began: the frustrating logico-linguistic
pedantry of proof-analysis was condemned, and new extremist standards of
rigour were invented for proofs; mathematics and logic were divorced once
more.

Logicists tried to save the marriage and foundered on the paradoxes.
Hilbertian rigour turned mathematics into a cobweb of proof-analyses and
claimed to stop their infinite regresses by crystal-dear consistency proofs of
his intuitionistic metatheory. The ' foundational layer ', the region of un-
criticisable familiarity, was shifted into the thoughtexperiments of meta-
mathematics. (Cf. Lakatos [1962], pp. 179-184).

By each ' revolution of rigour ' proof-analysis penetrated deeper into the
proofs down to the foundational layer o f familiar background knowledge '
(also cf. footnote 3, p. 224), where crystal-clear intuition, the rigour of the
proof, reigned supreme and criticism was banned. Thus, different levels of
rigour differ only about where they draw the line between the rigour of proof-
analysis and the rigour of proof, i.e. about where criticism should stop and justi-
fication should start. *" TZertainty îs never achieved , ' foundations ' are never
found—but the 'running of reason' turns each increase in rigour into an
increase in content, in the scope of mathematics. But this story is beyond our
present investigation.
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I. LAKATOS

6 Return to the Criticism of the Proof by Counterexamples which are Local
but not Global. The Problem of Content.

{a) Increasing Content by Deeper Proofs

OMEGA: I like Lambda's method of proof and refutations and I
share his faith that somehow we shall finally arrive at a rigorous proof-
analysis and thereby at a certainly true theorem. But even so, our very
method creates a new problem: proof-analysis, when increasing certainty,
decreases content. Each new lemma in the proof-analysis, each corres-
ponding new condition in the theorem, reduces its domain. In-
creasing rigour is applied to a decreasing number of polyhedra. Does
lemma-incorporation not repeat the mistake Beta made in playing for
safety? Could we too ' have withdrawn too radically, leaving lots of
Eulerian polyhedra outside the walls? ' x In both cases we may throw
the baby out with the bathwater. We should have a counterweight
against the content-decreasing pressure of rigour.

We have already made a few steps in this direction. Let me re-
mind you of two cases and re-examine them.

One was when we first came across local but not global counter-
examples.8 Gamma refuted the third lemma in our first proof-analy-
sis (that' in removing triangles from the flat triangulated network we
have only two possibilities: either we remove an edge or we remove
two edges and a vertex '). He removed a triangle from the middle of
the network without removing a single edge or vertex.

We then had two possibilities. 3 The first was to incorporate the false
lemma into the theorem. This would have been a perfectly proper
procedure as far as certainty is concerned, but would have reduced the
domain of the theorem so drastically that it would have applied only
for the tetrahedron. Together with the counterexamples we would
have thrown out all the examples but one.

This was the rationale behind our adoption of the alternative:
instead of narrowing the domain of the theorem by lemma-incorpor-
ation, we widened it by replacing the falsified lemma by an unfalsified
one. But this vital pattern for theorem-formation was soon forgotten
and Lambda did not bother to formulate it as a heuristic rule. It
should be:

1 Part II, p. 125 * For the discussion of this first case see Part 1, pp. 11-14.
3 Omega seems to ignore a third possibility: Gamma may very well claim that

since local but not global counterexamples do not show up any violation of theprindple
of retransmission of falsity, there is no action to be taken.
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Rule 4. If you have a counterexample which is local but not global try to
improve your proof-analysis by replacing the refuted lemma by an un-
falsified one.

Counterexamples of the first type (local but not global) may provide
an opportunity of increasing the content of our theorem which is
constantly being reduced under the pressure of counterexamples of the
third type (global but not local).

GAMMA: Rule 4 shows up again the weakness of Alpha's now dis-
carded ' perfect proof-analysing intuition '-1 He would have listed
the suspicious lemmas, incorporated them immediately and—without
caring for counterexamples—formed near-empty theorems.

TEACHER: Omega, let us hear the second example you promised.
OMEGA : In Beta's proof-analysis the second lemma was that ' all

faces, are triangular '.s This can be falsified by a number of local but
not global counterexamples, e.g. by the cube or the dodecahedron.
Therefore you, Sir, replaced it by a lemma which is not falsified by
them, namely that ' any face dissected by a diagonal edge falls into two
pieces '. But instead of invoking Rule 4 you rebuked Beta for ' care-
less proof-analysis '. You will admit that Rule 4 is better advice than
just ' be more careful'. ^ ^ ^

BETA : You are right, jGa«rrrra7 and you also make me understand
better ' the method of the best sort of exceptionbarrers '.s They start
with a cautious, ' safe ' proof-analysis and systematically applying Rule
4 they gradually build up the theorem without uttering a falsehood.
After all, it is a matter of temperament whether one approaches truth
through ever false overstatements or through ever true understatements.

OMEGA: That may be right. But one can interpret Rule 4 in two
ways. Hitherto we considered only the first, weaker interpretation:
' one easily elaborates, improves the proof by replacing the false lemma
by a slightly modified one which the counterexample will not refute ' ;*
all that one needs for this is a ' more careful' inspection of the proof and
a ' trifling observation '.s On this interpretation Rule 4 is just local
patching within the framework of the original proof.

I allow also for the alternative, radical interpretation: to replace
the lemma—or possibly all the lemmas—not only by trying to squeeze
out the last drop of content from the given proof, but possibly by
inventing a completely different, more embracing, deeper proof.

TEACHER: For example?
1 C£ pp. 225-6. 2 For the discussion of this second case c£ Part n, pp.132-4
8 Sec Part II, pp. 134-135 * Part I, p. 12 * Ibid.
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I. LAKATOS

OMEGA: I discussed the Descartes-Euler conjecture earlier with a
friend who immediately offered a proof, as follows: let us imagine the
polyhedron to be hollow, with a surface made of any rigid material,
say cardboard. The edges must be clearly painted on its inside.
Let the inside be well illuminated, and let one of the faces be the lens
of an ordinary camera—that face from which I can take a snapshot
showing all edges and vertices.

SIGMA [aside]: A camera in a mathematical proof?
OMEGA: SO I get a picture of a plane network, which can be

dealt with just like the plane network in your proof. Also in the
same way, I can show that, if the faces are simply-connected, V— E
-f- F= i, and adding the lens-face which is invisible on the photo, I
get Euler's formula. The main lemma is that there is a face of the
polyhedron which, if transformed into the lens of a camera, photo-
graphs the inside of the polyhedron so that all the edges and all the
vertices are on the film. Now I introduce the following abbreviation:
instead of' a polyhedron which has at least one face from which we
can photograph all the inside ', I shall say' a quasi-convex polyhedron '.

BETA: SO your theorem will be: All quasi-convex polyhedra with
simply-connected faces are Eulerian.

OMEGA : For brevity and to give credit to the inventor of this
particular proof-idea I would rather say: 'All Gergonne-polyhedra are
Eulerian '>

GAMMA: But there are many simple polyhedra which, although
perfectly Eulerian, are so badly indented that they have no face from
which the whole of the inside can be photographed! Gergonne's
proof is not deeper than Cauchy's—it is Cauchy's that is deeper than
Gergonne's!

OMEGA : Of course! I suppose Teacher knew about Gergonne's
proof, found out that it was unsatisfactory by some local but not

1 Gergonne's proof is to be found in Lhirilicr [1812-13], pp. 177-9. In the original
it could not of course contain photographic devices. It says: ' Take a polyhedron,
one of its faces being transparent; and imagine that the eye approaches this face from
the outside, so closely, that it can perceive the inside of all the other faces . . . "
Gergonne points out modestly that Cauchy's proof is deeper, it ' has the valuable
advantage that it does not assume convexity at all'. (It does not occur to him how-
ever to ask what it does assume.) Jacob Steiner later rediscovered essentially the
same proof ([1826]). His attention was then called to Gergonne's priority, so he read
Lhuilier's paper with the list of exceptions but this did not prevent him from con-
cluding his proof with the ' dieorem ' : ' AH polyhedra are Eulerian '. (It waj Steiner'j
paper that provoked Hcssel—the Lhuilier of the Germans—to write his [1832]).
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global counterexample and replaced the optical—photographing—
lemma by the wider topological—stretching—lemma. Thereby, he
arrived at the deeper Cauchy proof, not by a ' careful proof-analysis'
followed by a slight alteration, but by a radical, imaginative inno-
vation.

TEACHER: I accept your example—but I did not know about
Gergonne's proof. But if you did, why did you not tell us about it?

OMEGA: Because I immediately refuted it by non-Gergonnian
polyhedra that were Eulerian.

GAMMA: AS I have just said, I too found such polyhedra. But is
that a reason for scrapping the proof altogether?

OMEGA: I think so.
TEACHER: Have you heard of Legendre's proof? Would you

scrap that too?
OMEGA: I certainly would. It is still less satisfactory: its content

is even poorer than Gergonne's proof. His thought-experiment
started by mapping the polyhedron with a central projection on to a
sphere containing the polyhedron. The radius of the sphere he chose
as i. He chose the centre of the projection so that the sphere will be
covered completely, once but only once, by a network of spherical
polygons. So his first lemma was that such a point exists. His
second lemma was that for the polyhedral network on the sphere
V — E-\- F= 2—but this he succeeded in decomposing into trivially
true lemmas of spherical trigonometry. But a point from which
such a central projection is possible exists only in convex and a few
decent ' almost-convex' polyhedra—a class narrower even than that
of 'quasi-convex' polyhedra. But this theorem: ' All Legendre-
polyhedra are Eulerian '* differs completely from that of Cauchy, but

1 Legendre's proof can be found in his [1794], but not the proof-generated theorem,
since proof-analysis and theorem-formation were virtually unknown in the 18th
century. Legendre first defines polyhedra as solids whose surface consists of poly-
gonal faces (p. 161). Then he proves V — E + F = 2 in general (p. 228). But there
is an exception-barring amendment in a note in fine print on p. 164, saying that only
convex polyhedra will be considered. He ignored the almost convex fringe. Poinsot
was first, in his [1809], to notice when commenting on Legendre's proof, that the
Euler formula ' is valid not only for ordinary convex solids, namely, for those whose
surface is cut by a straight line in no more than two points: it also holds for polyhedra
with re-entrant angles, provided one can find a point in the interior of the solid
which serves as the centre of a sphere on to which one can project the faces of the
polyhedron by lines leading from the centre, so that the projected faces do not over-
lap. This applies to an infinity of polyhedra with re-entrant angles. In fact, Le-
gendre's proof applies, as it stands, to all these additional polyhedra ' (p. 46).
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I. LAKATOS

only for the worse. It is ' unfortunately incomplete '-1 It is a ' vain
effort which presupposes conditions on which the Euler theorem
does not depend at all. It has to be scrapped and one has to look for
more general principles \ 2

BETA: Omega is right. ' Convexity is to a certain extent accidental
for Eulerianness. A convex polyhedron might be transformed, for
example by a dent or by pushing in one or more of the vertices,
into a non-convex polyhedron with the same configurational numbers.
Euler's relation corresponds to something more fundamental than
convexity.'3 And you will never capture that by your ' almost' and
' quasi-' frills.

OMEGA: I thought Teacher had captured it in the topological
principles of the Cauchy proof in which all the lemmas of Legendre's
proof are replaced by completely new ones. But then I stumbled
upon a polyhedron that refuted even this proof which is certainly the
deepest hitherto. •

TEACHER: Let us hear about it.
OMEGA: YOU all remember Gamma's ' urchin' (Fig. 7). That was

of course non-Eulerian. But not all star-polyhedra are non-Eulerian!

FIG. 15

Take for instance the 'great stellated dodecahedron', (Fig. 15). It
consists, like the ' small stellated dodecahedron ' of pentagrams, but

1 E . de Jonqirieres goes on, again lifting an argilment from Poinsot's [1858]:
' In invoking Legendre, and like high authorities, one only fosters a widely spread
prejudice that has captured even some of the best intellects: that the domain of
validity of the Euler theorem consists only of convex polyhedra ' ([1890a], p. i n ) .

1 This is from Poinsot ([1858], p. 70).
3 D. M. Y. Sommerville ([1929], pp. 143-4)
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differently arranged. It has 12 faces, 30 edges and 20 vertices, so
that V— E + F= 2.1

TEACHER: DO you then reject our proof?
OMEGA: I do. The satisfactory proof has to explain the Eulerian-

ness also of the ' great stellated dodecahedron '.
RHO : Why not admit that your ' great stellated dodecahedron ' is

triangular? Your difficulties are imaginary.
DELTA: I agree. But they are imaginary for a different reason. I

have taken to star-polyhedra now: they are fascinating. But they
are, I am afraid, essentially different from ordinary polyhedra: there-
fore one cannot possibly conceive a proof that would explain the
Eulerian character of, say, the cube, and of the ' great stellated dodeca-
hedron ' by one single idea.

OMEGA : Why not? You have no imagination. Would you have
insisted after Gergonne's and before Cauchy's proof that concave and
convex polyhedra are essentially different: therefore one cannot
possibly conceive of a proof that would explain the Eulerian character
of convex and concave polyhedra by one single idea? Let me quote
from Galileo's Dialogues:

SAGREDO: SO as you see, all planets and satellites—let us call them all
' planets '—are moving in ellipses.

SALVIATI: I am afraid there are planets moving in parabolas. Look
at this stone. I throw it away: it moves along a parabola.

SiMPLiao: But this stone is not a planet! These are two quite separate
phenomena!

SALVIATI : Of course this stone is a planet, only thrown with a less mighty
hand than that one which launched the Moon.

SiMPLiao: Nonsense! How can you dare to pool under one head
heavenly and earthly phenomena? One has nothing to do with the
other! Of course both may be explained by proofs, but I surely
expect the two explanations to be totally different! I cannot imagine
a proof which should explain the course of a planet in heaven and a
projectile on the earth by one single idea!

SALVIATI : You cannot imagine it but I can devise it . . .2

TEACHER: Never mind projectiles and planets, Omega, have you
succeeded in finding a proof to embrace both ordinary Eulerian
polyhedra and Eulerian star-polyhedra?

1 This ' great stellated dodecahedron.' has already been devised by Kepler ([1619],
p. 53), then independently, by Poinsot ({1809]), who first tested if for Eulerianness.
Fig. 15 is copied from Kepler's book.

2 I was unable to trace this quotation.
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OMEGA: I have not. But I shall.1

LAMBDA: Say you do—what is the matter with Cauchy's proof?
You must explain why you reject one proof after the other.

(b) Drive towards final proofs and corresponding sufficient and necessary
conditions.

OMEGA: YOU criticised proof-analyses for the breakdown of the
retransmission of falsity by counterexamples of the third type. Now I
criticise them for the breakdown of the transmission of falsity (or what
amounts to the same, the retransmission of truth) by counterexamples of
the second type. A proof must explain the phenomenon of Eulerian-
ness in its entire range.

My quest is not only for certainty but also for finality. The theorem
has to be certain—there must not be any counterexamples within its
domain; but it has also to be final: there must not be any examples
outside its domain. I want to draw a dividing line between examples
and counterexamples, and not just between a safe domain of a few
examples on the one hand and a mixed bag of examples and counter-
examples on the other.

LAMBDA : Or, you want the conditions of the theorem to be not
only sufficient, but also necessary!

KAPPA: Let us imagine then, for the sake of the argument, that you
found such a master-theorem: ' All master-polyhedra areEulerian '. Do
you realise that this theorem will only be ' final' if the converse
theorem: ' All Eulerian polyhedra are master-polyhedra ' is certain?

OMEGA: Of course.
KAPPA : That is, if certainty gets lost in vicious infinity, so will

finality? You will find at least one Eulerian polyhedron outside the
domain of each of your ever deeper proofs.

OMEGA: Of course I know that I cannot solve the problem of
finality without solving the problem of certainty. I am sure we shall
solve both. We shall stop the infinite spate of counterexamples both
of the first and the third types.

TEACHER: Your search for increasing content is very important.
But why not accept your second criterion of satisfactoriness—finality—
as mandatory but not obligatory? Why reject interesting proofs that
do not contain both sufficient and necessary conditions? Why regard
them as refuted?

1 C£ footnote i, p. 244.
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OMEGA: Well. . .J

LAMBDA: Whatever the case, Omega certainly convinced me that
a single proof may not be enough for the critical improvement of
a naive conjecture. Our method should include the radical version of
his Rule 4, and then it should be called the method of' proofs and refu-
tations ' instead of' proof and refutations '.

Mu: Excuse my butting in, I have just translated the results of
your discussion into quasi-topological terms: The lemma-incorporating
method yielded a contracting sequence of the nested domains of suc-
cessive improved theorems; these domains shrank under the continued
attack of global counterexamples in the course of the emergence of
hidden lemmas and converged to a limit: let us call this limit the ' domain
of the proof-analysis'. If we apply the weaker version of Rule 4, this
domain can be widened under the continued pressure of local counter-
examples. This expanding sequence again will have a limit: I shall
call it the ' domain of the proof. The discussion then has shown that
even this limit domain may be too narrow (perhaps even empty). We
may have to devise deeper proofs whose domains will form an expanding
sequence, including more and more recalcitrant Eulerian polyhedra
which were local counterexamples to previous proofs. These domains,
themselves limit-domains, will converge to the double limit of the
'domain of the naive conjecture'—which is after all the aim of the inquiry.

The topology of this heuristic space will be a problem for mathe-
matical philosophy: will the sequences be infinite, will they converge
at all, attain the limit, may the limit be the empty set?

EPSHON: I found a deeper proof than Cauchy's which explains also
the Eulerianness of Omega's ' great stellated dodecahedron '! [Passes
a note to the Teacher.]

OMEGA: The final proof! The true essence of Eulerianness will
now be revealed!

1 The answer is in the celebrated Pappian heuristic of antiquity which applied only
to the discovery of' final', ' ultimate ' truths, i.e. to theorems which contained both
necessary and sufficient conditions. For ' problems to prove ' the main rule of this
heuristic was: ' If you have a conjecture, derive consequences from it. If you arrive
at a consequence known to be false, the conjecture was false. If you arrive at a
consequence known to be true, reverse the order and, if the conjecture can be thus
derived from this true consequence, then it was true.' (Cf Heath [1925], I, pp. 138-
139.) The principle ' causa aequat effectu ' and the quest for theorems with necessary
and sufficient conditions were both in this tradition. It was only in die seventeenth
century—when all the efforts to apply Pappian heuristic to modern science had failed
—diat the quest for certainty came to prevail over the quest for finality.
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I. LAKATOS

TEACHER: I am sorry, time is running short: we shall have to discuss
Epsilon's very sophisticated proof some other time.1 All I do see is
that it will not be final in Omega's sense. Yes, Beta?

(c) Different proofs yield different theorems

BETA : The most interesting point I have learned from this discussion
is that different proofs of the same naive conjecture lead to quite
different theorems. The one Descartes-Euler conjecture is improved by
each proof into a different theorem. Our original proof yielded: ' All
Cauchy-polyhedra are Eulerian.' Now we have learned about two com-
pletely different theorems: ' All Gergonne-polyhedra are Eulerian ' and
' All Legendre-polyhedra are Eulerian '. Three proofs, three theorems
with one common ancestor.* The usual expression ' different proofs
of the Euler theorem ' is then confusing, for it conceals the vital role of
proofs in theorem-formation.8 , l j M

1 The proof is Poincare''s (cf. his [1893] and [1900]).
2 There are many other proofs of the Euler conjecture. For a detailed heuristic

discussion of Eulcr's, Jordan's and Poincare's proofs see Lakatos [1961].
3 Poinsot, Lhuilier, Cauchy, Steiner, Crelle all thought that the different proofs

prove the same theorem: the ' Euler-theorem'. To quote a characteristic sentence
from a standard textbook: ' The theorem stems from Euler, the first proof from
Legendre, the second from Cauchy ' (Crelle [1827], II, p. 671).

Poinsot came very near to noticing the difference when he observed that Legendre's
proof applied to more than just ordinary convex polyhedra. (See footnote 1 on p.
239.) But when he then compared Legendre's proof with Euler's proof (that one
which was based on cutting off pyramidal comers of the polyhedron and arriving
at a final tetrahedron without changing the Euler-characteristic [iyjt]) he gave
preference to Legendre's on the ground of' simplicity'. ' Simplicity • stands here
for the eighteenth-century idea of rigour: clarity in the thoughtexperiment. It did
not occur to him to compare the two proofs for content: then Euler's proof would have
turned out to be superior. (As a matter of fact, there is nothing wrong with Euler's
proof. Legendre applied the subjective standard of contemporary rigour and neglec-
ted the objective one of content).

LhuilicT—in a surreptitious criticism of this passage (he does not mention Poinsot)—
points out that Legendre's simplicity is only ' apparent', for it presumes considerable
background knowledge in spherical trigonometry ([1812-13], p. 171). But Lhuilier
too believes that Legendre 'proved the same theorem ' as Euler (ibid. p. 170).

Jacob Steiner joins him in the appraisal of Legend e's proof and in assuming that
all proofs prove the same theorem ([1826]). The only difference is that while accord-
ing to Steiner all the different proofs prove that' all polyhedra are Eulerian ', according
to Lhuilier all the different proofs prove that' all polyhedra that have no tunnels, cavities
and ringshaped faces are Eulerian '.

Cauchy wrote his [1811] on polyhedra when he was in his early twenties, years
before his revolution of rigour and one cannot take it amiss that he repeats Poinsot's
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PROOFS AND REFUTATIONS (III)

Pi: The difference between the different proofs goes much deeper.
Only the naive conjecture is about polyhedra. The theorems are
about Cauchy-objects, Gergonnian objects, Legendrian objects re-
spectively, but not any more about polyhedra.

BETA : Are you trying to be funny?
Pi: NO, I shall explain my point. But I would do this in a wider

context—I want to discuss concept-formation in general.
ZBTA: We should rather first discuss content. I found Omega's

Rule 4 very weak—even in his radical interpretation.2

TEACHER: Right. Let us then first hear beta's approach to the
problem of content and then wind up our debate with a discus-
sion of concept-formation.

comparison of Euler's and Legendre's proofs in the introduction to the second part
of his treatise. He—like most of his contemporaries—did not grasp the difference in
depth of different proofi and so could not appreciate the real power of his own proof
He thought he had just given yet another proof of the very same theorem—but he was
rather eager to stress that he had arrived at a rather trivial generalisation of theEuler-
formula to certain aggregates of polyhedra.

Cergonne was the first to appreciate the unrivalled depdi of Cauchy's proof
(Lhuilier [1812-13], p. 179).

* See p. 237.

(To be continued)
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PROOFS AND REFUTATIONS (IV)*

I. LAKATOS

§ 7. The Problem of Content Revisited.

(<J) The naivete" of the naive conjecture.
(b) Induction as the basis of the method of proofs and refutations.
(c) Deductive guessing versus naive guessing.
(d) Increasing content by deductive guessing.
(e) Logical versus heuristic counterexamples.

§ 8. Concept-formation.

(a) Refutation by concept-stretching. A reappraisal of monster-
barring—and of the concepts of error and refutation.

(b) Proof-generated versus naive concepts. Theoretical versus
naive classification.

(c) Logical and heuristic refutations revisited.
(d) Theoretical versus naive concept-stretching. Continuous versus

critical growth.

§ 9. How Criticism may turn Mathematical Truth into Logical Truth.

(a) Unlimited concept-stretching destroys meaning and truth.
(b) Mitigated concept-stretching may turn mathematical truth into

logical truth.

7 The Problem of Content Revisited

(a) The naivete" of the naive conjecture

ZETA: I agree with Omega in deploring the fact that monster-
barrers, exceptionbarrers and lemma-incorporators all strove for
certain truth at the expense of content. But his Rule 4,1 demanding
deeper proofs of the same naive conjecture, is not enough. Why
should our search for content be delimited by the first naive conjecture
we stumble upon? Why should the aim of our enquiry be the 'domain
of the naive conjecture '?

OMEGA : I don't follow you. Surely our problem was to discover
the domain of truth of V— E-\-F= 2?

* Parts I, II and III appeared in the preceding numbers.
1 See Part m, p. 237
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PROOFS AND REFUTATIONS (IV)

ZETA: It was not! Our problem was to find out the relation
between V, E and F for any polyhedron whatsoever. It was a sheer
accident that we first got familiar with polyhedra for which V— E-\-F
= 2. But a critical inquiry into these ' Eulerian' polyhedra showed
us that there are many more non-Eulerian than Eulerian polyhedra.
Why not look for the domain of V—E+F= —6, V—E+F= 28 or
V— E-\-F= 0? Aren't they equally interesting?

SIGMA: YOU are right. We paid so much attention to V—E-\-F
= 2 only because we originally thought it was true. Now we know
it is not—we have to find a new, deeper naive conjecture . . .

ZETA : . . . that will be less naive. . . .
SIGMA: . . . that will be a relation between V, E, and F for any

polyhedron.
OMEGA : Why rush? Let us first solve the more modest problem

that we set out to solve: to explain why some polyhedra are Eulerian.
Until now we have arrived only at partial explana-
tions. For instance, none of the proofs found has
explained why a picture-frame with ringshaped
faces both in the front and in the back is Eulerian
(Fig. 16). It has 16 vertices, 24 edges and 8 faces

THETA: It is certainly not a Cauchy-poly-
hedron: it has a tunnel, it has ringshaped faces. . . . G-

BETA: And yet Eulerian! How irrational! Is a polyhedron
guilty of a single fault—a tunnel without ringshaped faces (Fig. 9)—to
be cast out among the goats, yet one which offends in twice as many
ways—having also ringshaped faces (Fig. 16)—admitted to the
sheep?1

OMEGA: YOU see, Zeta, we have enough puzzles about Eulerian
polyhedra. Let us solve them before we go on to a more general
problem.

ZETA: NO, Omega. ' More questions may be easier to answer
than just one question. A new more ambitious problem may be
easier to handle than the original problem.'2 Indeed, I shall show you
that your narrow, accidental problem can only be solved by solving
the wider, essential problem.

OMEGA: But I want to discover the secret of Eulerianness!
1 The problem was noticed by Lhuilier ([1812-13], p. 189) and, independently, by

Hessel [1832]. In Hessel's paper the figures of the two picture-frames appear next to
each other. Also c£ p. 309 footnote 1.

2 P6lya calls this the ' inventor's paradox ' ([1945], p. no) .
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I. LAKATOS

ZETA: I understand your resistance. You have fallen in love with
the problem of finding out where God drew the firmament dividing
Eulerian from non-Eulerian polyhedra. But there is no reason to
believe that the term ' Eulerian' occurred in God's blueprint of the
universe at all. What if Eulerianness is merely an accidental property
of some polyhedra? In this case it would be uninteresting or even
impossible to find out the random zigzags of the demarcation line
between Eulerian and non-Eulerian polyhedra. Such an admission
however would leave rationalism unsullied, for Eulerianness is then not
part of the rational design of the universe. So let us forget about it.
One of the main points about critical rationalism is that one is always
prepared to abandon one's original problem in the course of the
solution and replace it by another one.

(b) Induction as the basis of the method of proofs and refutations

SIGMA: Zeta is right. What a disaster!
ZETA: Disaster?
SIGMA : Yes. You now want a new ' naive conjecture ' about the

relation between V, E and F, for any polyhedron, don't you? Impos-
sible ! Look at the vast crowd of counterexamples. Polyhedra with
cavities, polyhedra with ringshaped faces, with tunnels, joined to-
gether at edges, vertices . . . V—E-\- F can take any value whatsoever!
You cannot possibly recognise any order in this chaos! We have
left the firm ground of Eulerian polyhedra for a swamp! We have
irretrievably lost a naive conjecture and have no hope of getting
another one!

ZETA: But . . .

BETA: Why not? Remember the seemingly hopeless chaos in
our table of the numbers of vertices, edges and faces even of the most
ordinary convex polyhedra:

Polyhedron
I cube

II triangular prism
III pentagonal prism
IV square pyramid
V triangular pyramid

VT pentagonal pyramid
VTI octahedron

VHI ' tower'
IX ' truncated cube '

F
6

5
7
5
4
6
8
9
7

V
8
6

10

5
4
6
6

9
10

E
12

9
15
8
6

10

12

16

15
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PROOFS AND REFUTATIONS (IV)

We failed so many times to fit them into a formula.1 But
then suddenly the real regularity governing them struck us:
V-E+F= 2.

KAPPA [aside]: ' Real regularity '? Funny expression for an utter
falsehood.

BETA: All that we have to do now is to complete our table with
the data for non-Eulerian polyhedra and look for a new formula:
with patient, diligent observation, and some luck, we shall hit on the
right one; then we can improve it again by applying the method of
proofs and refutations!

ZETA: Patient, diligent observation? Trying one formula after
the other? Perhaps you will devise a guessing machine that produces
random formulas and tests them against your table? Is this your idea
of how science progresses?

BETA: I don't understand your scorn. Surely you agree that our
first knowledge, our naive conjectures, can only come from diligent
observation and sudden insight, however much our critical method of
' proofs and refutations ' takes over once we have found a naive con-
jecture? Any deductive method has to start from an inductive
basis!

SIGMA: Your inductive method will never succeed. We only
arrived at V— £ + F = 2 because there happened to be no picture-
frame or urchin in our original tables. Now that this historical
accident. . . .

KAPPA [aside]: . . . or God's benevolent guidance. . . .
SIGMA : . . . is no more, you will never ' induce' order from

chaos. We started with long observation and lucky insight—and
failed. Now you propose to start again with longer observation and
luckier insight. Even if we did arrive at a new naive conjecture
—which I doubt—we shall only end up in the same mess.

BETA: Perhaps we should give up research altogether? We have
to start again—first with a new naive conjecture and then going again
through the method of proofs and refutations.

ZETA: NO, Beta. I agree with Sigma—therefore I shall not start
again with a new naive conjecture.

BETA: Then where do you want to start if not with an inductive
low-level generalisation as a naive conjecture? Or have you an
alternative method for starting?

1 Sec footnote 3, p. 303. The table has been borrowed from P6lya [1954], VoL
I, p. 36.
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I. LAKATOS

(c) Deductive guessing versus naive guessing

ZETA: Start? Why should I start'? My mind is not empty when I
discover (or invent) a problem.

TEACHER: DO not tease Beta. Here is the problem: ' Is there a
relation between the number of vertices, edges and faces ofpolyhedra analogous
to the trivial relation between the number of vertices and edges of polygons,
namely that V = E? n How would you set about it?

ZETA: First, I have no government grants to conduct an extensive
survey of polyhedra, no army of research assistants counting the
numbers of their vertices, edges and faces and compiling tables from
the data. But even if I had, I should have no patience—or interest—
in trying one formula after the other to test whether it fits.

BETA: What then? Will you he down on your couch, shut your
eyes and forget about the data?

ZETA: Exactly. I need an idea to start with, but no data whatso-
ever.

BETA : And where do you get your idea from?
ZETA: It is already there in our minds when we formulate the

problem: in fact, it is in the very formulation of the problem.
BETA: What idea?
ZETA: That for a polygon V = B.
BETA: So what?
ZETA: A problem never comes out of the blue. It is always

related to our background knowledge. We know that for polygons
V = E. Now a polygon is a system of polygons consisting of one
single polygon. A polyhedron is a system of polygons consisting of
more than a single polygon. But for polyhedra V # E. At what
point did the relation V = E break down in the transition from mono-
polygonal systems to polypolygonal systems? Instead of collecting
data I trace how the problem grew out of our background knowledge;
or, which was the expectation whose refutation presented the problem?

SIGMA: Right. Let us follow your recommendation. For any
polygon E— V = 0 (Fig. 17a). What happens if I fit another polygon
to it (not necessarily in the same plane)? The additional polygon has
«! edges and nx vertices; now by fitting it to the original one along a
chain of H / edges and n / + 1 vertices we shall increase the number of
edges by ny— n / and the number of vertices by nx— («/+1); that is,
in the new 2-polygonal system there will be an excess in the number of

1 Sec Part I, p. 7
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PROOFS AND REFUTATIONS (IV)

edges over the number of vertices: E— F = i (Fig. 176; for an
unusual but perfectly proper fitting see Fig. 17c). ' Fitting' a new
face to the system will always increase this excess by one, or, for an
F-polygonal system constructed in this way E—V= F—i.

FIG. 17

ZETA: Or, V— E+F= 1.
LAMBDA: But this is false for most polygonal systems. Take a

cube. . . .
SIGMA: But my construction can lead only to ' open' polygonal

systems—bounded by a circuit of edges! I can easily extend my
thought-experiment to ' closed' polygonal systems, with no such
boundary. Such closure can be accomplished by covering an open
vase-like polygonal system with a polygon-cover: fitting such a
covering polygon will increase F by one without changing For E. . . .

ZETA: Or, for a closed polygonal system—or closed polyhedron—
constructed in this way, V—E-\-F-\-2: a conjecture which now you
have got without' observing ' the number of vertices, edges and faces
of a single polyhedron!

LAMBDA: And now you can apply the method of proofs and
refutations without an ' inductive starting point'.

ZETA : With the difference that you do not need to devise a proof—
the proof is already there! You can go on immediately with refuta-
tions, proof-analysis, theorem-formation.

LAMBDA: Then in your method—instead of observations—proof
precedes the naive conjecture!1

ZETA: Well, I shouldn't call a conjecture that has grown out of a
proof ' naive '. In my method there is no place for inductive naiveties.

BETA: Objection! You only pushed back the ' naive ' inductive
start: you start with ' V = E for polygons '. Don't you base this on
observations?

1 This is an important qualification to footnote 2, p. 10 in Part L
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ZFTA- Like most mathematicians, I cannot count. I just tried to
count the edges and vertices of a heptagon: I found first 7 edges and
8 vertices, and then again 8 edges and 7 vertices. . . .

BETA: Joking apart, how did you get V== E?
ZETA: I was deeply shocked when I first realised diat for a triangle

V— E = o. I knew of course very well that in an edge V—E = 1
(Fig. 180). I also knew that fitting new edges will always result in an

1
(») 00 W

FIG. 18 FIG. 19

increase by one, both in the number of vertices and edges (Figs, lib
and 18c). Why, in polygonal edge-systems, does V— E = 0 ? Then I
realised that this is because of the transition from an open system of
edges (which is bounded by two vertices) to a closed system of edges
(which has no such boundary): because we ' cover' the open system up
by fitting an edge without adding a new vertex. So I proved, not
observed, that V—E = 0 for polygons.

BETA: Your ingenuity will not help you. You only pushed back
the inductive starting point further: now to the statement that
V—E= 1 for any edge whatsoever. Did you prove or did you
observe that?

ZETA : I proved it. I knew of course that for a single vertex
V = 1 (Fig. 19). My problem was to construct an analogous re-
lation. . . .

BBTA [furious]: Didn't you observe that for a point V= 1?
ZETA : Did you?. [Aside, to Pi]: Should I tell him that my ' induc-

tive starting point' was empty space? That I began by ' observing '
nothing'?

LAMBDA : Whatever the case, two points have been made. First
Sigma argued that it is due only to historical accidents that one can arrive
at naive inductive conjectures: when one is faced with a real chaos of
facts, one will scarcely be able to fit them into a nice formula. Then
Zeta showed that for the logic of proofs and refutations we need no naive
conjecture, no inductivist starting point at all.

BETA: Objection! What about those celebrated conjectures that
have not been preceded (or even followed) by proofs, such as the
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PROOFS AND REFUTATIONS (IV)

four-colour conjecture that says that four colours are enough to colour
any map, or the Goldbach conjecture? It is only by historical
accidents that proofs can precede theorems, that Zeta's ' deductive
guessing ' can take place: otherwise naive inductive conjectures come
first.

TEACHER: We certainly have to learn both heuristic patterns:
deductive guessing is best, but naive guessing is better than no guessing at
all. But naive guessing is not induction: there are no such things as inductive
conjectures!

BETA: But we found the naive conjecture by induction! ' That is,
it was suggested by observation, indicated by particular instances. . . .
And among the particular cases that we have examined we could
distinguish two groups: those which preceded the formulation of the
conjecture and those which came afterwards. The former suggested
the conjecture, the latter supported it. Both kinds of cases provide
some sort of contact between the conjecture and " the facts " . . . .'*
This double contact is the heart of induction: the first makes
inductive heuristic, the second makes inductive justification, or inductive
logic.

TEACHER: N O ! Facts do not suggest conjectures and do not
support them either!

BETA: Then what suggested V— E+F= 2 to me, if not the facts,
listed in my table?

TEACHER: I shall tell you. You yourself said you failed many
times to fit them into a formula.8 Now what happened was this:
you had three or four conjectures which in turn were quickly refuted.
Your table was built up in the process of testing and refuting these
conjectures. These dead and now forgotten conjectures suggested the
facts, not the facts the conjectures. Naive conjectures are not inductive
conjectures: we arrive at them by trial and error, through conjectures and

refutations.3 But if you—wrongly—believe that you arrived at them
inductively, from your tables, if you believe that the longer the table,
the more conjectures it will suggest, and later support, you may waste
your time compiling unnecessary data. Also, being indoctrinated
that the path of discovery is from facts to conjecture, and from

1 Pdlya [1954], VoL I, pp. j and 7 • See p. 299
8 These trials and errors arc beautifully reconstructed by P6lya. The first con-

jecture is that F increases with V. This being refuted, two more conjectures follow:
E increases with F; E increases with V. The fourth is the winning guess: F-\-V
increases with E ([1954], VoL I, pp. 35-37)-
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I. LAKATOS

conjecture to proof (the myth of induction), you may completely
forget about the heuristic alternative: deductive guessing.1

Mathematical heuristic is very like scientific heuristic—not because both
are inductive, but because both are characterised by conjectures, proofs, and
refutations. The—important—difference lies in the nature of the
respective conjectures, proofs (or, in science, explanations), and counter-
examples.8

BETA : I see. Then our naive conjecture was not the first conjecture
ever, ' suggested ' by hard, non-conjectural facts: it was preceded by
many ' pre-naive' conjectures and refutations. The logic of con-
jectures and refutations has no starting point—but the logic of proofs
and refutations has: it starts with the first naive conjecture to be
followed by a thoughtexperiment.

ALPHA: Perhaps. But then I should not have called it
' naive' !3

KAPPA [aside]: Even in heuristic there is no such thing as perfect
naiveti!

BETA: The main thing is to get out of the trial-and-error period as
soon as possible, to proceed quickly to thoughtexperiments without
having too much ' inductive ' respect for ' facts '. Such respect may
hamper the growth of knowledge. Imagine that you arrive by trial-
and-error at the conjecture: V— E-\-¥ = 2, and that it is immediately
refuted by the observation that V—E+F= o for the picture-frame.
If you have too much respect for facts, especially when they refute
your conjectures, you will go on with pre-naive trial-and-error and
look for another conjecture. But if you have a better heuristic, you
at least try to ignore the adverse observational test, and try a test by
thoughtexperiment: like Cauchy's proof.

1 On the other hand those who, because of the usual deductive presentation of
mathematics, come to believe that the path of discovery is from axioms and/or
definitions to proofs and theorems, may completely forget about the possibility and
importance of naive guessing. In fact in mathematical heuristic it is deductivism
which is the greater danger, while in scientific heuristic it is inductivism.

1 We owe the revival of mathematical heuristic in this century to Pdlya. His
stress on die similarities between scientific and mathematical heuristic is one of die
main features of his admirable work. What may be considered his only weakness is
connected widi diis strengdi: he never questioned that science is inductive, and
because of his correct vision of deep analogy between scientific and madiematical
heuristic he was led to think diat mathematics is also inductive. The same thing
happened earlier to Poincare' (see his [1902], Introduction) and also to Frechet (see his
[1938]). » See Part II, p. 138
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PROOFS AND REFUTATIONS (IV)

SIGMA: What confusion! Why call Cauchy's proof a test7.
BETA: Why call Cauchy's test a proof? It was a test] Listen.

You started with a naive conjecture: V— E+F = 2 for all polyhedra.
Then you drew consequences from it: ' if the naive conjecture is true,
after removing a face, for the remaining network V— E+F= 1 ' ;
' if this consequence is true, V— E+F = 1 even after triangulation ';
' if this last consequence is true, V— E-\-F = 1 will hold while triangles
are removed one by one '; ' if this is true, V—E+F — 1 for one single
triangle'. . . .

Now this last conclusion happens to be known to be true. But
what if we had concluded that for a single triangle V—E-\-F= 0?
We would immediately have rejected the original conjecture as false.
All that we have done is to test our conjecture: to draw consequences
from it. The test seemed to corroborate the conjecture. But cor-
roboration is not proof.

SIGMA: But then our proof proved even less than we thought it
did! We then have to reverse the process and try to construct a
thoughtexperiment which leads in the opposite direction: from the
triangle back to the polyhedron!

BETA: That is right. Only Zeta pointed out that instead of
solving our problem by first devising a naive conjecture through trial
and error, then testing it, then reversing the test into a proof, we can
start straight away with the real proof. Had we realised the possi-
bility of deductive guessing we might have avoided all this pseudo-
inductive fumbling!

KAPPA [aside]: What a dramatic series of volte-faces! Critical
Alpha has turned into a dogmatist, dogmatist Delta into a refutationist,
and now inductivist Beta into a deductivist!

SIGMA: But wait. l£the test-thoughtexperiment. . . .
BETA: I shall call it analysis. . . .
SIGMA: . . . canbefollowedupatallbyaproo/-(/ioM^/itexperimen/....
BETA: I shall call it synthesis. . . *
SIGMA : . . . will the ' analytic theorem' be necessarily identical

with the ' synthetic theorem ' ? In going in the opposite direction we
might use different lemmas !a

1 According to Pappian heuristic, mathematical discovery starts with a conjecture,
which is followed by analysis and then, provided analysis does not falsify the con-
jecture, by synthesis. (Also cf. Part I, p. 10, footnote 2, and Part IH, p. 243, footnote
1.) But while our version of analysis-synthesis improves the conjecture, the Pappian
version only proves or disproves it. * C£ Robinson [1936], p. 471
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I. LAKATOS

BETA: If they are different, then the synthetic theorem should
supersede the analytic one—after all analysis only tests while synthesis
proves.

TEACHER: Your discovery that our ' proof was in fact a test seems
to have shocked the class and diverted their attention from your main
argument: that if we have a conjecture that has already been refuted
by a counterexample, we should push the refutation aside and try to
test the conjecture by a thoughtexperiment: this way, we might hit
on a proof leave the phase of trial-and-error, and switch to the method
of proofs and refutations. But it was exactly this which made me say
that ' I am willing to set out to " prove " a false conjecture ' I1 And
Lambda too demanded in his Rule 1: ' I f you have a conjecture set
out to prove it and refute it.'

ZETA : That is right. But let me supplement Lambda's rules and
Omega's Rule 4 by

Rule 5. If you have counterexamples of any type, try to find, by
deductive guessing, a deeper theorem to which they are not counter-
examples any longer.
OMEGA : You now stretch my concept of' depth '—and you may

be right. But what about the actual application of your new rule?
Until now it has only given us results that we already knew. It is
easy to be wise after the event. Your ' deductive guessing ' is just the
synthesis corresponding to Teacher's original analysis. But now you
should be honest—you must use your method to find a conjecture
which you do not already know about, with the promised increase in
content.

ZETA: Right. I start with the theorem generated by my thought-
experiment: ' All closed normal polyhedra are Eulerian.'

OMEGA: 'Normal'?
ZETA: I don't want to waste time going through the method of

proof and refutations. I just call ' normal' all polyhedra that can be
built up from a ' perfect' polygon by fitting to it (a) first F— 2 faces
without changing V— E-\-F (these will be open normal polyhedra)
and (b) then a last closing face which increases V—E-\-F by 1 (and
turns the open polyhedron into a closed one).

OMEGA: ' Perfect polygon '?
ZETA: By a ' perfect' polygon I mean one that can be built up

from one single vertex by fitting to it first n— 1 edges without changing
V — E, and then a last closing edge which decreases V— E by 1.

1 See Part I, p. 25
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PROOFS AND REFUTATIONS (IV)

OMEGA: Will your closed normal polyhedra coincide with our
Cauchy polyhedra?

ZBTA: I do not want to go into that now.

(d) Increasing content by deductive guessing

TEACHER: Enough of preliminaries. Let us see your deduction.
ZETA : Yes, Sir. I take two closed normal polyhedra (Fig. 20a) and

paste them together along a polygonal circuit so that the two faces that
meet disappear (Fig. 206). Since for the two polyhedra V— £ + P = 4 , the

(c)
FIG. 20

disappearance of two faces in the united polyhedron will just restore
the Euler formula—no surprise after Cauchy's proof since the new
polyhedron can also easily be pumped into a ball. So the formula
stands up well to this pasting test. But let us now try a double-pasting
test: let us ' paste ' the two polyhedra together along two polygonal
circuits (Fig. 20c). Now 4 faces will disappear and for the new
polyhedron V— E-\-F = o.

GAMMA : This is Alpha's Counterexample 4, the picture-frame!
ZETA: NOW if I ' double-paste ' to this picture-frame (Fig. 20c) yet

another normal polyhedron (Fig. 21a), V—E-\-F will be —2 (Fig.
2lb). . . .

FIG. 21

SIGMA: For a monospheroid polyhedron V— £ + F = 2, for a
dispheroid polyhedron V— £ + F = o, for a trispheroid V— E-\-F =
— 2, for an n-spheroid polyhedron V— E+F= 2— 2(n— 1). . . .

3O7
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I. LAKATOS

ZETA: . . . which is your new conjecture of unprecedented
content, complete with proof, without having compiled a single
table.1

SIGMA : This is really nice. Not only did you explain the obstinate
picture-frame, but you produced an infinite variety of novel counter-
examples. . . .

ZETA: Complete with explanation.
RHO: I just arrived at the same result in a different way. Zeta

started with two Eulerian examples and turned them into a counter-
example in a controlled experiment. I start with a counterexample and
turn it into an example. I made the following thoughtexperiment
with a picture-frame: ' Let the polyhedron be of some stuff that is
easy to cut like soft clay, let a thread be pulled through the tunnel and
then through the clay. It will not fall apart. . . .'* But it has become
a familiar, simple, spheroid polyhedron! It is true, we increase the
number of faces by 2, and the numbers of both edges and vertices by
m; but since we know that the Euler characteristic of a simple poly-
hedron is 2, the original must have had the characteristic o. Now if
one needs more, say «, such cuts to reduce the polyhedron to a simple
one, its characteristic will be 2— in.

SIGMA: This is interesting. Zeta has already shown us that we
may not need a conjecture in order to start proving, that we may
immediately devise a synthesis, i.e. a proof-thoughtexperiment from a
related proposition that is known to be true. Now Rho shows that
we may not need a conjecture even in order to start testing, but we may
set out—pretending that the result is already there—to devise an analysis,
i.e. a test-thoughtexperiment.8

OMEGA : But whichever way you choose, you still leave hordes of
polyhedra unexplained! According to your new theorem for all
polyhedra V—E-\- F is an even number, less than 2. But we saw quite
a few polyhedra with odd Euler characteristics. Take the crested cube
(Fig. 12) with V— E+F= 1. . . .

ZETA: I never said that my theorem applies to all polyhedra. It
applies only to all n-spheroid polyhedra built up according to my

1 This was done by Raschig [1891]. * Hoppc [1879], p. 102
8 This is again part of Pappian heuristic He rail* an analysis starting with a

conjecture ' theoretical', and an analysis starting with no conjecture ' problematical'
(Heath [1925], VoL I, p. 138). The first refers to problems to prove, the second to
problems to solve (or problems to find). Also c£ P61ya [1945], pp. 129-136 (' Pappus *)
and 197-204 (' Working backwards ').
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PROOFS AND REFUTATIONS (IV)

construction. My construction as it stands does not lead to ringshaped
faces.

OMEGA: SO?

SIGMA: I know! One can also extend it to polyhedra with ring-
shaped faces: one may construct a ringshaped polygon by deleting in
a suitable proof-generated system of polygons an edge without reduc-
ing the number of faces (Figs. 22a and 22b). I wonder, perhaps there are

to 0>) to (b)
FIG. 22 FIG. 23

also ' normal' systems of polygons, constructed in accordance widi
our proof, in which we can delete even more than one edge without
reducing the number of faces. . . .

GAMMA : That is true. Look at this ' normal' polygonal system
(Fig. 23a). You can delete two edges without reducing the number
of faces (Fig. 23 b).

SIGMA: Good! Then in general
F

V-E+F= 2—2(n—i)+Yet
A-i

for H-spheroid—or n-tuply connected—polyhedra with e* edges
deleted without reduction in the number of faces.

BETA: This formula explains my crested cube (Fig. 12), a mono-
spheroid polyhedron (n = 1) with one ringshaped face: e* are zero,

F

except for e6 which is 1, or ̂  e* = J . consequently V—E+F= 1.
A-i

SIGMA: It also explains your ' irrational' Eulerian freak: the cube
with two ringshaped faces and one tunnel (Fig. 16). It is a dispheroid

F

polyhedron (n = 2)*with ^ e* = 2- Consequently its characteristic
A — 1

is V—E+F= 2—2+2 = 2. Moral order is restored to the world of
polyhedra I1

OMEGA: What about polyhedra with cavities?
1 The ' order' was restored by Lhuilier with approximately the same formula

([1812-13], p. 189); and by Hesscl with clumsy ad hoc formulas about different ways
of fitting Eulerian polyhedra together ([1832], pp. 19-20). Cf. p. 297, footnote 1.
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I. LAKATOS

SIGMA : I know! For them one has to add up the Euler character-
istics of each disconnected surface:

V-E+F=

BETA: And the twin-tetrahedra?
SIGMA: I know! . . .
GAMMA: What is the use of all this precision? Stop this flood of

pretentious trivialities !2

ALPHA: Why should he? Or are the twin-tetrahedra monsters,
not genuine polyhedra? A twin-tetrahedron is just as good a poly-
hedron as your cylinder! But you liked linguistic precision.8 Why
do you deride our new precision? We have to make the theorem
cover all polyhedra—by making it precise we are increasing its content,
not decreasing it. This time precision is a virtue!

KAPPA : Boring virtues are just as bad as boring vices! Besides,

1 Historically Lhuih'er—in his [1812-13]—managed to generalise Euler's formula
by naive guessing and arrived at the following formula: V—E-\-F= 2[(C— T-\-i)-\-
{p1-\-p1-\- . • .)], where C is the number of cavities, T the number of tunnels and pt

the number of inner polygons on the ith face. He also proved it as far as inner
polygons ' were concerned, but tunnels seem to have defeated him. He constructed
the formula in an attempt to account for his three kinds of' exceptions '; but his list
of exceptions was incomplete. (Cf Part II, p. 123, footnote 1.) Moreover, this
incompleteness was not the only reason for the falsity of his naive conjecture: for
he did not notice the possibility that cavities might be multiply-connected; that one
may not be able to determine unambiguously the number of tunnels in polyhedra
with a system of branching tunnels; and that it is not ' the number of inner polygons ',
but the number of ringshaped faces that is relevant (his formula breaks down for two
adjacent inner polygons, widi an edge in common). For a criticism of Lhuilier's
' inductive generalisation ' see Listing [1861], pp. 98-99. Also cf. p. 322, footnote 2.

' Quite a few mathematicians of the nineteenth century were confused by such
trivial increases in content, and did not really know how to deal with them. Some—
like Mobius—used monster-barring definitions (see Part I, p. 17); others—like
Hoppe—monster-adjustment. Hoppe's [1879] is particularly revealing. On the one
hand he was keen—like many of his contemporaries—to have a perfectly complete
' generalised Euler formula ' that covers everything. On the other hand he shrank
from trivial complexities. So while he claimed that his formula was ' complete,
all-embracing ', he added confusedly that' special cases can make the enumeration (of
constituents) dubitable ' (p. 103). That is, if an awkward polyhedron still defeats his
formula, then its constituents were wrongly counted, and the monster should be
adjusted by correct vision: e.g. the common vertices and edges of twintetrahedra
should be seen and counted twice and each twin recognised as a separate polyhedron
(ibid.). For further examples cf. p. 328, footnote 2.

3 See Part HI, pp. 229-234
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PROOFS AND REFUTATIONS (IV)

you will never achieve complete precision. We should stop when it
ceases to be interesting to go on.

ALPHA: I have a different point. We started from
(1) one vertex is one vertex.

We deduced from this
(2) V = E for all perfect polygons.

We deduced from this
(3) V— E-\-F= 1 for all normal open polygonal systems.

From this
(4) V— E+F = 2 for all normal closed polygonal systems, i.e.

polyhedra.
From this again in turn

(5) V— E-\-F = 2—2(«— 1) for normal n-spheroid polyhedra.
F

(6) V—E+F= 2— 2(n— i ) + 2 C i f° r n o r m a l n-spheroid poly-
A-i

hedra with multiply-connected faces.

(7) V— E+F= ]£/{2— 2(H— I ) + 2 C * ( f° r n o r m a l n-spheroid

polyhedra with multiply-connected faces and with cavities.
Isn't this a miraculous unfolding of the hidden riches of the trivial

starting-point? And since (1) is indubitably true, so is the rest.
RHO [asu/e]: Hidden 'riches'? The last two only show how

cheap generalisations may become I1

LAMBDA: DO you really think that (1) is the single axiom from
which all the rest follows? That deduction increases content?

ALPHA: Of course! Isn't this the miracle of the deductive thought-
experiment? If once you have got hold of a little truth, deduction
expands it infallibly into a tree of knowledge.2 If a deduction does

1 C£ pp. 328-9
* Ancient philosophers did not hesitate to deduce a conjecture from a very trivial

consequence of it (see, for example, our synthetic proof leading from die triangle to
die polyhedron). Plato diought that ' a single axiom might suffice to generate a
whole system '. ' Ordinarily he thought of a single hypothesis as fertile by itself,
ignoring in his methodology the other premisses to which he is allying i t ' (Robinson
[IO53]» P- I(58). This is characteristic of ancient informal logic, that is, of the logic of proof
or of thoughtexperiment or of construction; we regard it as enthymematic only through
hindsight: it was only later that an increase in content became a sign, not of the power, but of
the weakness, of an inference. This ancient informal logic was strongly advocated by
Descartes, Kant and Poincare'; diey all despised Aristotelian formal logic and dis-
missed it as sterile and irrelevant—at the same time extolling the infallibility of fertile
informal logic
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I. LAKATOS

not increase the content I would not call it deduction, but' verification ' :
' verification differs from true demonstration precisely because it is
purely analytic and because it is sterile.'1

LAMBDA: But surely deduction cannot increase content! If
criticism reveals that the conclusion is richer than the premiss, we have
to reinforce the premiss by making hidden lemmas explicit.

KAPPA : And it is these hidden lemmas that contain sophistication
and fallibility and ultimately destroy the myth of infallible deduction.*

TEACHER: Any other question about Zeta's method?

(e) Logical versus heuristic counterexamples.

ALPHA: I like Zeta's Rule f—as I did Omega's Rule f. I liked
Omega's method because it looked out for local but not global counter-
examples: the ones which Lambda's original three rules5 ignored as
logically harmless, therefore heuristically uninteresting. Omega was
stimulated by them to devise new thoughtexperiments: real advances
in our knowledge.

Now Zeta is inspired by counterexamples that are both global and
local—perfect corroborations from the logical but not from the
heuristic point of view: although corroborations, they still call for
action. Zeta proposes to extend, sophisticate our original thought-
experiment, to turn logical corroborations into heuristic ones, logically
satisfactory instances into instances that are satisfactory from both the
logical and the heuristic point of view.

Both Omega and Zeta are for new ideas, while Lambda and especi-
ally Gamma are preoccupied with linguistic tricks to deal with their
irrelevant global but not local counterexamples—the only relevant
ones from their crankish point of view.

THETA: SO the logical point of view is ' crankish ', is it?
ALPHA : Your logical point of view, yes. But I want to make

another remark. Whether deduction increases content or not—mind
you, of course it does—it certainly seems to guarantee the continuous

1 Poincare1 [1902], p. 33
1 The hunt for hidden lemmas, which started only in mid-nineteenth century

mathematical criticism, was closely related to the process that later replaced proofs by
proof-analyses and laws of thought by laws of language. The most important develop-
ments in logical theory were usually preceded by the development of mathematical
criticism. Unfortunately even the best historians of logic tend to pay exclusive
attention to the changes in logical theory without noticing their roots in changes in
logical practice. Cf. also p. 335, footnote 1.

8 See p. 306 4 See Part IE, p. 237 * See Part m, p. 229
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PROOFS AND REFUTATIONS (IV)

growth of knowledge. We start with a vertex and let knowledge grow
forcefully and harmoniously to explain the relation between the
number of vertices, edges and faces of any polyhedron whatsoever:
an undramatic growth without refutations!

THETA [to Kappa\: Has Alpha lost all his judgment? One starts
with a problem, not with a vertex I1

ALPHA: This piecemeal but irresistibly victorious campaign will
lead us to theorems that are ' not by themselves evident, but only
deduced from true and known principles by the continuous and un-
interrupted action of a mind that has a clear vision of each step in the
process'.2 They could never have been reached by ' unbiased'
observation and a sudden flash of insight.

THETA : I am doubtful about this final victory. Such growth will
never bring us to the cylinder—for (i) starts with a vertex and the
cylinder has none. Also we may never reach onesided polyhedra, or
many-dimensional polyhedra. This piecemeal continuous expansion
may well stop at some point and you will have to look for a new,
revolutionary start. And even this ' peaceful continuity ' is full of
refutations, criticism! Why do we go on from (4) to (5), from (5) to
(6), from (6) to (7) if not under the continuous pressure of counter-
examples which are both global and local? Lambda accepted as
genuine counterexamples only those which are global but not local:
they revealed the falsehood of the theorem. Omega's innovation—
rightly praised by Alpha—was to regard also counterexamples which
are local but not global as genuine counterexamples: they revealed
the poverty of the truth of the theorem. Now Zeta tells us to recognise
even those counterexamples as genuine which are both global and
local: they too point to the poverty of the truth of the theorem. For
example, picture-frames are both global and local counterexamples to
Cauchy's theorem: they are of course corroborations as far as truth
alone is concerned—but they are refutations as far as content is concerned.
We may call the first (global but not local) counterexamples logical,
the others heuristic counterexamples. But the more we recognise
refutations—logical or heuristic—the quicker knowledge grows.
Alpha regards logical counterexamples as irrelevant and refuses to call
heuristic counterexamples counterexamples at all, because of his
obsession with the idea that growth of mathematical knowledge is
continuous, and criticism plays no role.

1 Alpha certainly seems to have slipped into the fallacy of deductive heuristic.
C£ p. 304, footnote 1. 8 Descartes [1628], Rule III

Y 313

 at U
niversity of B

ath L
ibrary &

 L
earning C

entre on July 2, 2015
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


I. LAKATOS

ALPHA: YOU expand the concept of refutation and the concept of
criticism artificially only to justify your critical theory of the growth of
knowledge. Linguistic tricks as tools for a critical philosopher?

Pi: I think a discussion of concept-formation may help us to eluci-
date the issue.

GAMMA: We are all ears.

8 Concept-formation

(a) Refutation by concept-stretching. A reappraisal of monsterbarring—
and of the concepts of error and refutation

Pi: I would first like to go back to the pre-Zeta, or even pre-Omega
period, to the three main methods of theorem-formation: monster-
barring, exceptionbarring, and the method of proofs and refutations.
Each started with the same naive conjecture, but ended up with difierent
theorems and different theoretical terms. Alpha has already outlined
some aspects of these differences,1 but his account is unsatisfactory—
especially in the case of monsterbarring and of the method of proofs
and refutations. Alpha thought that the monsterbarring theorem
' hides behind the identity of the linguistic expression an essential
improvement' on the naive conjecture: he thought that Delta
gradually contracted the class o f naive ' polyhedra into a class purged of
non-Eulerian monsters.

GAMMA: What is wrong with this account?
Pi: That it was not the monsterbarrers who contracted concepts—it

was the refutationists who expanded them.
DELTA: Hear, hear!
Pi: Let us go back to the time of the first explorers of our subject.

They were fascinated by the beautiful symmetry of regular polyhedra:
they thought that the five regular bodies held the secret of the Cosmos.*
By the time the Descartes-Euler conjecture was put forward, the
concept of polyhedron included all sorts of convex polyhedra and
even some concave polyhedra. But it certainly did not include
polyhedra which were not simple, or polyhedra with ringshaped faces.
For the polyhedra that they had in mind, the conjecture was true as it
stood and the proof was flawless.3

1 Sec Part II, p. 138 ! Cf. Lhuiher [1812-130], p. 233
3 Fig. 6 in Eulcr's [1750] is the first concave polyhedron ever to appear in a geo-

metrical text. Legendre talks about convex and concave polyhedra in his [1794].
But before Lhuilier nobody mentioned concave polyhedra that were not simple.

However, one interesting qualification might be added. The first class of poly-
hedra ever investigated consisted partly of the five ordinary regular polyhedra and
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PROOFS AND REFUTATIONS (IV)

Then came the refutationists. In their critical zeal they stretched
the concept of polyhedron, to cover objects that were alien to the
intended interpretation. The conjecture was true in its intended
interpretation, it was only false in an unintended interpretation smuggled
in by the refutationists. Their ' refutation' revealed no error in the
original conjecture, no mistake in the original proof: it revealed the
falsehood of a new conjecture which nobody had stated or thought of
before.

Poor Delta! He valiantly defended the original interpretation of
polyhedron. He countered each counterexample with a new clause
to safeguard the original concept. . . .

GAMMA: But wasn't it Delta who shifted his position each time?
Whenever we produced a new counterexample, he changed his defini-
tion for a longer one which displayed another of his ' hidden ' clauses!

Pi: What a monstrous appraisal of monsterbarring! He only
seemed to shift his position. You wrongly accused him of using
surreptitious terminological epicycles in the defence of a stubborn
idea. His misfortune was that portentous Definition 1: ' A poly-
hedron is a solid whose surface consists of polygonal faces ', which the
refutationists seized upon immediately. But Legendre meant it to
cover only his naive polyhedra; that it covered far more was entirely
unrealised and unintended by its proposer. The mathematical public
was willing to stomach the monstrous content which slowly emerged
from this plausible, innocent-looking definition. This is why Delta
had to stutter time and time again, ' I meant . . . ', and had to keep
making his endless ' tacit' clauses explicit: all because the naive con-
cept had never been pinned down, and a simple, but monstrous,
unintended definition had superseded it. But imagine a different

quasi-regular polyhedra like prisms and pyramids (cf. Euclid). This class was
extended after the Renaissance in two directions. One is indicated in the text: to
include all convex and some mildly indented simple polyhedra. The other was
Kepler's: he widened the class of regular polyhedra by his invention of regular star-
polyhedra. But Kepler's innovation was forgotten, only to be made again by
Poinsot (cf. Part I, pp. 18-19). Euler surely did not dream of star-polyhedra. Cauchy
knew of them, but his mind was strangely compartmentalised: when he had an
interesting idea about star-polyhedra he published it; but he ignored star-polyhedra
when presenting counterexamples to his general theorems about polyhedra. Not so
the young Poinsot ([1809])—but later he changed his mind (cf. Part n, p. 128).

Thus Pi's statement, although heuristically correct (Le. true in a rational history of
mathematics), is historically false. (This should not worry us: actual history is
frequently a caricature of its rational reconstructions.)
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I. LAKATOS

situation, where the definition fixed the intended interpretation of
' polyhedron ' properly. Then it would have been up to the refuta-
tionists to devise ever longer monster-including definitions for say,
' complex polyhedra ': ' A complex polyhedron is an aggregate of
(real) polyhedra such that each two of them are soldered by congruent
faces '. ' The faces of complex polyhedra can be complex polygons
that are aggregates of (real) polygons such that each two of them are
soldered by congruent edges'. This complex polyhedron would then
correspond to Alpha's and Gamma's refutation-generated concept of
polyhedron—the first definition allowing also for polyhedra that are not
simple, the second also for faces that are not simply-connected. So
devising new definitions is not necessarily the task of monsterbarrers or
concept-preservers—it can also be that of monster-includers or concept-
stretchers.1

SIGMA: Concepts and definitions—that is, intended concepts and
unintended definitions—can then play funny tricks on each other! I
never dreamt that concept-formation might lag behind an unintendedly
wide definition!

Pi: It might. Monsterbarrers only keep to the original concept,
while concept-stretchers widen it; the curious thing is that concept-
stretching goes on surreptitiously: nobody is aware of it, and since
everybody's ' coordinate-system ' expands with the widening concept,
they fall prey to the heuristic delusion that monsterbarring narrows
concepts, while in fact it keeps them invariant.

DELTA: NOW who was intellectually dishonest? Who made
surreptitious changes in his position?

GAMMA: I admit we were wrong in indicting Delta for surrep-
titious contractions of his concept of polyhedron: all his six definitions
denoted the same good old concept of polyhedron he inherited from
his forefathers. He defined the very same poor concept in increasingly rich
theoretical frames of reference, or languages: monsterbarring does not form
concepts but only translates definitions. The monsterbarring theorem is
no improvement on the naive conjecture.

DELTA: DO you mean that all my definitions were logically
equivalent?

GAMMA : That depends on your logical theory—according to mine
they certainly are not.

1 An interesting example of monster-including definition is Poinsot's re-definition
of convexity, which brings star-^iolyhedra into the respectable class of convex regular
bodies [1809].
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DELTA : This was not a very helpful answer, you will admit. But
tell me, did you refute the naive conjecture? You refuted it only by
surreptitiously perverting its original interpretation!

GAMMA: Well, we refuted it in a more imaginative and interesting
interpretation than you ever dreamt of. This is what makes the
difference between refutations which only reveal a silly mistake and
refutations which are major events in the growth of knowledge. If you
had found that ' for all polyhedra V— E+F= i ' because of inept
counting, and I had corrected you, I wouldn't call that a ' refutation '.

BETA: Gamma is right. After Pi's revelation we might hesitate
to call our ' counterexamples' logical counterexamples, since they are
after all not inconsistent with the conjecture in its intended interpreta-
tion; but they are certainly heuristic counterexamples since they spur the
growth of knowledge. If we were to accept Delta's narrow logic,
knowledge would not grow. Just suppose that somebody with the
narrow conceptual framework discovers the Cauchy proof of the
Euler conjecture. He finds that all the steps of this thoughtexperiment
can easily be performed on any polyhedron. He takes the ' fact' that
all polyhedra are simple and that all faces are simply-connected as
obvious, as indubitable. It never occurs to him to turn his ' obvious '
lemmas into conditions in an improved conjecture and so to build up
a theorem—because the stimulus of counterexamples, in showing up
some ' trivially true ' lemmas as false, is missing. Thus he thinks that
the ' proof indubitably establishes the truth of the naive conjecture,
that its certainty is beyond doubt. But bis ' certainty' is far from
being a sign of success, it is only a symptom of lack of imagination, of
conceptual poverty. It produces smug satisfaction and prevents the
growth of knowledge.1

1 This b in fact Cauchy's case. It is unlikely that if Cauchy had already discovered
his revolutionary exception-barring method (cf. Part III, pp. 234.-235), he would not
have searched for and found some exceptions. But he probably came across the
problem of exceptions only later, when he decided to clear up the chaos in analysis.
(It was Lhuilier who seems to have first noticed, and faced, the fact that such ' chaos '
was not confined to analysis.)

Historians, e.g. Steinitz in his [1914.-31], usually say that Cauchy, noticing that
his theorem was not universally valid, stated it for convex polyhedra only. It is true
that in his proof he uses the expression ' the convex surface of a polyhedron ' ([1811],
p. 81), andinhis[i8i2] he restates Euler's theorem under the general head: ' Theorems
on solid angles and convex polyhedra '. But probably to counteract this title, he gives
particular stress to the universal validity of Euler's theorem for any polyhedron
(Theorem XI, p. 94), while stating three other theorems (Theorem XIII and its two
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I. LAKATOS

(b) Proof-generated versus naive concepts. Theoretical versus naive

classification

Pi: Let me return to the proof-generated theorem: ' All simple
polyhedra with simply-connected faces are Eulerian '. This formula-
tion is misleading. It should read: ' All simple objects with simply-
connected faces are Eulerian.'

GAMMA: Why?

corollaries) explicitly for convex polyhedra (pp. 96 and 98).
Why Cauchy's sloppy terminology? Cauchy's concept of polyhedron almost

coincided with the concept of convex polyhedron. But it did not coincide exactly:
Cauchy knew about concave polyhedra, which can be obtained by slightly pushing
in the side of convex polyhedra, but he did not discuss what seemed to be irrelevant
further corrobotations—not refutations—of his theorem. (Corroborations never compare
with counterexamples, or even ' exceptions ', as catalysts for the growth of concepts.) This
is the reason for Cauchy's casual use of ' convex': it was a failure to realise that
concave polyhedra might give counterexamples, not a conscious effort to eliminate
these counterexamples. In the very same paragraph, he argues that Euler's theorem
is an ' immediate consequence' of the lemma that V—E+F= 1 for flat polygonal
networks, and states that ' for the validity of the theorem V— E-\-F= 1 it has no
significance whatever whether the polygons lie in the same plane or in different
planes, since the theorem is concerned only with the number of polygons and the
number of their constituents' (p. 81). This argument is perfectly correct within
Cauchy's narrow conceptual framework, but incorrect in a wider one, in which
' polyhedron' refers also to, say, picture-frames. The argument was frequently
repeated in the first hah0 of the nineteenth century (e.g. Olivier [1826], p. 230, or
Grunert [1827], p. 367, or R. Baltzer [1860-62], VoL n, p. 207). It was criticised by
J. C. Becker ([1869], p. 68).

Often, as soon as concept-stretching refutes a proposition, the refuted proposition seems such
an elementary mistake that one cannot imagine that great mathematicians could have made it.
This important characteristic of concept-stretching refutation explains •why respectful
historians, because they do not understand that concepts grow, create for themselves a
maze of problems. After saving Cauchy by claiming that he ' could not possibly
miss ' polyhedra which are not rimple and that therefore he ' categorically ' (!) restricted
the theorem to the domain of convex polyhedra, the respectful historian now has to
explain why Cauchy's borderline was ' unnecessarily' narrow. Why did he ignore
non-convex Eulerian polyhedra? Steinitz's explanation is this: the correct formulation
of the Euler-formula is in terms of connectivity of surfaces. Since in Cauchy's
period this concept was not yet ' clearly grasped ', ' the simplest way out ' was to
assume convexity (p. 20). So Steinitz explains away a mistake that Cauchy never
made.

Other historians proceed in a different way. They say that before the point
where the correct conceptual framework (Le. the one they know) was reached there
was only a ' dark age' with ' seldom, if ever, sound' results. This point in the
theory of polyhedra is Jordan's proof (1866) according to Lebesgue ([1923], pp. 59-60);
it is Poincare"s (1895) according to Bell ([1945], p. 460).
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PROOFS AND REFUTATIONS (IV)

Pi: The first formulation suggests that the class of simple polyhedra
that occurs in the theorem is a subclass of the class of' polyhedra' of
the naive conjecture.

SIGMA: Of course the class of simple polyhedra is a subclass of
polyhedra! The concept o f simple polyhedron ' contracts the original
wide class of polyhedra by restricting them to those on which the first
lemma of our proof is performable. The concept of ' simple poly-
hedron with simply-connected faces ' indicates a further contraction of
the original class. . . .

Pi: N O ! The original class of polyhedra contained only poly-
hedra that were simple and whose faces were simply-connected.
Omega was wrong when he said that lemma-incorporation reduces
content.1

OMEGA: But doesn't each incorporation of lemmas rule out a
counterexample ?

Pi: Of course it does: but a counterexample that was produced by
concept-stretching.

OMEGA: SO lemma-incorporation conserves content, just like
monster-barring ?

Pi: NO. Lemma-incorporation increases content: monster-
barring does not.

OMEGA: What? Do you really want to convince me not only that
lemma-incorporation does not reduce content, but also that it inaeases
it? That instead of contracting concepts it stretches them?

Pi: Exactly. Just listen. Was a globe, with a political map
drawn on it, an element of the original class of polyhedra?

OMEGA : Certainly not.
Pi: But it became one after Cauchy's proof. For you can perform

Cauchy's proof on it without the slightest difficulty—if only there are
no ringshaped countries or seas on it.2

GAMMA : That is right! Pumping the polyhedron up into a ball
and distorting edges and faces will not perturb us in the least in per-
forming the proof—so long as the distortion does not alter the number
of vertices, edges and faces.

SIGMA: I see your point. Then the proof-generated ' simple
polyhedron' is not just a contraction, a specification, but also a
generalisation, an expansion of the naive ' polyhedron '.8 The idea of

1 Sec Part DI, p. 236 *C£ Part II, p. 132, footnote
8 Darboux, in his [1874], came close to this idea. Later it was clearly formul-

ated by Poincare": ' Mathematics is the art of giving the same name to different
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I. LAKATOS

generalising the concept of polyhedron so that it should include
crumpled, curvilinear ' polyhedra ' with curved faces could hardly have
occurred to anybody before Cauchy's proof; even if it had, it would
have been dismissed as crankish. But now it is a natural generalisation,
since the operations of our proof can be interpreted for them just as
well as for ordinary naive polyhedra with straight edges and flat
faces.1

Pi: Good. But you have to make one more step. Proof-generated
concepts are neither ' specifications ', nor ' generalisations ' of naive
concepts. The impact of proofs and refutations on naive concepts is
much more revolutionary than that: they erase the crucial naive
concepts completely and replace them by proof-generated concepts.1

things . . . . If one chooses the right language, one is surprised to learn that the proofs
made for a known object apply immediately to many new objects, without the slightest
change—one can even retain the names ' ([1908], p. 375). Frechet calls this ' an ex-
tremely useful principle of generalisation ', and formulates it as follows: ' When the
set of properties of a mathematical entity used in the proof of a proposition about
this entity does not determine this entity, the proposition can be extended to apply to
a more general entity ' ([1928], p. 18). He points out that such generalisations ate not
trivial and ' may require very great efforts ' {ibid.).

1 Cauchy did not notice diis. His proof differed from the one given by the
Teacher in one important respect: Cauchy in his [1811-12] did not imagine the poly-
hedron to be made of rubber. The novelty of his proof-idea was to imagine the
polyhedron as a surface, and not as a solid, as Euclid, Euler and Legendre did. But he
imagined it as a solid surface. When he removed one face and mapped the remaining
spatial polygonal network into a flat polygonal network, he did not conceive his
mapping as a stretching that might bend faces or edges. The first mathematician to
notice diat Cauchy's proof could be performed on polyhedra with bent faces was
Crelle ([1826-27], pp. 671-2), but he still carefully stuck to straight edges. For Cayley
however it seemed recognisable ' at first sight' that' the theory would not be materi-
ally altered by allowing the edges to be curved lines ' ([1861], p. 425). The same re-
mark was made independently in Germany by Listing ([1861], p. 99) and in France by
Jordan ([1866], p. 39).

2 This theory of concept-formation weds concept-formation to proofs and refutations.
P61ya weds it to observations: ' When the physicists started to talk about " electricity,"
or the physicians about " contagion," these terms were vague, obscure, muddled.
The terms that the scientists use today, such as " electric charge," " electric current,"
" fungus infection," " virus infection," are incomparably clearer and more definite.
Yet what a tremendous amount of observation, how many ingenious experiments he
between the two terminologies, and some great discoveries too. Induction changed
the terminology, clarified the concepts. We can illustrate also this aspect of the
process, the inductive clarification of concepts, by suitable mathematical examples'
([1954], Vol. I, p. 55). But even this mistaken inductivist theory of concept-form-
ation is preferable to the attempt to make concept-formation autonomous, to make
' clarification ' or ' explication ' of concepts 2 preliminary to any scientific discussion.
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PROOFS AND REFUTATIONS (IV)

The naive term ' polyhedron', even after being stretched by refuta-
tionists, denoted something that was crystal-like, a solid with ' plane '
races, straight edges. The proof-ideas swallowed this naive concept
and fully digested it. In the different proof-generated theorems we
have nothing of the naive concept. That disappeared without trace.
Instead each proof yields its characteristic proof-generated concepts,
which refer to stretchability, pumpability, photographability, pro-
jectability and the like. The old problem disappeared, new ones
emerged. After Columbus one should not be surprised if one does
not solve the problem one has set out to solve.

SIGMA: SO the ' theory of solids ', the original' naive ' realm of the
Euler conjecture, dissolves, and the remodelled conjecture reappears in
projective geometry if proved by Gergonne, in analytical topology if
proved by Cauchy, in algebraic topology if proved by Poincare". . . .

Pi: Quite right. And now you will understand why I formulated
the theorems not, like Alpha or Beta, as: ' All Gergonne-polyhedra
are Eulerian ', ' All Cauchy-polyhedra are Eulerian ', and so on, but
rather as: ' All Gergonnian objects are Eulerian ', ' All Cauchy objects
are Eulerian ', and so on.1 So I find it uninteresting to quarrel not only
about the exactness of naive concepts but also about the truth or falsehood of
naive conjectures.

BETA : But surely we can retain the term ' polyhedron' for our
favourite proof-generated term, say, ' Cauchy-objects '?

Pi: If you like, but remember that your term no longer denotes what
it set out to denote: that its naive meaning has disappeared and that now
it is used. . . .

BETA : . . . for a more general, improved concept!
THETA : No! For a totally different, novel concept.
SIGMA : I think your views are paradoxical!
Pi: If you mean by paradoxical ' an opinion not yet generally

received ',2 and possibly inconsistent with some of your ingrained naive
ideas, never mind: you only have to replace your naive ideas with the
paradoxical ones. This may be a way to ' solve' paradoxes. But
what particular view of mine do you have in mind?

SIGMA: YOU remember, we found that some star-polyhedra are
Eulerian while some others are not. We were looking for a proof that
would be deep enough to explain the Eulerianness both of ordinary
and star-polyhedra. . . .

1 Sec Part m, p. 245
a Hobbcs [1656], Animadversions upon the Bishop's Reply No. rxL
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I. LAKATOS

EPSILON: I have i t1

SIGMA: I know. But just for the sake of argument let us imagine
that there is no such proof, but that somebody offers, in addition to
Cauchy's proof for Eulerian ' ordinary ' polyhedra, a corresponding
but altogether different proof for Eulerian star-polyhedra. Would
you then, Pi, because of these two different proofs, propose to split into
two what we formerly classified as one? And would you have two
completely different things united under one name just because some-
body finds a common explanation for some of their properties?

Pi: Of course I would. I certainly wouldn't call a whale a fish, a
radio a noisy box (as aborigines may do), and I am not upset when a
physicist refers to glass as a liquid. Progress indeed replaces naive
classification by theoretical classification, that is, by theory-generated
(proof-generated, or if you like, explanation-generated) classification.
Conjectures and concepts both have to pass through the purgatory of
proofs and refutations. Naive conjectures and naive concepts are super-
seded by improved conjectures (theorems) and concepts (proof-generated or
theoretical concepts) growing out of the method of proofs and refutations.
And as theoretical ideas and concepts supersede naive ideas and con-
cepts, theoretical language supersedes naive language.8

1 See Part m, p. 244, footnote 1.
a It is interesting to follow the gradual changes from the rather naive classification

of polyhedra to the highly theoretical one. The first naive classification which covers
not only simple polyhedra comes from Lhuilier: a classification according to the
number of cavities, tunnels and ' inner polygons ' (see p. 310, footnote 1).

(a) Cavities. Euler's first proof and, incidentally, Lhuilier's own ([1812-13],
pp. 174.-177), rested on the decomposition of the solid, either by cutting ofFits corners
one by one, or by decomposing it into pyramids from one or more points in the inside.
Cauchy's proof-idea however—Lhuilier did not know about it—rested on the
decomposition of the polyhedral surface. When the dieory of polyhedral surfaces
finally superseded the dieory of polyhedral solids, cavities became uninteresting: one
' polyhedron with cavities' turns into a -whole class of polyhedra. Thus our old
monster-barring Definition 2 (Part L, p. 16) became a proof-generated, theoretical
definition, and the taxonomical concept of ' cavity' disappeared from the main-
stream of growth.

(b) Tunnels. Already Listing pointed to the unsatisfactoriness of this concept (see
p. 310, footnote 1). The replacement came not from any ' explication' of the
' vague' concept of tunnel, as a Carnapian might be tempted to expect, but from
trying to prove and refute Lhuilier's naive conjecture about the Euler-characteristic of
polyhedra with tunnels. In the course of this process the concept of polyhedron
with n runnels disappeared and proof-generated ' multiply-connectedness ' (what we
called ' rt-spheroidness') took its place. In some papers we find the naive term re-
tained for the new proof-generated concept: Hoppe defines the number of' tunnels '
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PROOFS AND REFUTATIONS (IV)

OMBGA: In the end we shall arrive from naive, accidental, merely
nominal classification to the final true, real, classification, to perfect
language!1

(c) Logical and heuristic refutations revisited

Pi: Let me take up again some of the issues which have arisen in
connection with deductive guessing. First let us take the problem of
heuristic versus logical counterexamples as raised in the discussion
between Alpha and Theta.

My exposition has shown, I think, that even the so-called ' logical'
counterexamples were heuristic. In the originally intended interpreta-
tion there is no inconsistency between

(a) All polyhedra are Eulerian
and

(b) The pictureframe is not Eulerian.
If we keep to the tacit semantical rules of our original language our
counterexamples are not counterexamples. They are turned into
logical counterexamples only by changing the rules of the language by
concept-stretching.

by the number of cuts that leave the polyhedron connected ([1879], p. 102). For
Ernst Steinitz the concept of tunnel is already so theory-impregnated that he is unable
to find any ' essential' difference between Lhuilier's naive classification according to
the number of tunnels and the proof-generated classification according to multipry-
connectedness; therefore he regards Listing's criticism of Lhuilier's classification as
' largely unjustified ' ([1914-31], p. 22).

(c) ' Inner polygons'. This naive concept too was soon replaced, first by ring-
shaped, then by multiply-connected, faces (also c£ p. 310, footnote 1), [replaced, not
' explicated ', for ' ring-shaped face ' is surely not an explication o f inner polygon *).
When, however, the theory of polyhedral surfaces was superseded on the one hand by
the topological theory of surfaces, and on the other hand by graph-theory, the
problem of how multiply-connected faces influence the Euler-characterittic of a
polyhedron lost all its interest.

Thus, out of the three key concepts of the first naive classification, only one wa»
left ', and even that in a hardly recognisable form—the generalised Euler formula

was, for the moment, reduced to V— E-\-F= 2—21%. (For further development*
c£ p. 329, footnote 1.)

1 As far as naive classification is concerned, nominalists are close to the truth when
claiming that the only thing that polyhedra (or, to use Wittgenstein's favourite
example, games) have in common is their name. But after a few centuries of proofs
and refutations, as the theory of polyhedra (or, say, the theory of games) develops,
and theoretical classification replaces naive classification, the balance changes in favour
of the realist. The problem of universals ought to be reconsidered in view of the
fact that, as knowledge grawji
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GAMMA: DO you mean that all interesting refutations are heuristic?
Pi: Exactly. You cannot separate refutations and proofs on the

one hand and changes in the conceptual, taxonomical, linguistic frame-
work on the other. Usually, when a ' counterexample ' is presented,
you have a choice: either you refuse to bother with it, since it is not a
counterexample at all in your given language 1^, or you agree to
change your language by concept-stretching and accept the counter-
example in your new language Lj. . . .

ZETA : . . . and explain it in L3 !
Pi: According to traditional static rationality you would have to

make the first choice. Science teaches you to make the second.
GAMMA: That is, we may have two statements that are consistent

in Lx, but we switch to Lj in which they are inconsistent. Or, we may
have two statements that are inconsistent in 1^, but we switch to L, in
which they are consistent. As knowledge grows, languages change.
' Every period of creation is at the same time a period in which the
language changes.'1 The growth of knowledge cannot be modelled
in any given language.

Pi: That is right. Heuristic is concerned with language-dynamics,
while logic is concerned with language-statics.

(d) Theoretical versus naive concept-stretching. Continuous versus critical
growth

GAMMA : You promised to come back to the question whether or
not deductive guessing offers us a continuous pattern of the growth of
knowledge.

Pi: Let me first sketch some of the many historical forms which this
heuristic pattern can take.

The first main pattern is when naive concept-stretching outstrips
theory by far and produces a vast chaos of counterexamples: our naive

1 Felix [1957], p. 10. According to logical positivists, the exclusive task of philo-
sophy is to construct' formalised ' languages in which artificially congealed states of
science are expressed (see our quotation from Carnap in Part I, p. 2). But such
investigations scarcely get under way before the rapid growth of science discards the
old ' language system'. Science teaches us not to respect any given conceptual-
linguistic framework lest it should turn into a conceptual prison—language analysts
have a vested interest in at least slowing down this process, in order to justify their
linguistic therapeutics, that is, to show that they have an all-important feedback to,
and value for, science, that they are not degenerating into ' fairly dried-up petty-
foggery ' (Einstein [1953]). Similar criticisms of logical positivism have been made
by Popper: tee eg . his [1934], p. 128, footnote *3.
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PROOFS AND REFUTATIONS (IV)

concepts are loosened but no theoretical concepts replace them. In
this case deductive guessing may catch up—piecemeal—with the
backlog of counterexamples. This is, if you like, a continuous
' generalising ' pattern—but do not forget that it starts with refutations,
that its continuity is the piecemeal explanation by a growing theory of
the heuristic refutations of its first version.

GAMMA: Or, ' continuous ' growth only indicates that refutations
are miles ahead!

Pi: That is right. But it may happen that each single refutation or
expansion of naive concepts is immediately followed by an expansion of
the theory (and theoretical concepts) which explains the counter-
example; ' continuity' then gives place to an exciting alternation of
concept-stretching refutations and ever more powerful theories, of
naive concept-stretching and explanatory theoretical concept-stretching.

SIGMA : Two accidental historical variations on the same heuristic
theme!

Pi: Well, there is not really much difference between them. In
both of them the power of the theory lies in its capacity to explain its
refutations in the course of its growth. But there is a second main pattern of
deductive guessing. . . .

SIGMA: Yet another accidental variation?
Pi: Yes, if you like. In this variation however the growing theory

not only explains but produces its refutations.
SIGMA: What?
Pi:. In this case theoretical growth overtakes—and, indeed,

eliminates—naive concept-stretching. For example, one starts with,
say, Cauchy's theorem, without a single counterexample on the hori-
zon. Then one tests the theorem by transforming the polyhedron in
all possible ways: cutting it into two, cutting off pyramidal corners,
bending it, distorting it, pumping it up. . . . Some of these test-
ideas will lead to proof-ideas 1 (by arriving at something known to be
true and then turning back, that is, by following the Pappian analysis-
synthesis pattern), but some—like Zeta's ' double-pasting test'—will
lead us, not back to something already known, but to real novelty, to
some heuristic refutation of the tested proposition—not by extending a
naive concept, but by extending the theoretical framework. This sort of
refutation is self-explanatory. . . .

1 P61ya discriminates between ' simple ' and ' severe ' tests. ' Severe ' tests may
give ' the first hint of a proof ([1954], VoL I, pp. 34-40).
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IOTA: HOW dialectical! Tests turning into proofs, counter-
examples that become examples by the very method of their construc-
tion. . . .

Pi: Why dialectical? The test of one proposition turns into the
proof of another, deeper proposition, counterexamples of the first into
examples of the second. Why call confusion dialectic? But let me
come back to my point: I do not think that my second main pattern of
deductive guessing could be regarded—as Alpha would have it—as
continuous growth of knowledge.

ALPHA: Of course it can. Compare our method with Omega's
idea of replacing one proof-idea with a radically different, deeper one.
Both methods increase content, but while in Omega's method one
replaces operations of the proof that are applicable in a narrow domain
by operations which are applicable in a wider domain, or, more radi-
cally, replaces the whole proof by one that is applicable in a wider
domain—deductive guessing extends the given proof by adding opera-
tions which widen its applicability. Is this not continuity?

SIGMA : That is right! We deduce from the theorem a chain of
ever wider theorems! From the special case ever more general cases!
Generalisation by deduction!1

Pi: But full of counterexamples, once you recognise that any
increase of content, any deeper proof follows or generates heuristic
refutations of the previous poorer theorems. . . .

ALPHA : Theta expanded ' counterexample' to cover heuristic
counterexamples. You now expand it to cover heuristic counter-
examples that never actually exist. Your claim that your ' second
pattern ' is full of counterexamples is based on the expansion of the
concept of counterexample to counterexamples with zero life-time,
whose discovery coincides with their explanation! But why should
all intellectual activity, every struggle for increased content in a unified
theoretical framework, be ' critical'? Your dogmatic ' critical atti-
tude ' is obscuring the issue!

TEACHER : The issue between you and Pi is certainly obscure—for
your ' continuous growth' and Pi's ' critical growth' are perfectly
consistent. I am more interested in the limitations, if any, of deductive
guessing, or ' continuous criticism '.

1 In informal logic there is nothing wrong with the ' fact, so usual in mathematics
and still so surprising to the beginner, or to the philosopher who takes himself for
advanced, that the general case can be logically equivalent to a special case ' (P61ya
[i954], Vol. I, p. 17). Also cf. Poincare" [1902], pp. 31-33.
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(e) The limits of the increase in content. Theoretical versus naive refutations
Pi: I think that sooner or later ' continuous ' growth is bound to

reach a dead-end, a saturation point of the theory.
GAMMA: But surely I can always stretch some of the concepts!
Pi: Of course. Naive concept-stretching may go on—but

theoretical concept-stretching has limits! Refutations by naive concept-
stretching are only gadflies that prod us to catch up by theoretical
concept-stretching. So there are two sorts of refutations. We
stumble on the first sort by coincidence or good fortune, or by an arbi-
trary expansion of some concept. They are like miracles, their
' anomalous' behaviour is unexplained; we accept them as bona fide
counterexamples only because we are used to accepting concept-
stretching criticism. I shall call these naive counterexamples or freaks.
Then there are the theoretical counterexamples: these are either originally
produced by proof-stretching or, alternatively, they are freaks which
are reached by stretched proofs, explained by them, and thereby raised
to the status of theoretical counterexamples. Freaks have to be looked
upon with great suspicion: they may not be genuine counter-examples,
but instances of a quite different theory—if not outright mistakes.

SIGMA: But what shall we do when we get stuck? When we
cannot turn our naive counterexamples into theoretical ones by
expanding our original proof?

Pi: We may probe again and again whether or not our theory still
has some hidden capacity for growth. Sometimes, however, we have
good reason to give up. For instance, as Theta rightly pointed out, if
our deductive guessing starts from a vertex we cannot very well ever
expect it to explain the vertexless cylinder.

ALPHA : So after all, the cylinder was not a monster, but a freak!
THETA: But freaks should not be played down! They are the

real refutations: they cannot be fitted into a pattern of continuous
1 generalisations', and may actually force us to revolutionise our
theoretical framework. . . . *

1 Caylcy [1861] and Listing [1861] took the stretching of the basic concepts of the
theory of polyhedra seriously. Cayley defined edge as ' the path from a summit to
itself, or to any other summit' but allowed edges to degenerate into vertexless closed
curves, which he called ' contours ' (p. 426). Listing had one term for edges, whether
with two, one, or no vertices: ' lines' (p. 104). Both realised that a completely
new theory was needed to explain the ' freaks' which they naturalised with their
liberal conceptual framework—Cayley invented the ' Theory of Partitions of a Close ',
Listing, one of the great pioneers of modern topology, the ' Census of Spatial Com-
plexes '.
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I. LAKATOS

OMEGA : Good! One may get to a relative saturation point of a
particular chain of deductive guessing—but then one finds a revolu-
tionary, new, deeper proof-idea that has more explanatory power.
At the end one still gets to a final proof—without limit, without
saturation point, without freaks to refute it!

Pi: What? A single unified theory to explain all the phenomena
of the universe? Never! Sooner or later we shall approach some-
thing like an absolute saturation point.

GAMMA: I don't really mind whether we do or not. If a counter-
example can be explained by a cheap, trivial extension of the proof, I
would already regard it as a freak. I repeat: I really do not see any
point in generalising ' polyhedron' to include a polyhedron with
cavities: this is not one polyhedron, but a class of polyhedra. I
would also forget about ' multiply-connected faces '—why not draw
the missing diagonals? As to the generalisation that includes twin-
tetrahedra, I would reach for my gun: it only serves for making up
complicated, pretentious formulas for nothing.

RHO: At last you rediscover my method of monster-adjustment!1

It relieves you of shallow generalisation. Omega should not have
called content ' depth '; not every increase in content is also an increase in
depth: think of (6) and (7)! i

1 See Part II, pp. 127-130 and pp. 135-136
2 Quite a few mathematicians cannot distinguish the trivial from the non-triviaL

This is especially awkward when a lack of feeling for relevance is coupled with the
illusion that one can construct a perfectly complete formula that covers all conceivable
cases (c£ p. 310, footnote 2). Such mathematicians may work for years on the
' ultimate ' generalisation of a formula, and end up by extending it with a few trivial
corrections. The excellent mathematician, J. C. Becker, provides an amusing
example: after many years' work he produced the formula V— £+F=4—2t i - \ -q
where n is the number of cuts that is needed to divide the polyhedral surface into
simply-connected surfaces for which V—E-\-F= 1, and q is the number of diagonals
that one has to add to reduce all the faces to simply-connected ones ([1869], p. 72).
He was very proud of his achievement, which—he claimed—shed ' completely new
light', and even ' brought to a conclusion ' ' a subject in which people like Descartes,
Euler, Cauchy, Gergonne, Legendre, Grunert, and von Staudt, took interest' before
him (p. 65). But three names were missing from his reading list: Lhuilier, Jordan
and Listing. When he was told about Lhuilier, he published a sad note, admitting
that Lhuilier knew all this more than fifty years before. As for Jordan, he was not
interested in ring-shaped faces, but happened to take an interest in open polyhedra
with boundaries, so that in his formula m, the number of boundaries, figures in addi-
tion to n ([1866a], p. 86). So Becker—in a new paper [1869a]—combined Lhuilier's
and Jordan's formulas into V—E-\-F= 2—zn-\-q-\-m (p. 343). But in his embarrass-
ment he was too hasty, and had not digested Listing's long paper. So he sadly.

3 2 8

 at U
niversity of B

ath L
ibrary &

 L
earning C

entre on July 2, 2015
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


PROOFS AND REFUTATIONS (IV)

ALPHA: SO you would stop at (5) in my series?
GAMMA: Yes. (6) and (7) are not growth, but degeneration!

Instead of going on to (6) and (7), I would rather find and explain some
exciting new counterexample! *

ALPHA: YOU may be right after all. But who decides where to
stop? Depth is only a matter of taste.

GAMMA: Why not have mathematical critics just as you have
literary critics, to develop mathematical taste by public criticism?
We may even stem the tide of pretentious trivialities in mathematical
literature.2

SIGMA: If you stop at (5) and turn the theory of polyhedra into a
theory of triangulated spheres with n handles, how can you, if the need
arises, deal with trivial anomalies like those explained in (6) and (7) ?

Mu: Child's play!
THETA : Right. Then we stop at (5) for the moment. But can we

stop? Concept-stretching may refute (5)! We may ignore the
stretching of a concept if it yields a counterexample that shows up the
poverty of the content of our theorem. But if the stretching yields a
counterexample that shows up its plain falsehood, what then? We
may refuse to apply our content-increasing Rule 4 or Rule 5 to explain
a freak, but we have to apply our content-preserving Rule 2 to ward
off refutation by a freak.

concluded his [1869a] with ' Listing's generalisation is still wider'. (By the way, he
later tried to extend his formula also to star-polyhedra ([1874]; cf. Part II, p. 128,
footnote 2.)

1 Some people may entertain philistine ideas about a law of diminishing returns in
refutations. Gamma, for one, certainly does not. We shall not discuss one-sided
polyhedra (Mobius, [1865]) or n-dimensional polyhedra (Schlafli, [1852]). These
would confirm Gamma's expectation that totally unexpected concept-stretching
refutations may always give the whole theory a new—possibly revolutionary—push.

* P6rya points out that shallow, cheap, generalisation is ' more fashionable now-
adays than it was formerly. It dilutes a little idea with a big terminology. The
author usually prefers to take even that little idea from somebody else, refrains from
adding any original observation, and avoids solving any problem except a few
problems arising from the difficulties of his own terminology. It would be very
easy to quote examples, but I don't want to antagonize people ' ([1954], VoL I, p. 30).
Another of the greatest mathematicians of our century, John von Neumann, also
warned against this ' danger of degeneration ', but thought it would not be so bad
' if the discipline is under the influence of men with an exceptionally well-developed
tas^ ' ([!947]. P- I96). One wonders, though, whether the ' influence of men with
an exceptionally welt-developed taste' will be enough to save mathematics in our
' publish or perish ' age.
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I. LAKATOS

GAMMA : That is it! We may dismiss cheap ' generalisations',
but we can hardly dismiss ' cheap ' refutations.

SIGMA : Why not build up a monster-barring definition of' poly-
hedron ', adding a new clause for each freak?

THETA: In both cases our old nightmare, vicious infinity, is back
again.

ALPHA: While you are increasing content, you develop ideas, do
mathematics; after it you clarify concepts, do linguistics. Why not
stop altogether when one stops increasing content? Why be trapped in
vicious infinities?

Mu: Not mathematics versus linguistics again! Knowledge never
profits from such disputes.

GAMMA: The term ' never ' soon turns into ' soon '. I am all for
taking up our old discussion again.

Mu: But we already ended up in a deadlock! Or does anybody
have anything new to say?

KAPPA: I think I have.

9 How Criticism may turn Mathematical Truth into Logical Truth

(a) Unlimited concept-stretching destroys meaning and truth

KAPPA : Alpha already said that our ' old method ' leads to vicious
infinity.1 Gamma and Lambda answered with the hope that the
stream of refutations might peter out:s but now that we understand
the mechanism of refutational success—concept-stretching—we know
that theirs was a vain hope. For any proposition there is always some
sufficiently narrow interpretation of its terms, such that it turns out
true, and some sufficiently wide interpretation such that it turns out
false. Which interpretation is intended and which unintended
depends of course on our intentions. The first interpretation may be
called the dogmatist, verificationist or justificationist interpretation, the second
the sceptical, critical or refutationist interpretation. Alpha called the first
a conventionalist stratagem 3—but now we see that the second is one
too. You all ridiculed Delta's dogmatist interpretations of the naive
conjecture 4 and then Alpha's dogmatist interpretation of the theorem.6

But concept-stretching will refute any statement, and will leave no
true statement whatsoever.

1 Sec Part m, p. 232 s See Part HI, p. 233
3 Alpha in fact did not use this Popperian term explicitly; see. Part I, p. 23.
* See Part I §4,(i) * See Part ET, §5

330

 at U
niversity of B

ath L
ibrary &

 L
earning C

entre on July 2, 2015
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


PROOFS AND REFUTATIONS (IV)

GAMMA : Wait. True, we stretched ' polyhedron '—then tore it
up and threw it away: as Pi pointed out, the naive concept ' poly-
hedron ' does not figure in the theorem any more.

KAPPA: But then you will start stretching a term in the theorem—
a theoretical term, won't you? You yourself chose to stretch ' simply-
connected face ' to include the circle and the jacket of the cylinder.1

You implied that it was a matter of intellectual honesty to stick one's
neck out, to achieve the respectable status of refutability, i.e. to make
the refutationist interpretation possible. But because of concept-
stretching, refutability means refutation. So you slide onto the infinite
slope, refuting each theorem and replacing it by a more ' rigorous'
one—by one whose falsehood has not been ' exposed ' yet! But
you never get out of falsehood.

SIGMA: What if we stop at a certain point, adopt justificationist
interpretations, and don't budge either from the truth or from the
particular linguistic form in which that truth was expressed?

KAPPA : Then you will have to ward off concept-stretching counter-
examples with monster-barring definitions. Thus you will slide on to
another infinite slope: you will be forced to admit of each ' particular
linguistic form ' of your true theorem that it was not precise enough,
and you will be forced to incorporate in it more and more ' rigorous '
definitions couched in terms whose vagueness has not been exposed
yet! But you never get out of vagueness.

THETA [aside]: What is wrong with a heuristic where vagueness is
, the price we pay for growth?

ALPHA : I told you: precise concepts and unshakable truths do not
dwell in language, but only in thought!

GAMMA: Let me challenge you, Kappa. Take the theorem as it
stood, after we took account of the cylinder: ' For all simple objects
with simply-connected faces such that the edges of the faces terminate
in vertices V—E-\- F = 2.' How would you refute this by the method
of concept-stretching ?

KAPPA: First I go back to the defining terms and spell out the
proposition in full. Then I decide which concept to stretch. For
instance,' simple ' stands for ' stretchable onto a plane after having had
a face removed'. I shall stretch ' stretching '. Take the already
discussed twin-tetrahedra—the pair with an edge in common (Fig. 6a).
It is simple, its faces are simply-connected, but V— E+F = 3. So our
theorem is false.

1 See Part in, pp. 221-225
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I. LAKATOS

GAMMA : But this twin-tetrahedron is not simple!
KAPPA : Of course it is simple. Removing any face, I can stretch it

on to a plane. I just have to be careful, when I get to the critical
edge, that I do not tear anything there when opening the second
tetrahedron along that edge.

GAMMA : But this is not stretching! You tear—or split—the edge
into two edges! You certainly cannot map one point onto two:
stretching is a bicontinuous one-one mapping!

KAPPA: Def. p? I am afraid this narrow, dogmatist interpretation
of' stretching ' does not appeal to my common sense. For instance,•

to
FIG. 24

I can well imagine stretching a square (Fig. 24a) into two nested squares
by stretching the boundary lines (Fig. 24b). Would you call this
stretch a tear or a split, just because it is not a ' bicontinuous one-one
mapping ' ? By the way, I wonder why you did not define stretching
as a transformation that leaves V, E and F unaltered, and have done
with it?

GAMMA: Right, you win again. I either have to agree to your
refutationist interpretation of ' stretching ' and expand my proof, or
find a deeper one, or incorporate a lemma—or I have to introduce a
new monsterbarring definition. Yet in any of these cases I shall
always make my defining terms clearer and clearer. Why should I
not arrive at a point where the meanings of the terms will be so crystal
clear that there will only be one single interpretation, as is the case with
2+2 = 4? There is nothing elastic about the meaning of these terms
and nothing refutable about the truth of this proposition, which shines
for ever in the natural light of reason.

KAPPA: Dim light!
GAMMA: Stretch, if you can.
KAPPA : But this is child's play! In certain cases two and two make

five. Suppose we ask for the delivery of two articles each weighing
two pounds; they are delivered in a box weighing one pound; then
in this package two pounds and two pounds will make five pounds!
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PROOFS AND REFUTATIONS (IV)

GAMMA: But you get five pounds by adding three weights, 2 and
2 and 1!

KAPPA: True, our operation ' 2 and 2 make 5 ' is not an addition
in the originally intended sense. But we can make the result hold
true by a simple stretching of the meaning of addition. Naive
addition is a very special case of packing where the weight of the
covering material is zero. We have to build this lemma into the
conjecture as a condition: our improved conjecture will be : ' 2+2 =
4 for "weightless" addition'.1 The whole story of algebra is a
series of such concept- and proof-stretchings.

GAMMA : I think you take ' stretching ' a bit far. Next time you
will interpret' plus ' as ' times ' and consider it a refutation! Or you
will interpret' all ' as ' no ' in ' All polyhedra are polyhedra ' ! You
stretch the concept of concept-stretching! We have to demarcate
refutation by rational stretching from ' refutation ' by irrational stretching.
We cannot allow you to stretch any term you like just as you like.

We must pin down the concept of counterexample in crystal-clear
terms!

DELTA: Even Gamma has turned into a monsterbarrer: now he
wants a monsterbarring definition of concept-stretching refutation.
Rationality, after all, depends on inelastic, exact, concepts! *

KAPPA: But there are no such concepts! Why not accept that our
ability to specify what we mean is nil, therefore our ability to prove is nil?
If you want mathematics to be meaningful, you must resign of cer-
tainty. If you want certainty, get rid of meaning. You cannot have
both . Gibberish is safe from refutations, meaningful propositions are

refutable by concept-stretching.

GAMMA: Then your last statements can also be refuted—and you
know it. ' Sceptics are not a sect of people who are persuaded of what
they say, but a sect of liars.'8

KAPPA : Swear-words: the last resort of reason!

(b) Mitigated concept-stretching may turn mathematical truth into logical

truth

THETA: I think Gamma is right about the need for demarcating
rational from irrational concept-stretching. For concept-stretching

1 C£ Felix [1957], p. 9
1 Gamma's demand for a cryital-clear definition of ' counterexample ' amounts

to a demand for crystal-clear, inelastic concepts in the metalanguage as a condition
of rational discussion. 8 Amauld [1724], pp. xx-xxi
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I. LAKATOS

has come a long way, and has changed from a mild, rational activity
to a radical, irrational one.

Originally, criticism concentrates exclusively on the slight stretching
ofone particular concept. It has to be slight, so that we do not notice it;
if its real—stretching—nature were discovered, it might not be accepted
as legitimate criticism. It concentrates on one particular concept, as in
the case of our rather unsophisticated universal propositions: ' All
As are B's '. Criticism then means finding a slightly stretched A (in
our case polyhedron) that is not B (in our case Eulerian).

But Kappa sharpened this in two directions. First, to submit
more than one constituent of the proposition under attack to concept-
stretching criticism. Second, to turn concept-stretching from a
surreptitious and rather modest activity into open deformation of the
concept, like the deformation of' all' into ' no '. Here any meaningful
translation of the terms under attack that renders the theorem false is
accepted as refutation. I would then say that if a proposition cannot be
refuted with respect to the constituents a, b, . . ., then it is logically true with
respect to these constituents.1 Such a proposition is the end-result of a
long critical-speculative process in the course of which the meaning-
load of some terms is completely transferred to the remaining terms
and to the form of the theorem.

Now all that Kappa says is that there are no propositions which are
logically true with respect to all their constituents. But there may be
logically true propositions with respect to some constituents, so that the
stream of refutations can only be opened up again if new stretchable
constituents are added. If we go the whole hog, we end up in
irrationalism—but we need not. Now where should we draw the
borderline? We may very well allow concept-stretching only for a
distinguished subset of constituents which become the prime targets
of criticism. Logical truth will not depend on their meaning.

SIGMA: SO after all we took Kappa's point: we made truth
independent of the meaning of at least some of the terms!

THBTA : That is right. But if we want to defeat Kappa's scepticism,
and escape his vicious infinities, we certainly have to stop concept-
stretching at the point where it ceases to be a tool of growth and
becomes a tool of destruction: we may have to find out which are

1 This is a slightly paraphrased version of Bolzano's definition of logical truth
([1837], § 147). Why Bolzano, in die 1830's, proposed his definition, is a pulling
question, especially since his work anticipates die concept of model, one of die greatest
innovations in nineteenth-century madiematical philosophy.
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PROOFS AND REFUTATIONS (IV)

those terms whose meaning can be stretched only at the cost of destroy-
ing the basic principles of rationality.1

KAPPA: Can we stretch the concepts in your theory of critical
rationality? Or will that be manifestly true, formulated in un-
stretchable, exact terms which do not need to be defined? Will your
theory of criticism end in a ' retreat to commitment': is everything
criricisable except for your theory of criticism, your ' metatheory ' ? a

OMEGA [to Epsilon]: I do not like this shift from Truth to ration-
ality. Whose rationality? I sense conventionalist infiltration.

BETA: What are you talking about? I understand Theta's ' mild
pattern' of concept-stretching. I also understand that concept-
stretching may attack more than one term: we saw this when Kappa
stretched ' stretching ' or when Gamma stretched ' a l l ' . . . .

SIGMA : Surely Gamma stretched ' simply-connected '!
BETA : But no. ' Simply-connected ' is an abbreviation—he only

stretched the term ' all' that occurred among the defining terms.3

THETA : Come back to the point. You are unhappy about' open ',
radical concept-stretching?

1 Nineteenth-century mathematical criticism stretched more and more concepts,
and shifted the meaning-load of more and more terms onto the logical form of the
propositions and onto the meaning of the few (as yet) unstretched terms. In the
1930's this process seemed to slow down and the demarcation line between unstretch-
able (' logical') terms and stretchable (' descriptive ') terms seemed to become stable.
A list, containing a small number of logical terms came to be widely agreed upon, so
that a general definition of logical truth became possible; logical truth was no longer
' with respect to ' an ad hoc list of constituents. (Cf. Tarski [1935]-) Tarski was how-
ever puzzled about this demarcation and wondered whether, after all, he would have
to return to a relativised concept of counterexample, and consequently, of logical
truth (p. 420)—like Bolzano's, of which, by the way, Tarski did not know. The most
interesting result in this direction was Popper's [1947-48] from which it follows that
one cannot give up further logical constants without giving up some basic principles
of rational discussion.

1 ' Retreat to commitment' is Bartley's expression [1962]. He investigates the
problem of whether a rational defence of critical rationalism is possible mainly with
respect to religious knowledge—but the problem-patterns are very much the same
with respect to mathematical knowledge.

3 See Part HI, pp. 221-225. Gamma did, in fact, want to remove some meaning-
load from ' all', so that it no longer applied only to non-empty classes. The modest
stretching of' all ' by removing ' existential import' from its meaning and thereby
turning the empty set from a monster into an ordinary bourgeois set was an important
event—connected not only with the Boolean set-theoretical re-interpretation of
Aristotelian logic, but also with the emergence of the concept of vacuous satisfaction
in mathematical discussion.
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I. LAKATOS

BETA: Yes. Nobody would accept this last brand as genuine
refutation! I quite see that the mild concept-stretching trend of
heuristic criticism that Pi uncovered is a most important vehicle of
mathematical growth. But mathematicians will never accept this
last, wild form of refutation!

TEACHER: YOU are wrong, Beta. They did accept it, and then-
acceptance was a turning point in the history of mathematics. This
revolution in mathematical criticism changed the concept of mathematical
truth, changed the standards of mathematical proof, changed the patterns of
mathematical growth!1 But now let us close our discussion for the time
being: we shall discuss this new stage some other time.

SIGMA: But then nothing is settled. We can't stop now.
TEACHEB: I sympathise. This latest stage will have important

feed-backs to our discussion.2 But a scientific inquiry ' begins and
ends with problems \ 3 [Leaves the classroom].

BETA : But I had no problems at the beginning! And now I have
nothing but problems!

(Concluded)

London School of Economics
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