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Introduction

Throughout the nineteenth century, the attention of the mathematical
world was, to a large extent, concentrated on complex function theory, that
is, the study of meromorphic functions of a complex variable. Some of the
greatest mathematicians of that period, including Gauss, Cauchy, Abel,
Jacobi, Eisenstein, Riemann, Weierstrass, Klein and Poincare, made
substantial contributions to this theory, and their work (mainly on what we
would now regard as specific, concrete problems) led to the subsequent
development of more general and abstract theories throughout pure
mathematics in the present century. Because of its central position, directly
linked with analysis, algebra, number theory, potential theory, geometry
and topology, complex function theory makes an interesting and important
topic for study, especially at undergraduate level: it has a good balance
between general theory and particular examples, it illustrates the develop-
ment of mathematical thought, and it encourages the student to think of
mathematics as a unified subject rather than (as it is often taught) as a
collection of mutually disjoint topics.

Even though the subject matter of this book is classical, it has recently
assumed great importance in several different areas of mathematics. For
example, the recent work on W. Thurston on 3-manifolds shows the vital
importance of hyperbolic geometry and Mobius transformations to this
rapidly developing subject; a totally different example is given by the work
of J.G. Thompson, J.H. Conway and others on the 'monster' simple group,
where the J-function, studied in Chapter 6, seems to play an important
(and, at the time of writing, rather mysterious) role. Thus many active
mathematicians, whose work may not involve classical complex function
theory directly, will nevertheless need to become familiar with certain
aspects of the theory, and we hope that they find our elementary approach
of use, at least initially.

This book is based on a final-year undergraduate course at the
University of Southampton, taught first by D.S. and then by G.A.J., though
we have also included some additional material, generally at the end of a
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chapter, suitable for graduates or for more advanced undergraduates. Our
aim, both in the lecture-course and in this book, is to teach some of the main
ideas about complex functions and Riemann surfaces, assuming only the
basic algebraic, analytic and topological theories covered by students in
their first and second years at university, and to show how these three
subjects can be combined to throw light on a single, specific topic. (Of
course, this involves reversing the historical development of the subject: to
the modern mind, general theories often appear more elementary and
accessible than the particular examples from which they grew.) Shortages of
space and time forced us to ignore the connections with, for example,
number theory and potential theory, interesting though they are; in any
case, there are excellent books on these topics.

In Chapter 1 we use stereographic projection to show how the addition of
a single point oo to C transforms the plane into a sphere, the Riemann
sphere I = Cu {oo}, and we describe the meromorphic functions / : ! - • Z
from both an algebraic and a topological point of view. The main result,
which is a typical connection between analytic and algebraic concepts, is
that / : £ - • £ is meromorphic if and only if it is a rational function.

Chapter 2 concerns the automorphisms of Z, that is, the meromorphic
bijections / : ! - • £ , or equivalently the Mobius transformations

with a,ft,c,deC and ad — bc^O. These transformations form a group
Aut £ under composition, and the emphasis of this chapter is mainly group-
theoretic; for example, the finite subgroups of Aut £ are determined, and the
cross-ratio X is introduced in order to study the transitivity properties of
Aut I . We also consider some of the geometric properties of Mobius
transformations (especially their relationship with circles in E), and the way
in which Aut £ acts as the Galois group of the field of all meromorphic
functions on E.

In Chapter 3 we study periodic meromorphic functions on C; these fall
into two classes, the simply and doubly periodic, according to whether the
group of periods has one or two generators. After briefly considering simply
periodic functions (such as the exponential and trigonometric functions),
and their Fourier series expansions, we devote the rest of the chapter to
doubly periodic functions, called elliptic functions because they first arose
from attempts to evaluate certain integrals associated with the formula for
the circumference of an ellipse. The periods of such a function form a lattice,
that is, a subgroup of C (under addition) generated by two complex
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numbers which are linearly independent over R. Just as the rational
functions are the meromorphic functions on the sphere E, the elliptic
functions can be regarded as the meromorphic functions on the torus C/Q
whose elements are the cosets in C of a lattice Q. There are many close
analogies between rational and elliptic functions, mainly based on the fact
that both £ and C/Q are compact surfaces: for example, an important
consequence of Liouville's theorem is that an analytic function on either of
these surfaces must be constant. However, in the case of the torus (as opposed
to the sphere) the construction of non-constant meromorphic functions
represents a substantial problem: by imitating the infinite product expan-
sion of the simply periodic function sin (z), we introduce the Weierstrass
function <r(z), and then by successive differentiation we obtain the
Weierstrass functions C(z) and P{z\ the last of these being elliptic and not
constant. This approach is an alternative to the now-traditional direct
construction of P (outlined in the exercises) by infinite series, and it involves
some elementary properties of uniform and normal convergence of infinite
series and products; these properties, important in their own right, are
outlined in §3.7 and §3.8. The rest of this chapter is concerned with deriving
properties of the functions P, £ and <x, and hence of all elliptic functions. For
example, the elliptic functions are precisely the rational functions of P and
its derivative P', these two functions being related by an ordinary differential
equation P' = y/(p( IP)), where p is a cubic polynomial; the functions £ and <x,
though not themselves elliptic, are important for the construction of elliptic
functions with certain properties such as specific zeros, poles or principal
parts. The chapter closes with the addition theorem, expressing p(zx + z2)
in terms ofp (zx) and & (z2); historically this should come first, since it was
the work of Fagnano and Euler on addition theorems for elliptic integrals
which eventually led to the discovery of elliptic functions.

Whereas Chapters 1-3 can be regarded as concerned with meromorphic
functions on two specific surfaces £ and C/Q, the theme of Chapter 4 is to
take a function / (possibly many-valued, such as log(z)) and to find the
most natural surface to regard as its domain of definition. More precisely,
we replace / by a single-valued function <f> which represents the different
branches of/; the domain of 0, chosen to be as large as possible subject to 4>
representing / locally, is called the Riemann surface S of / . The
construction of <f> and S involves the concepts of analytic and meromorphic
continuation, together with the monodromy theorem which allow us to
construct single-valued functions on simply connected regions; several
examples, such as log(z) and y/p(z) (p a polynomial) are studied in detail.
In the second half of the chapter we consider Riemann surfaces as abstract
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topological objects in their own right, not necessarily obtained from
functions. By introducing the concept of the germ of a meromorphic
function we show that every algebraic function determines a compact
Riemann surface, and we prove the Riemann-Hurwitz formula for the
genus of such a surface. Every Riemann surface is conformally equivalent
(that is, isomorphic) to a quotient surface §/G, where § (the universal
covering space of S) is a simply connected Riemann surface and G is a
discrete group of automorphisms of §; for example, a torus S has the form
C/Q for some lattice Q which acts as a discrete group of translations of S =
C. By the uniformisation theorem of Poincare and Koebe (the proof of
which is beyond the scope of this book), S is conformally equivalent to C, £
or <% = {zeC|Im(z) > 0}, so we conclude the chapter by determining the
automorphism groups of these three important surfaces.

With just a few exceptions, most Riemann surfaces S have as their
universal covering space § the upper half-plane <%, and Chapter 5 is
devoted to the study of this particular surface and its discrete groups of
automorphisms. These are the Fuchsian groups, consisting of Mobius
transformations (*) with a,byc,deU and ad — be = 1; by defining an
appropriate metric on Ql (the hyperbolic metric) we can regard ̂  as a model
of the hyperbolic plane, with these transformations acting as isometries.
This situation is similar to, but considerably more complicated than earlier
cases where we considered automorphisms of L and of C. Using hyperbolic
geometry we study Fuchsian groups G, the associated quotient surfaces S =
<#/G, and their automorphism groups Aut S. For example, if S is compact
and has genus g > 1, then | Aut S | < 8 % — 1), and we shall give an algebraic
description of the Fuchsian groups G and the groups Aut S (the Hurwitz
groups) for which this bound is attained.

Chapter 6 concerns perhaps the most important of all Fuchsian groups,
the modular group F consisting of the Mobius transformations (*) with
aybycydeZ and ad — bc=\. This group and its action on °U arise from the
problem of determining all Riemann surfaces of genus 1, or equivalently, all
similarity classes of lattices Q c C ; there is one conformal equivalence class
of such surfaces for each orbit of F on <#. For example, if p(z) is a cubic
polynomial with distinct roots then the Riemann surface S of y]p(z) has
genus 1, and we shall show that S is conformally equivalent to a torus C/Q
by finding a lattice ft for which the associated Weierstrass elliptic function
P satisfies the differential equation P' — yJp(P)\ this is done by construct-
ing an analytic function JM -> C, invariant under the action of F on <#, and
using J to select the orbit of F on °U corresponding to the appropriate lattice
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Q. (This function J is closely associated with the cross-ratio function A
introduced in Chapter 2.) From its action on °U we obtain generators and
relations for F, and hence we are able to consider its homomorphic images,
many of which (such as the Hurwitz groups) have already appeared in
earlier chapters. Finally we consider the quotient surfaces of °U correspond-
ing to normal subgroups of F, including the congruence subgroups
obtained by mapping the coefficients a, b, c, d in (*) into the ring of integers
mod (n), for positive integers n.

The Appendix contains statements of the main elementary results we
have assumed about complex functions, and also some of the basic facts
(less well known than they should be) about polynomials and their
discriminants.

Clearly, this book contains considerably more material than could
possibly be taught in the 36-lecture course on which it is based: a typical
course would cover Chapter 1 and about half each of Chapters 2,3 and 4. In
fact, since the chapters are fairly self-contained, this book could be used as
the basis for more specialised courses on several different subjects, such as
the Riemann sphere and its Mobius transformations (Chapters 1 and 2),
elliptic functions (Chapters 1 and 3), analytic continuation and Riemann
surfaces (Chapters 1 and 4), and hyperbolic geometry (Chapter 5 and parts
of Chapter 4), while for more advanced students Chapter 6 would serve as
an introduction to the modular group, leading on to the more detailed
treatments in the books by Rankin and Schoeneberg.

In writing a book of this nature, one acquires many debts of gratitude.
Our first is to the great men, named above, who founded this subject; the
ideas in this book are all theirs, and our only contribution has been to
become sufficiently enthusiastic to wish to teach, and then to write down,
what they did. One learns mathematics and how to communicate it from
many sources and people, far too numerous to mention here; let us simply
say that without Murray Macbeath and Peter Neumann we could never
have written this book. Alan Beardon, who read the early drafts of the
manuscript, saved us from a number of embarrassing solecisms and
ambiguities with his detailed criticisms and generous advice, while Robin
Bryant, John Thornton and Mary Tyrer-Jones also gave us invaluable help
by checking some of the later drafts and the exercises; any remaining
blemishes are entirely of our own making. Beryl Betts, June Kerry and
Marie Turner deserve our heartfelt thanks for transforming our hand-
written scrawls into presentable typescript, and similarly Rose Cassell for
her careful drawing of the diagrams; we are also grateful to the staff of the
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Cambridge University Press, especially David Tranah, for their infinite
patience and cooperation during the writing of this book. Finally, our
eternal gratitude is due to our wives, who, during our several years of
writing, have had to display toleration and understanding well beyond that
specified in the marriage service.

Numbering of theorems

Theorems are numbered according to their chapter and section. For
example, Theorem 5.7.2 is in Chapter 5, Section 7. Equations are numbered
in the same way. The only exceptions are the theorems in the appendix,
which are numbered Theorem A.I, Theorem A.2, etc.



1
The Riemann sphere

1.1 The sphere

There are several advantages in using the set C of complex numbers as
the domain of definition of functions. The complex numbers form a field
which is algebraically closed, that is, polynomials of degree n have n roots
in C, counting multiplicities. Geometrically, C can be regarded as the
Euclidean plane R2, probably the most familiar geometric structure of all
(hence we sometimes call C the complex plane). As a domain of definition
of functions, C has the following remarkable property: if / is a function
of a complex variable and is differentiable on some region R^C (recall
that a region is a non-empty, path-connected, open set), then/ is infinitely
differentiable on R, and for each aeR we can expand/ as a convergent
power series in some sufficiently small disc containing a. (In contrast, there
are functions of a real variable which are once but not twice differentiable,
or which are infinitely differentiable but cannot be represented by power
series.) When / is differentiate on a region R, we will say that / is analytic
on R; in some books the words 'holomorphic' or 'regular' are used instead
of 'analytic'. A function whose only singularities in R are poles is called
meromorphic in R.

There are, however, some disadvantages in using C. Division by 0 is
impossible, and so some standard functions are not defined everywhere;
for example, z"1 is undefined at z = 0. There is a rather less obvious
disadvantage in that C is not compact, so that certain sequences (1,2,3,...
for example) have no convergent subsequences. When we study the
connections between functions and surfaces, we will see that compactness
of the surface is an important property for proving theorems about
functions defined on that surface. There is a classification of compact
surfaces, closely related to the classification of certain types of complex
functions which we will consider in this book; there is, however, no straight-
forward classification for non-compact surfaces.

We can avoid these disadvantages, and retain some of the advantages,
by using the extended complex plane Z = Cu{oo}, where oo is an extra
point called the point at infinity. Geometrically, £ is still very well behaved,
for as we shall now show, Z may be regarded as being a sphere.
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Consider the 2-sphere

S2 = {(xlix29x3)eU3\x2 + x2 + x2 = 1}

in IR3, and identify the complex plane C with the plane x3 = 0 by identifying
z = x + iy (x,yeR) with (x,y,0) for all zeC. If AT = (0,0,1) is the 'north
pole' of S2, then stereographic projection from N gives a bijective map
7c:S2\{JV}-C, Qh-P, where PeC, QeS2\{N}, and P, Q and N are
collinear (see Fig. 1.1).

Fig. 1.1

The following argument shows that n is a homeomorphism between
S2\{N} and C. Let P = (x,.y,0) where z = x + iyeC, and let Q = (xl9x2,x3)e
S2\{N}. Since P,Q and N are collinear we have

x y 1
xt x2 1 — x3

(all equal to NP/NQ, by projection onto each of the coordinate axes).
Thus x = xx/(l - x 3 ) and y = x2/(l - x 3 ) , and so n:Qh+P is given by

z = x + ry = -
l - x 3

(1.1.1)

Using x\ + x2 + x3 = 1, we have

2-2x3

so that n l:P\-+Q is given by

2x
X 2 = x ^

x2 + y2 - 1
(1.1.2)

V + T 3~~x2 + y2 + l
These expressions show that both n and 7c"1 are continuous, so n is a
homeomorphism.

Now let X denote the extended complex plane C u {oo}, where oo (called
the point at infinity) is a symbol which does not represent an element of
C; we extend n:S2\{N}->C to a bijection 7c:S2-*Z by defining n(N) to
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be oo. Thus points Q on S2 close to JV correspond under n to complex
numbers P = z with \z\ large, so that z is in some sense 'close to oo' (we
will express this idea more precisely in the next section when we consider
the topological properties of Z); similarly points Qf close to the south
pole S = (0,0, — 1) correspond to complex numbers z' with \z'\ small, while
the equator x3 = 0 of S2 corresponds to the unit circle \z\ = 1 of Z. This
is illustrated in Fig. 1.2.

Fig. 1.2

P=z

We can use the bijection n:S2 ->Z to transfer algebraic and topological
properties from Z to S2 and vice-versa. For example, since Z has the same
topological properties as the sphere S2, Z is often referred to as the Riemann
sphere (after B. Riemann, 1826-66). Indeed, it is often convenient (if
imprecise) to regard S2 and Z as identical, by identifying each point QeS2

with P = 7r(Q)eZ.

1.2 Compactness

A topological space X is compact if every open cover has a finite subcover,
that is, whenever s/ is a family of open sets whose union is X, then there
is a finite subfamily &^s/ whose union is also X. In a metric space (for
example, if X £ R"), this is equivalent to the property that every infinite
sequence x 1 ,x 2 ,x 3 , . . . of points in X has a subsequence which converges
in X, that is, there is a subsequence xni,xW2,... with a limit l i m ^ ^ x ^ e X .
The Heine-Borel theorem states that a subspace X of R" is compact if
and only if it is closed and bounded; for example, S2 is compact.

We use the bijection 7i:S2-+Z = Cu{oo}to define a topology on Z by
defining the open sets to be the images under n of the open sets of S2 (in
its usual topology as a subspace of R3). Then Z is a topological space
and n is a homeomorphism, so we have:

Theorem 1.2.1. Z is compact. •
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Theorem 1.2.2. Every infinite sequence in Z has a convergent subsequence.

•
For example, the sequence 1,2,3,... converges to oo in I (since
n~1(n)-*N in S2), although this sequence has no convergent subsequence
in the non-compact space C (see Fig. 1.3).

Fig. 13
'(3)

It is straightforward to check that the open sets of Z are of two types:
open sets in C (in its usual topology as R2), and sets of the form (C\K)u
{oo} where K is any compact subset of C. Thus the subspace topology
of C (induced by its inclusion in I ) agrees with the usual topology. This
shows that Z is the one-point compactification of C: we can embed any
topological space X in a compact space A'ujoo}, called its one-point
compactification, by adding a single point oo and defining the open sets
of Xu{oo} to be the open sets of X together with those subsets which
contain oo and have a closed, compact complement in X.

1.3 Behaviour of functions at infinity

If a subset D of I does not contain oo, then since D g C w e can refer to
functions on D as being analytic, meromorphic, having poles, Taylor
expansions, etc. Our aim is to define similar concepts at oo, so that all
points of £ have equal status. We do this by using the transformation
J(z) = z"l of I ; this is well defined on C\{0}, and we use the convention
that J(0)= oo and J(oo) = 0. Thus J:Z->Z is a bijection and J2 is the
identity.

Now let P be the point z = x + iyeC\{0}, with x,yeR, and let P* be
the point J(z) = z" * = (x - iy)/zz. Then the point Q = n " l(P) of S2 corres-
ponding to P has coordinates

2x 2y
X X3~z7TT
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in R3, and the coordinates of Q* = n~l{P*) are

„ _ 2x(zz)"1 2x

2 (zz")"1*! 1+zz 2'

Thus J induces the transformation n iJn:Q = (xl,x2,x3)\->Q* =
(*i» - x2, - x 3 ) of S2 (a separate but simple argument is needed for Q = N
or S, corresponding to z = oo or 0), and this is the rotation of S2 by the
angle n about the x^axis. From now on, we will abuse the notation and
refer to the rotation J:S2-+S2

y rather than n~1Jn; equivalently, we are
identifying S2 and Z by means of TT, and regarding J as a transformation
of each of these two spaces (Fig. 1.4).

Fig. 1.4 C2_JL1£L_*C2

i I-
» E

Suppose that a function /(z) is defined on D\{oo}, where D is a
neighbourhood of oo in Z; equivalently, /(z) is defined provided \z\ is
sufficiently large. We can extend the domain of/ to include oo by defining
/(oo) to be limz^00/(z), provided this limit exists. Then/ is continuous
at oo, and /(oo) = lim2^0/(z~1) = lim2^0(/oJ)(z). We say that / is
analytic, meromorphic, etc., at oo provided / ° J has the corresponding
property at 0. For example:

(i) f(z) = (z2 + 1)"x is analytic at oo with a zero of order 2 there, since
(f°J)(z) = z2(z2 + 1)"l is analytic with a zero of order 2 at 0;

(ii) /(z) = z3 is meromorphic at oo, with a pole of order 3 there;
(iii) sin(z) has an isolated essential singularity at oo, and is therefore not

analytic at oo.

We define a region of Z to be a non-empty, path-connected, open subset.
Using these definitions, we can extend certain theorems about functions
defined on C to functions defined on Z. For example:

Theorem 1.3.1. Let f be an analytic function on a region R of Z. / /
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fhas zeros at an infinite sequence of points zn in R with a limit z* = limn_>0Ozn

in R, then f is identically zero on R.

Proof If z* ^ oo, then zn^co for all sufficiently large n, so by
omitting finitely many terms we may assume that zneC for all n. Now
R' = R\{oc} is a region in C (why?), and / is analytic on Rf with zeros
at an infinite sequence of points zneR' with a limit z*eR\ so by
Theorem A.8 / is identically zero on R'. If oo$R then R = R' and the
result is proved. If oo e R, then since / is analytic at oo and vanishes identically
in a neighbourhood of oo, we have/(oo) = 0 as required, by continuity.

Now suppose that z* = oo. Omitting finitely many terms, we may assume
that zn # 0 for all n. Since / is analytic on the region R = K\{0}, f°J is
analytic on the region R* = {z~1 \zeK}. Now /© J has zeros at the points
z~l of R*, and these have a limit J(z*) = 0 in R*, so f°J is identically
zero on R* and hence / is identically zero on PL. If 0$R then R = R and
the result is proved. If OeR then/(O) = 0 by continuity, so / is identically
zero on R. •

We have seen how to extend the domain of definition of a function /
to include oo. Similarly, we can include oo in the image of / : if / is
meromorphic at a point aeZ, with a pole at a (that is, (z — aff{z) is
analytic at a for some /ceftJ, but not for fc = 0), then we write f(a) = oo.
Thus the poles of/ correspond to the zeros of J°f We define/:£-• Z to
be meromorphic on Z if it is meromorphic at each aeZ. We immediately
have:

(i) if / is meromorphic on Z then / is continuous on Z;
(ii) each constant function /(z) = ceC is meromorphic on Z (however,

the constant function /(z) = oo is not meromorphic on Z);
(iii) the meromorphic functions on Z form a field, that is, if / and g are

meromorphic on Z then so are f±g,fg and f/g provided g ^ 0.

Suppose that / is analytic at aeC, with/(a) = ceC; if/ is not constant
then/(k)(a) # 0 for some k > 1, and we call the least such k the multiplicity
of the solution of /(z) = c at z = a. Thus

near z = a, with f(k)(a) ^0. If/ is meromorphic at aeC, with a pole of
order k at a, we say that /(a) = oo with multiplicity fc; then /(z) =
Xf= -*fl;(z - a)J near z = a, with constants ai such that a_k # 0, and we
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call Y*J=-kaj(z — a)j ^ e principal part of/ at a. Similarly, if a = oo then
we say that/(oo) = c with multiplicity k if (/°J)(0) = c with multiplicity
/c; for example if/has a pole of order Jc at oo then/(z) = £*= -<x>ajzj near
z = oo, with ak # 0; we call £*= iajzj the principal part of/ at oo. We say
that a is a simple point for / if it has multiplicity k = 1, and a multiple
point if /e > 1.

Corollary 1.3.2. A non-constant meromorphic function / : £ - * £ ta/ces
any gwen ua/ue ceZ only finitely many times, counting multiplicities (that
is, the sum of the multiplicities of the solutions off(z) = c is finite).

Proof If zeZ and/(z) = c, then there exists a neighbourhood Nz of z
such that / does not take the value c on Nz\{z}: for if c = oo then the
poles o f / are the zeros of J°f and since J°f is meromorphic and not
constant these are isolated, by Theorem 1.3.1; if c # oo we use the fact
that the zeros of/ — c are isolated. Being compact, S is covered by finitely
many such neighbourhoods N2l,...,N2k, so/"1(c) = {z1, . . . ,zk}, a finite
set. Since / is meromorphic, each solution of/(z) = c has finite multiplicity,
so / takes the value c only finitely many times. •

(We shall shortly see that / takes each value cell the same number of
times, counting multiplicities.)

Theorem 1.3.3. Let f and g be meromorphic functions on Z with poles
at the same points in L, and with the same principal parts at these points.
Then f(z) = g(z) + c for some constant c. (Thus meromorphic functions on
L are determined, up to additive constants, by their principal parts.)

Proof The function h = / - g is meromorphic and therefore continuous
on Z; since E is compact, the image h(L) is compact. Since the principal
parts of/ and g cancel, h has no poles, so h(L) is a subset of C, and being
compact it is bounded. Liouville's theorem (Theorem A.4) shows that ft,
being analytic and bounded, must be constant on C, and hence (by
continuity) on Z, so that/ = g + c for some constant c. •

The following is a multiplicative version of this result:

Theorem 1.3.4. Let f and g be meromorphic functions on £ with zeros
and poles of the same orders at the same points o/C. Thenf(z) = cg(z)for some
constant c # 0.
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Proof. We may assume that neither / nor g is identically zero. Then
both f/g and g/f are meromorphic on E, and neither of them has any
poles in C, so both are analytic on C. At least one of them (call it h) is
finite at oo, so h is analytic on Z. As in Theorem 1.3.3, Liouville's theorem
implies that h is constant, so that f — eg for some constant c. We have
c # 0 since/is not identically zero. •

(Notice that in the hypotheses of Theorem 1.3.4 we do not need to
assume tha t /and g behave similarly at oo: this follows from the fact that

1.4 Rational functions

A rational function is a function of the form f(z) = p(z)/q{z), where p(z)
and q(z) are polynomials with complex coefficients and q(z) is not
identically zero. When zeC and q(z) #0 , / ( z ) is a well-defined element of
C; when q(z) = 0 or z = oo, we define/(z) = linv_z/(z ') as in §1.3. Thus/is a
function £ -»L.

The rational functions form a field which we denote by C(z). For each
fixed aeC the constant function /a:zi-> a is a rational function, and these
functions form a field isomorphic to C under the isomorphism/, H> a. Thus
C(z) contains a subfield isomorphic to C, so C(z) may be regarded as an
extension field of C.

Two polynomials p and q are co-prime if there is no non-constant
polynomial r dividing both p and q. If/ = p/q is a rational function then we
can cancel any common factors and hence assume that p and q are co-
prime. By the fundamental theorem of algebra we can express every
polynomial as a product of linear factors. Hence we can write

f(z) = c(z - a i r • • .(* -

where ceC, a ^ . . . , ^ are the zeros of p of orders mu...,mr, and pl9...,/?,
are the zeros of g of orders nu..., ns. As p and ^ are co-prime, the zeros
of p are distinct from those of q. Thus <xu..., <xr are zeros of/ of orders
mx,. . . , mr, and /Jx,..., /J, are poles of/ of orders nx , . . . , ns. These are the
only zeros and poles of/ on C, and oo is a zero or a pole as (ml + ... + mr) —
(nt + ... + ns) is negative or positive. For example, /(z) = (z — l)/(z2 + 4)
has zeros of order 1 at 1 and oo, and poles of order 1 at ± 2i.

The next result shows that the algebraic definition of a rational function
is equivalent to an analytic condition:
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Theorem 1.4.1. A function / :Z-»Z is rational if and only if it is mero-
morphic on Z.

Proof If we decompose a rational function/ as above, then/ is differenti-
able at each z # o o , /J/l ^ ; ^ s ) , s o / is analytic on C\{/81,...,jSs}. At
each Ppf has a pole of order M,, while at oo,/is analytic if deg(p) ^ deg(<?)
a n d / has a pole of order deg(p) — deg(<?) if deg(p)>deg(g). Thus / is
meromorphic on Z.

Conversely, suppose that/ is meromorphic on Z. By Corollary 1.3.2,/
has finitely many poles in C, say (}u...,f}s of orders nl9...,ns. Then the
function

g(z)=(z - p.nz - p2r... (2 - &)-

is analytic on C, so g has a Taylor expansion

valid for all zeC. Now # is meromorphic at oo (since/ is), so

(g°J)(z) = a0 + «iz"* + a2z"2 + ...

is meromorphic at 0, and hence a} — 0 for all sufficiently large j . Thus g
is a polynomial, so

/ ( Z ) = 0 ( Z ) ( Z - / ? ! ) - " ' . . . ( Z - f t ) " " *

is a rational function. •

W / = P/^ is a rational function, with p and <? co-prime polynomials,
then the degree (or order) deg(/) of / is the maximum of the degrees of p
and q. Thus/is constant if and only if deg(/) = 0.

Theorem 1.4.2. / / / : Z - + Z is a rational function of degree d>0, then f
takes each value ceZ exactly d times, counting multiplicities.

Proof Let / = p/q, where p and q are co-prime polynomials. First suppose
that c = oo. For zeCwe have/(z) = oo if and only if q(z) = 0, and by the
fundamental theorem of algebra this equation has deg(g) solutions,
counting multiplicities. If deg(p) < deg(g) then these are the only poles of
/ ; if deg(p) > deg(g) then/has an additional pole of order deg(p) - deg(g)
at oo. In either case, the number of solutions (counting multiplicities) of
/ ( z ) = oo is max(deg(p), deg(<?)), which is the degree of /

Now suppose that c ^ oo. Since d e g ( / ) > 0 , / is not identically equal
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to c, so there is a rational function

1 a
f-c p-cq

the solutions of /(z) = c are the poles of g, and by the previous argument
there are deg(#) of these counting multiplicities. Now q and p — cq are
co-prime (since p and q are), so deg(#) = max(deg(<?), deg(p — cq)) =
max(deg(g), deg(p)) = deg(/), as required. •

Let / be meromorphic at aeZ and let f(a) = c. Recall that a is a multiple
point for/ if the equation/(z) = c has a multiple solution at z = a; if c ̂  oo
this is equivalent to f'(a) = 0, while if c = oo then this is equivalent to /
having a pole of order at least two at a. All other points are called simple
points for/.

Corollary 1.4.3. Let / :Z -• Z be a rational function of degree d>0. Then

(i) f has only finitely many multiple points in Z;
(ii) | / " 1(c)\ = dfor all but finitely many points eel,, and 1 < \fl{c)\ < dfor

the remaining points c.

Proof

(i) Since the derivative/' is rational and not identically zero,/' has only
finitely many zeros in Z; since/ has only finitely many poles, (i) follows.

(ii) By Theorem, 1.4.2, if ceZ then there are solutions z = ali...,ar of
f(z) = c with multiplicities fcl5...,kr satisfying k{ + ... + kr = d. Thus
| / - i ( c ) | = r so that 1 ^\f~x(c)\^d, and we have \f~l(c)\ = d unless
some kj ^ 2. Since / has only finitely many multiple points, by (i), the
result follows. •

(Notice that this characterises d = deg(/) purely set-theoretically as the
maximum value attained by \f~l(c)\ as c ranges over L, provided d>0.)

Suppose that a function/ is meromorphic at a point aeZ. We define
the order of/at a to be

I k if/has a zero of multiplicity k at a,

0if/(fl)*0,oo,

- k if/has a pole of order k at a.

Thus for aeC, va(f) is the lowest exponent of (z-a) in the Laurent
expansion of/near z = a, while for a = oo, ux(/) is the lowest exponent
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of z in the Laurent expansion of (/°J)(z)=/(z"1) near z = 0. In the
case of a non-zero rational function/, it is clear that for a ̂  oo, va(f) is
the exponent of (z — a) in the factorisation of / into powers of linear
polynomials, so that

f{z) = c\\(z-ay^ (CGC\{0}),
aeC

this product being finite since va(f) = 0 for all but finitely many aeC; for
a = oo, we have v^if) = deg(<?) — deg(p) where/ = p/q, p and q co-prime
polynomials. Thus, if the zeros and poles of / have multiplicities m7, n}

respectively, then

aeC

so that

ael

This shows that the number of zeros of/on I is equal to the number of
poles (counting multiplicities). We can regard this as a special case of
Theorem 1.4.2, and the full statement of this theorem follows easily. We
shall see that a similar equation holds for functions /which are meromor-
phic on other compact surfaces, such as the torus.

1.5 Topological properties

We now examine the topological properties of meromorphic (or equiva-
lently rational) functions as maps from the sphere to itself; the main
technical difficulty arises in dealing with multiple points.

Suppose that/: I ->I is meromorphic and not constant. If/(a) = c with
multiplicity fe, where a, ceC, then Theorem A. 10 shows that/ is a fe-to-one
function near a; more precisely, if U is any sufficiently small open set
containing a then there exists an open set V containing c such that for
each c'e V\{c] the equation/(z) = c' has exactly k solutions in Uy all simple
(see Fig. 1.5). Thus we may think of the solution of multiplicity k at a as
splitting into k simple solutions near a. By considering the functions/0 J,

Fig. 1.5
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J °/and J°f°J, it is easily seen that we have the same behaviour near a when
either a,c or both are equal to oo. (For functions of a real variable, the
situation is less satisfactory: for example, as shown in Fig. 1.6, the function
/ : IR -• U given by /(x) = x3 has a triple root at x = 0, but is locally one-to-
one; the function/(x) = x2 has a double root at x = 0, but the equations
/(x) = d have two solutions for d > 0, and none for d < 0.)

A mapping between topological spaces is called open if the image of
each open set is open; we shall show that non-constant meromorphic
functions are open. Let X be an open subset of I and let cef{X\ say
c =f(a) with multiplicity k for some aeX. Then by Theorem A. 10 (extended
to I as above), c is contained in an open set V<^f(U)^f(X\ where U
is a neighbourhood of a in X. Thus/(Ar) is open, as required.

If/(a) = c with multiplicity k = 1, then /maps a neighbourhood W=Un
f~l(V) of a bijectively onto a neighbourhood V of c, so we can define an
inverse function/" l: V-+ W\ since / is open,/" i is continuous, so/ , being

Fig. 1.6

Fig. 1.7
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itself continuous, induces a homeomorphism of W onto V. Thus, at simple
points,/ is locally a homeomorphism.

A point of multiplicity k> 1 is often called a branch-point of order k — 1.
By Corollary 1.4.3, the set B of branch-points of/ is finite, and for each
ceZ\/(B) the equation/(z) = c has only simple solutions, so that if/ has
degree d then there are exactly d points al,...,adef~1(L\f(B))=*
£ \ / ~ * (/(#)) s uch that/faj) = c- Each a,- has a neighbourhood W} mapped
homeomorphically onto a neighbourhood Vj of c, and we can choose
these neighbourhoods W} to be mutually disjoint, so that c has a neighbour-
hood V=Vlr\...nVd such that f~l(V) consists of d disjoint open sets
ty.= Wjnfl(V\ each mapped homeomorphically onto V by / (see
Fig. 1.7 for the case d = 2). This shows t h a t / : I \ / ~ *(/(£))->I\/(JB) is
an example of a covering map: a continuous map/:X-> y is a covering
map if every yeY has a neighbourhood V such tha t / ' ^K) consists of
disjoint open s$ts mapped homeomorphically onto V by/, in which case
X is a covering space of y. If we include the branch-points, we have a
branched covering / :L-*£. (For more details about covering spaces see
[Massey, 1967].)

It is useful to imagine the neighbourhoods Wu...,Wd forming parallel
layers lying above K, so that/ projects each W} homeomorphically down-

Wi
a2

wd-

Fig. 1.9
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wards onto V, as in Fig. 1.8. As c moves around Z\ / (£) , these neighbour-
hoods Wj form the d sheets of the surface l \ / ~ *(/(£)) which is 'wrapped
around' the image sphere Z, with d points al9...,ad lying above each
c e I \ / ( £ ) ; at branch-points of order k— 1, we have fc sheets coming
together to form a single point on the domain sphere Z (see Fig. 1.9 for
an example with d = 2). This construction, in which the domain sphere is
wrapped d times around the image sphere, is difficult to visualise, and is
in fact impossible to perform in IR3 without the domain sphere intersecting
itself, though it can be done in spaces of higher dimension. We will return
later to these ideas on covering surfaces; for example, in Chapter 3 we
will see that elliptic functions lead to branched coverings of the sphere
by the torus. For the time being, we will try to make these abstract ideas
a little more concrete by considering specific examples.

Examples (1) Let/(z) = zn. We have/(0) = 0 with multiplicity n, and
as/'(z) / 0 for z ^ 0 , there are no other branch-points in C. To see if oo
is a branch-point we consider (J°f°J)(z) = zn which has a zero of order n at
z = 0, so/(oo) = oo with multiplicity n. Hence the covering surface has n
sheets which come together at branch-points of order n — 1 at 0 and oo.

(2) Let f(z) = z/(z3 + 2), a rational function of degree 3. Since f'(z) =
(2 — 2z3)/(z3 + 2)2, there are branch-points at the cube roots of unity z = 1,
a>,a>2 (a> — e2ni'3). These branch-points lie over the points j , a;/3,a>2/3 in
the image sphere. We can see that these branch-points have order 1 either
by showing that/"(z) ^ 0, or alternatively by solving the equations/(z) = ,̂
f(z) = co/3 and /(z) = a>2/3. For example, the first of these equations is
equivalent to (z — l)2(z + 2) = 0, showing that over the point ^ two of the
three sheets come together to give a double solution at z = 1 (that is, a
branch-point of order 2—1 = 1), while there is a simple solution at z = — 2
on the third sheet (see Fig. 1.10). Similarly, over the point a>/3 there is a
double solution £t z = co and a simple solution at z = — 2a>, while over

Fig. 1.10

z=-2
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to2/3 there is a double solution at z = a)2 and a simple solution at
z = - 2co2.

We have to examine the cases z = oo and the poles of/ separately. The
function (/°J)(z) = z2/(l +2z3) has a double zero at z = 0, so
/ has a branch-point of order 2 - 1 = 1 at z = oo, the other solution of
/(z) = 0 being a simple one at z = 0. Finally, the poles of/ are all simple
(at the cube roots of - 2), so these are not branch-points of /

EXERCISES

1 A. Show that the eight points whose coordinates are (+ 1/73, ± 1/^3, ± 1/^3)
form the vertices of a cube lying on the Riemann sphere. Find the images of
these points under stereographic projection and plot them in the complex
plane.

IB. Use 1A to find four points on the Riemann sphere which are vertices of a
regular tetrahedron and find their images under stereographic projection.

1C. Find the points of the Riemann sphere which project under stereographic
projection to

(i) the circle Cr = {zeC||z| = r};
(ii) the real axis;

(iii) the imaginary axis;
(iv) the points of the unit square whose vertices are ± 1 ± i.

ID. Let z,, z2eC correspond (under stereographic projection) to Qx,Q2eS2. Find
the distance d(QuQ2) between Qx and Q2 in R3 in terms of zx and z2, and
also find the angle subtended by Qx and Q2 at the origin. Use this to show
that stereographic projection from S2\{N} onto C is a homeomorphism.

IE. Show that complex conjugation of £ (that is complex conjugation of C
extended to I by defining ob = oo) corresponds to reflection of S2 in the
plane x2 = 0. What transformations of I correspond to reflections in the
planes xx = 0 and x3 = 0? Show that the antipodal map Q\-* — Q of S2 is the
composition of the above three reflections in any order and hence express it
as a transformation of Z.

IF. Show that the one-point compactification of the real line is homeomorphic to
the circle.

1G. Investigate the nature of the following functions at oo:

(ii)/2(z) = exp(z/(z+l)),
(iii)/3(z) = sin2(l/(z + 2)),
(iv)/4(z) = zsin(l/z).

1H. Give an example of a meromorphic function / :C -• I with a simple pole at each
zeZ; does it extend to a meromorphic function I - + I ?
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II. Find the zeros and poles of

Jy' z4 + 3z2 + 2

and check that Li6li>fl(/) = 0.
1J. Suppose that / is a rational function with a pole of order 3 at z = i, a zero of

order 2 at z = 1, a zero of order 3 at oo, and a pole at z = 2 (and no other zeros or
poles). Find the order of the pole at 2 and determine / to within a constant
factor.

I K . L e t a l 9 . . . 9 a n b X 9 . . . 9 b s e T L a n d l e t k l 9 . . . 9 k n l t 9 . . . 9 l M b e p o s i t i v e i n t e g e r s . F i n d
necessary and sufficient conditions for the existence of a rational function

with a zero of order k} at each ap a pole of order lj at each bp and no other

zeros or poles.

1L. Let / be a rational function whose poles in C are at pl9...,/?,. Prove that there

exist unique polynomials </>0, </>,,...,</>fl with zero constant term such that

f(z) = </>0(z) + £ > , ^ + constant

(use Theorem 1.3.3). Illustrate this result with reference to the function

4(z- 1)4-2)
(This question shows that every rational function can be decomposed into
partial fractions.)

1M. Let f(z) be a rational function such that | z| = 1 implies | /(z)| = l.Showthatais
a zero of f(z) if and only if I/a is a pole of/(z), and hence find the most general
form of /(z).

1N. Investigate the covering of the sphere by the sphere associated with the rational
function

27'

(Find the number of sheets, the branch points and the nature of branching.)
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Mobius transformations

2.1 Automorphisms of I

An automorphism of the Riemann sphere £ is a meromorphic bijection
T:E->E; we denote the set of all automorphisms of Z by Aut(L).

Theorem 2.1.1. Aut (L) consists of the functions

S r ^ (a,b,c9deC9ad-bc*O).

Proof. By Theorem 1.4.1 a function T:E -> L is meromorphic if and only
if it is rational, and by Corollary 1.4.3 such a function T is a bijection if
and only if it has degree 1. The automorphisms of £ are therefore the
functions T(z) = (az + b)/(cz + d) where az + b and cz + d are co-prime
polynomials, that is, ad — bc^O. •

The transformations w = T(z) of the above type are known as linear
fractional or Mobius transformations (A.F. Mobius, 1790-1868). It is
important to notice that T does not determine the coefficients a, b, c, d
uniquely: if AeC\{0} then the coefficients Aa, Afc, Xc, Xd correspond to the
same transformation T. The Mobius transformations form a group under
composition: if

is also a Mobius transformation, then U° T is the Mobius transformation

(l'-D(.-) > ' * +*>'<>*+ <«'* +*>'<*>,
1 n ' (c'a + d'c)z + (c'b + d'd)

with (a'a + fe'c)(c'f> + <*'</) - (a'b + fc'd)(c'a + d'c) = (a'rf' - fc'c')(a<i - be) # 0.
The identity transformation has a = d ^ 0 and i> = c = 0, and the inverse
of T is the transformation
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Corollary 2.1.2. Aut(Z) is a group of homeomorphisms from £ to itself

Proof. We have just shown that Aut(I) is a group. If TeAut(I) then,
being meromorphic, T is continuous; since T^eAutfZ), T"1 is also
continuous, so T is a homeomorphism from Z to itself. •

There is a strong connection between Mobius transformations and
matrices: if T and U are expressed in the above form, and if M and N
are the corresponding matrices

c :
then U°T corresponds to the matrix product

'b + b'd\
'b + d'd)'c'a + d'c c

More precisely, let GL(2, C) denote the general linear group consisting of
all 2 x 2 complex matrices

with det(M) = ad — bc^0, and for each such M let 9{M) be the Mobius
transformation T(z) = (az + b)/(cz + d). Then fl(NM) = l/° 7= 0(N)o0(M),
so that 0:GL(2,C)-»Aut(£) is a group-homomorphism, and by Theorem
2.1.1 0 is an epimorphism. The kernel K = ker(0) consists of those
MeGL(2,C) such that T(z) = z for all ze£, or equivalently a = d^0 and
fc = c = 0, so X consists of the matrices

thus two matrices Af, NeGL(2,C) determine the same automorphism of
Z if and only if M~lNeKy that is, N = kM for some A ^ 0. Applying the
first isomorphism theorem to 0, we get

Aut (Z) s GL(2, C)//C = GL(2, C)/{A/|A # 0}.

The quotient group GL(2,C)/X is the protective general linear group,
denoted by PGL(2, C).

Since det (NM) = det (N) det (M) for all M, NGGL(2,C), the function

det:GL(2,C)->C* = C\{0}

is a group-homomorphism; its kernel is a normal subgroup of GL(2, C),
the special linear group SL(2,C) consisting of all MeGL(2,C) such that
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det(M) = 1. Since det is onto, we have

If NeGL(2,C) then we can write N = kM where /L2 = det(N) and
M eSL(2, C); since 9(N) = 0(M), this shows that every automorphism of Z
has the form

T(z) = — with ad-bc=\;
cz + d

equivalently, 6 maps SL(2,C) onto Aut(Z). Thus PGL(2,C) coincides with
the projective special linear group PSL(2,C), the image of SL(2,C) in the
quotient-group PGL(2, C)//C, and we have proved:

Theorem 2.1.3. Aut (I) ^ PGL(2, C) = PSL(2, C). Q

From now on, we will use this isomorphism to identify Aut(Z) with
PGL(2,C).

The transformations

with a, b, c, deC and ad — bc^O (or equivalently ad — be = 1) are known
as anti-automorphisms of Z. Each anti-automorphism T is the composition
of complex conjugation with an automorphism of Z; since both of these
are homeomorphisms of Z onto itself (complex conjugation being given
by reflection in the plane through lRu{oo}), so is T. The composition of
two anti-automorphisms is an automorphism, and the composition of an
anti-automorphism with an automorphism is an anti-automorphism, so
the automorphisms and anti-automorphisms of Z form a group denoted
by Aut (Z) = PGL(2, C), in which Aut (Z) is a normal subgroup of index 2.
There is a topological distinction between automorphisms and anti-
automorphisms in that the former preserve the orientation of Z while the
latter reverse it.

2.2 Linear and projective groups (This section may be omitted
on first reading)

Some of the ideas on matrix groups in §2.1 may be extended to higher
dimensions and to arbitrary fields. If n is any positive integer and F is
any field, then GL(n, F) is the general linear group of n x n invertible
matrices with coefficients in F, and SL{n,F) is the special linear group
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consisting of the unimodular matrices, those of determinant 1; we have
GL(n9 F)/SL(n, F)^F* = F\{0}. If n > 2, then since GL(n,F) acts on the
n-dimensional vector space Fn as a group of linear transformations,
GL(nyF) permutes the set PG(n- 1,F) of 1-dimensional subspaces of Fn.
This set PG(n - 1, F) has the structure of an (n - l)-dimensional projective
geometry, on which GL{n, F) induces a group of projective transformations.
The kernel K of this action of GL(n, F) is the set of n x n scalar matrices
A/n(AeF*), and the group induced by GL(n, F) is the projective general
linear group PGL(n, F) = GL(n, F)/K. The subgroup induced by SL(n, F)
is the projective special linear group PSL(n,F) = SL(n,F)/(KnSL(n,F));
we have PSL(n, F) = PGL{n, F) if and only if every element of F has an
nth root in F (for example, PSL(2, C) = PGL(2, C), but PSL(2,U)<
PGL(2, R)).

If n = 2 then each 1-dimensional subspace V of F2 is spanned by a
non-zero vector v = (<x,P) with a, PeF. The ratio z = a//?eFu{oo} is
independent of the choice of v e F, so we may identify PG(1, F) with F u {oo},

identifying V with z. If M = y jeGL(2,F), then M(v) = (aa + bp,

so that the subspace M(V) has ratio (aot + bP)/(coi +dp) =
(az + b)/(cz + d). Thus the actions of GL(2,F) on PG(1,F) (by projective
transformations) and on Fu{oo} (by linear fractional transformations)
are identical. Taking F = C, we see that the Riemann sphere Z = C u {oo}
is identified with the complex projective line PG (1,C), and that GL(2,C)
acts in the same way on I and on PG(1, C), inducing the group PGL(2, C)
in each case.

2.3 Generators for PGL(2, C)

It is useful to consider the following special types of Mobius trans-
formation:

(i) the transformation R0(z) = eiez (6eU) represents a rotation of the
sphere Z by an angle 9 about the vertical axis through 0 and oo (we
shall see later that every rotation of I corresponds to some Mobius
transformation);

(ii) the transformation J(z) = 1/z represents a rotation of £ by an angle
n about the axis through 1' and — 1, as shown in §1.3;

(iii) the transformation Sr(z) = rz (rsU,r> 0) fixes 0 and oo, and acts on
the plane C as a similarity transformation, expanding or contracting
distances by a factor r;
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(iv) the transformation Tt(z) — z + t (teC) fixes oo and acts on the plane
C as a translation.

The next result shows that the Mobius transformations of types (i) to
(iv) generate PGL(2, C).

Theorem 2.3.1. Every Mobius transformation is a composition of finitely
many Mobius transformations of types (i), (ii), (iii) or (iv).

Proof Each Mobius transformation has the form T(z) = (az + b)/(cz + d)
with ad - be = 1. If c = 0 then T(z) = (az + b)/d with a, d * 0, so let a/d = re"
and b/d = f. Then T(z) = re"z + f, so T= Tt°Sr°R0. If c # 0 then

c c(cz + d)

= (Tt°J)(-c2z-cd\

with r = a/c; by the method used in the case c = 0, the transformation
zi-» — c2z — cd can be expressed in terms of the given generators, and hence
so can T. •

2.4 Circles in L

A circle in the sphere S2 c R3 is defined to be any intersection S 2 n IT
where II is a plane in U3 and |S2nI"I| > 1 (that is, n meets S2 and is not
a tangent plane to S2); this is illustrated in Fig. 2.1. Using the bijection
n:S2 ->E, we define a circle in Z to be the image under n of any circle in
S2. If C is a circle in I corresponding to a plane n with equation

axx + px2 + yx3 = d (a, )S,y,<5e(R),

then using equations (1.1.2) we find that C is given by

where z = x + iy. Writing a = y- SeU, b = <x- i/?eC, and c = - (y +

Fig. 2.1
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this becomes

azz + bz + Bz 4- c = 0,

or in (x, y) coordinates,

ax2 4- ay2 + 2ax + 2/ty + c = 0.

The condition | S 2 n I l | > l is equivalent to the existence of a point
(x1,x2,x3)ell with x\ + x\ + x | < 1, and this is equivalent to a2 + /?2 +
y2 > <52; in terms of a, 6 and c this is equivalent to bB > ac. Conversely, if
bB > ac then the above equations always define a circle in £.

If a # 0 we have

H)'
and this represents a circle in R2 with centre (— a/a, — fi/a) and radius
(a2 + p2 — ac)i/2/a. In complex coordinates, the centre is — 5/a and the
radius is (bB — ac)l/2/a.

If a = 0 then the equations represent a straight line in R2; this case
corresponds to circles in £ containing oo or equivalently circles in S2

containing the north pole N = (0,0,1).
Thus circles in X are of two types: circles in C (in the usual Euclidean

sense), and sets of the form Au{oo}, where A is a straight line in C. The
connection between PGL(2, C) and circles in Z is given by the following
result.

Theorem 2.4.1. If C is a circle in Z, and if TePGL(2, C), then T(C) is a
circle o/*X.

Proof By Theorem 2.3.1, T is a composition of transformations R& J,
Sr and Tt defined in §2.3, and it is easy to see, either geometrically or by
a simple calculation, that these map circles to circles. For example, R$

and J induce rotations of S2, so they preserve the circles in S2 and hence
in Z; Sr and Tt fix oo and act on C as a similarity transformation and as
a translation respectively, so they preserve the Euclidean lines and circles
in C and hence preserve the circles in Z. It follows that T, being a com-
position of circle-preserving transformations, also preserves circles. •

2.5 Transitivity and cross-ratios

If a group G acts on a set Q, we say that G acts transitively if, for each a,
there exists some geG such that g(a) = (}. More generally, we say
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that G acts k-transitively on Q if, whenever (al5. . . , a*) and (Pl9..., pk) are
fc-tuples of distinct elements of Q (that is, a, # a, and /?, ^ $} whenever
i #;), there exists some geG such that g{<Xj) = /?, for ; = l,2,...,/c. Clearly,
1-transitivity means the same as transitivity, and fc-transitivity implies
(k - l)-transitivity for k ^ 2. We shall show that PGL(2,C) acts 3- but not
4-transitively on I .

Theorem 2.5.7. Ifzl9 z2, z3 are three distinct elements o / l , then there is
a unique 7ePGL(2,C) such that T(zx) = 09 T(z2) = 1, and 7(z3)= oo.

Proo/. If zl t z2, z3 ^ oo, let

(z -^ 2 -Z3)

(Z

Then T sends zx,z2,z3 to 0,1, oc respectively, and TePGL(2, C) since T
has the form T(z) = (az+ b)/(cz + d) with a d - fee = (zt - z2)(z2 - z3) x
( z 3 ~ z 1 ) ^ 0 .

If some Zj = oo, we take the limit of the above transformation T as
Zj-+ oo: if zx = oo we take T{z) = — (z2 — z3)/(z3 — z); if z2 = oc we take
7(z) = - (z - zl)/(z3 - z); if z3 = oo we take T(z) = - (z - zJAzj - z2). In
each case, 7ePGL(2,C) and T sends zi,z2,z3 to 0,1, x .

Finally, T is unique: for if 1/GPGL(2, C) also sends zx,z2,z3 to 0,1,
oo, then UT~l fixes 0,1, oo; putting UT~ \z) = (az + b)/(cz + d) and solving
the equations l /T" x(z) = z (z = 0,1, oc) for a, fc, c and d, we see that UT~l

is the identity, so that U = T. •

Corollary 2.5.2. If (zx,z2,z3) and (w1,w2,w3) are frip/es of distinct points in
Z, ften there is a urn^we TePGL(2,C) such that T(Zj) = Wjfor j = 1,2,3.

Proo/. Let Tj, T2ePGL(2, C) satisfy T^z,) = r2(w;) = 0,1, oo for ; = 1,
2,3. Then the element 7 = 77 ^ of PGL(2,C) sends Zj to ŵ  for ; = 1,
2,3. If UePGL(2X) also satisfies U{ZJ) = WJ for ; = 1, 2, 3, then both
7\ and T2(/ send z; to 0, l,oo, so that Tl = T2U and hence U =

77J rt = r. •

Corollary 2.5.3. If T G P G L ( 2 , C ) and T/bces r/iree distmcr points o / I ,
then T is the identity.

Proof If T fixes zt, z2 and z3, then both T and the identity IePGLQC)
send Zj to itself (7 = 1,2,3), so 7 = / by the uniqueness result in Corollary
2.5.2. •
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By Corollary 2.5.2, PGL(2,C) acts 3-transitively on I . We shall now
determine the elements of PGL(2, C) which leave invariant a subset A of
I containing three elements. They form a subgroup

G(A) = {TePGL(2, C)I T(A) = A} ^ PGL(2, C),

and if 0 = {0,1, oo} then G(A) = U' ^(0)1^ where UePGL(2, C) is chosen
so that U(A) = 0 . Thus G(A) is isomorphic to G(0), so it is sufficient to
determine the subgroup G(0) leaving 0 invariant.

It follows from Corollary 2.5.2 that each permutation n of 0 , there
is a unique TePGL(2, C) inducing the permutation n on 0; we shall write
T= Tn. Then Tn\-*n gives an isomorphism between G(0) and the group of
all permutations of 0 , that is, G(0) ^ S3. We can easily check that the
following elements of PGL(2, C) leave 0 invariant:

T(z) = z,\-zy-> -, , ,
Z Z— 1 1 — Z Z

so these must be the elements of G(0), corresponding to the permutations

TT = (0)(1)(OO), (01)(oo), (0oo)(l), (0)(loo), (01 oo), (Oool)

respectively.
By Corollary 2.5.3, PGL(2, C) cannot be 4-transitive: for example, there is

no Mobius transformation mapping 0, 1, oo, 2 to 0,1, oo, — 1 respectively.
In order to determine which 4-tuples are equivalent under the action of
PGL(2, C), we make the following

Definition. If (zo,z1,z2,z3) is a 4-tuple of distinct points in Z, the cross-
ratio

is defined to be T(z0), where T is the unique element of PGL(2,C)
satisfying T(Zl) = 0, T(z2) = 1, T(z3) = oo.

Since z0 ^ zuz2, z3, we have X ^ 0,1, oo. By the proof of Theorem 2.5.1,
we have T(z) = (z - z1)(z2 - z3)/(z1 - z2)(z3 - z), so putting z = z0 we get

with the usual convention of taking limits if some z ,= oo.

Theorem 2.5.5. Let (z0, zi9 z2, z3) and (vv0, wu w2, w3) be 4-tuples of distinct
elements of £. Then there exists some TePGL(2, C) with T(zj) = Wj
(; = 0,1,2,3) if



Transitivity and cross-ratios 25

Proof, Suppose that T(zj) = w, (; = 0,1,2,3). Let U be the unique element
of PGL(2,C) sending w1,w2,w3 to 0,1, oo respectively, so that
(wo,w1;vv2,w3)= C/(w0). Now UT is an element of PGL(2,C) sending
zi>z2>z3 *° 0> 1» °° respectively, and is therefore unique in doing this, so

(z0, zx; z2, z3) = UT(z0) = l/(w0) = (w0, w^ w2, w3).

Conversely, if (zO9zl;z29z3) = A = (w09wl;w2,w3\ then there exist U,
KePGL(2,C) with 1^,)== K(z,) = A,0, l,oo for ; = 0,l,2,3. Hence
U-lV(zj) = Wj so take T= i r 1 ^ D

If z0, zl9 z2, z3 are four distinct elements of Z, then by permuting them
we must expect to obtain different values for their cross-ratio. Without
loss of generality, we may apply a Mobius transformation replacing these
points by 4,0,1, oo, where k = (zo,zl\z1,z3). The permutations of
{A,0,1, oo} form a group G s S4, and for each neG we define

For example, if n is the identity then Xn = A, while if n = (A01 oo) then

We might expect to obtain \G\ = 4! = 24 different values of An for TCGG,
but some of these values coincide: for example, if n' = (A)(0oo)(l) then

AK, = (A,oo;l,0) = -

also, even though (A)(0oo)(l)#(A01oo). The permutations v = (01)(Aoo),
(A0)(loo), (Al)(0oo), together with the identity, form a subgroup N of G,
and satisfy Xn = Xny for all neG, veN. For example, if v = (01)(Aoo) then

Av = (oo,l;0,A),
and so

(7r(oo) -

(7r(l)~7c(0))(7r(A)-7r(oo))

= (7r(A)-7r(0))(7r(l)-7r(oo))
(7r(0)-7i(l))(7r(oo)-7r(A))

Thus k% = k%> whenever %N — n'N (as illustrated in the above example,
where 7r/ = (A)(Ooo)(l) = (A01oo).(01)(Aoo) = 7cv), so we obtain at most
^ = 6 different values of kK, one for each coset nN of N in G.
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In general, these six cosets give different values for kn. For example, the
permutations neG which fix k and permute 0 = {0,1,00} form a subgroup
H = G ( 0 ) ^ S 3 of G, and for each neG we can evaluate An = (A,TT(O);
7r(l),7r(oo)) by applying a Mobius transformation T sending 7t(0), 7r(l),
7r(oo) to 0,1, 00 respectively; then kn = T(k) by definition of the cross-ratio.
We have seen that there is a unique such transformation, namely
T— 7^-1,= T ~ \ so corresponding to

7r = (0)(l)(oo),(01)(oo),(0oo)(l),(0)(loo),(01oo),(0ool),

we have

For all but finitely many A, these values of kn are all distinct: for example,
k # 1 — k provided k #^ . Thus the six elements neH lie in distinct cosets
of N, so each coset of N contains a unique element of H.

Suppose that k is chosen so that the six cosets nN determine distinct
values of kn. For each neG the coset nN contains a unique element n'eH,
and we have kn = kn> since nN = n'N. Being a union of conjugacy classes
(see §2.9 for conjugacy), N is a normal subgroup of G, that is, nN = Nn
for all neG. Now if nl9 n2eG correspond in the above way to n\, n'2eH,
so that UjN = n'jN fory = 1, 2, then we have

nxn2N = nxNn2 = n\Nn2 = n'2n2N = n\n'2N.

Since H is a subgroup, we have n\n'2eH, so (7r17i2)
/ = n\n'2. Thus the

function nt-+ n' is a homomorphism from G to H; the kernel is Ny and the
image is H since 7c' = n for all 7ie//. This shows that S4 has a normal
subgroup N with SJN = H = S3. This behaviour of 54 is exceptional: for
each n, the symmetric group Sn has a proper normal subgroup Ani with
SJAn ^ C2, and there are no other proper normal subgroups, with the
single exception of N in the case n = 4.

2.6 Cross-ratios and circles

Any three distinct points in S2 lie on a unique plane IlelR3, and hence
any three distinct points in Z lie on a unique circle C = TT(S2 n IT) in Z.
Using the 3-transitivity of the action of PGL(2, C) on Z, we deduce

Theorem 2.6.1. PGL(2,C) permutes the circles in Z transitively, that is, if
C and C are circles in Z then there exists some TePGL(2,C) such that
T(C) = C.
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Proof. Let zltz2,z3 be any three points on C, and wl9w2,w3 any three
points on C". By Corollary 2.5.2 there exists some TePGL(2,C) with
T(Zj) = w, for 7 = 1,2,3. By Theorem 2.4.1, T(C) is a circle, so both T(C)
and C are circles containing wuw2iw3 and hence T(C) = C. D

If z1? z2 and z3 are distinct, then the cross-ratio k = ( z ^ ; z2, z3) is defined
for all z ̂  z,(; =1,2,3). We can extend this definition to the cases z = Zj
by defining

k = (zpz^z2,z3) = lim (z,zx\z2,z3),

so that A = 0,1, oo for ; = 1,2,3. As before, k is invariant under Mobius
transformations. We can now use cross-ratios to characterise the circles
in I:

Theorem 2.6.2. Let C be the circle through three distinct points zl9 z2, z3

inL. Then C =

Proof. Choose TePGL(2,C) so that T(z,) = 0, 1, oo for ; = 1,2,3; then
T(z) = (z9zl;z2iz3\ and so zeC if and only if (z^^z^z^e^C) . But T{C)
is the circle through 0, 1, oo, so T(C) = Ru{oo}, as required. D

We can interpret this result geometrically. Assume that oo£C, so that
C is a Euclidean circle in C. Let 8 be the angle between the vectors z — zx

and z - z3 in C, and </> the angle between z2 - zx and z2 - z3. Since

= (z -z l ) (z2 - z3) =(z-zx) l(z2 - zx)

(Zj ~ Z2)(Z3 -Z) (Z - Z3) / (Z2 - Z3)'

we have

arg(A) = (arg(z - zx) - arg(z - z3)) - (arg(z2 - zx) - arg(z2 - z3))

Fig. 2.2
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so the theorem expresses the result (familiar in Euclidean geometry) that
the points z, zuz2,z2 are concyclic (lie on a circle) if and only if 9 — <f> is
a multiple of n, or equivalently, that a quadrilateral is cyclic if and only
if opposite internal angles add up to n (Fig. 2.2 illustrates two cases).

If oo eC, then C\{oo} is a Euclidean line in C, and the theorem expresses
a condition for the points z,zl,z2,z3 to be collinear.

2.7. Inversion

Let C be a circle in Z with equation

azz + bz + 5z + c = 0 (a, ceR, beC).

If a # 0, then C is a Euclidean circle in C, and we define a transformation
/c , called inversion in C, as follows. Let p be the centre and r the radius
of C. For each zeC\{p} there is a unique point w on the line through p
and z such that

| z - p | - | w - p | = r2,

and such that z and w lie on the same side of p (see Fig. 2.3). We define
fc(z) = w» anc* w e caU w ^ e conjugate point of z with respect to C. As
z-+p, w-+oo, and as z-*oo, w->p, so we extend Ic to a transformation
of £ by defining Ic(p)= oo and Ic(oo) = p. Then /£ is the identity, and

= z if and only if zeC.

Fig. 2.3

We now derive an equation for Ic. If z # p, oo we have

|(z--p)(w-p)| = | z - p | . | w - p | = r2;

now arg(z — p) = arg(w — p), so arg(z — p)(w — p) = 0, and hence

(z - p)(w - p) = r2,
so that

r2
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As shown in §2.4 we have p = —h/a and r2 = (bB — ac)/a2, so

w = 1(kz)=Jl±l (2.7.!)
a az + b v '

This equation, also valid for z = p and z = oo, and hence for all z e l , shows
that Ic is an anti-automorphism of L, that is, /cePGL(2,C) (see §2.1).

If a = 0, then C\{oo} is the Euclidean line

bz + Bz + c = 0;

we can use equation (2.7.1) to define a transformation

of E, and we shall show that in this case, Ic represents reflection of C in
C\{oo}. Firstly, a point zeC is fixed by Ic if and only if z = ( — Bz — c)/fc,
that is, if and only if zeC. Secondly, if zeC\C and geC\{oo}, then

Bz-

!«-*>

Thus z and I^z) are equidistant from any point geC\{oo}, so I^z) must
be z or its mirror-image in C\{oo}. Since z^C, l^z) ^ z, so Ic reflects C
in C\{oo}, as shown in Fig. 2.4. In particular, if C = Ru{oo} then Ic

represents complex conjugation.

Fig. 2.4

Cu{oo}

To sum up, the transformation, Ic given by (2.7.1) represents inversion
in C if C is a circle in C, and reflection in C\{oo} if C\{oo} is a line in C.

By Theorem 2.4.1, if C is a circle in Z and if TePGL(2, C), then T(C) is a
circle C in 2. Under these circumstances, we have

Lemma 2.7.2. Ic. = TIcT~l.
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Proof. If zeC\ then Ic(z) = z; moreover, since T~1(z)eC, we have
ICT~ \z) = T"l{z). It follows that if we define S = TICT' x / o then

S(z) = T1CT-Ilc{z) = TIcT~l(z) = TT" *(*) = *

for all zeC\ so 5 fixes C Being a composition of two automorphisms
and two anti-automorphisms, S is an automorphism of Z (by the comments
at the end of §2.1), so SePGL(2,C). Since S fixes C, it fixes at least three
points of Z, so 5 is the identity automorphism by Corollary 2.5.3, and
therefore

It follows that elements TePGL(2, C) map conjugate pairs with respect to C
to conjugate pairs with respect to C = T(C):

Theorem 2.7.3. Let TePGL(2, C) and let C and C = T(C) be circles in Z. / /

Proof. If w = I^z) then lc{T{z)) = TICT'x T(z) = TI^z) = T(w). •

2.8 The stabilisers of a circle and a disc

If X is any subset of Z then the Mobius transformations mapping X onto
itself form a subgroup of PGL(2, C), the stabiliser of X, which we denote
by G(X). In §2.5 we considered the cases where \X\ = 3 or 4, and here we
determine G(X) where X is a circle or a disc. (A disc D in Z is an open
region bounded by a circle; equivalently, D is an open disc or an open
half-plane in C, or D = £u{oo} where E is the complement of a closed
disc in C.)

Let Ift be the circle Ru{oo}. If C is any circle in Z, then there exists
TePGL(2X) such that T(C) = ft, and hence G(C)= T-lG(U)T, so G(Q
is conjugate to G(U) in PGL(2, C). Since T is a homeomorphism, it maps
each of the two discs D bounded by C to a disc bounded by ft, so T(D)
is the upper or lower half-plane

# = {zeC|Im(z)>0} or & = {zeC|Im(z)<0}.

Since J:zh*l/z interchanges ^ and if, there exists S(=T or JT) in
PGL(2,C) mapping D onto ^ , so that G(D) is conjugate to G(f) in
PGL(2, C). It is therefore sufficient to determine the stabilisers G(ft) and

We recall from §2.2 that PGL(2, R) and PSL(2, R) are the groups of
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transformations zt->(az + b)/(cz + d) (a,b,c,deR) satisfying A # 0 and
A = 1 respectively, where A = ad — be. By dividing all four coefficients by
y/\ A |, we may assume that the elements of PGL(2, R) satisfy A = ± 1; those
with A = 1 form the subgroup PSL(2, R), while those with A = — 1 (such
as J:z h+ \/z) form a coset of PSL(2, R). Thus PGL(2, R) is a union of two
cosets of PSL(2, R), so PSL(2, R) is a normal subgroup of index two in
PGL(2, R).

Theorem 2.8.1.

(i) G(ft) = PGL(2,R);
(ii)

Proof, (i) Let TeG(lft). Choose distinct elements zu z2, z3e(R\{T
and put Wj= T(Zj\ so W^GR. Then the transformations

-^l and K W -i z - w - ) ( ;»- W a i
3 -z) (Wi - w2)(w3 - z)

are in PGL(2,R); since V~1U(ZJ) = WJ=T(ZJ) for 7 = 1,2,3, we have
T=V~XV by Corollary 2.5.2, so TePGL(2, R). Thus G(ft) < PGL(2, R),
and the reverse inclusion is obvious.

(ii) Since Mobius transformations are homeomorphisms of I , any
element of G(^) must leave invariant the frontier k of ^ , so G W < G(ft) =
PGL(2,R). Let T G P G L ( 2 , R ) , say

TV ^ flZ + b

w = r(z) = ——,
cz-f d

with a,b,c,deR and ad - be = ± 1. Then
_(az + b)(cz + ^) __ ac|z|2 -h adz + bcz + M

so that

_(ad-bc)
]~~\cz + d\2 lm(z).

Hence T leaves °U invariant if and only if ad —bo 0, and this is equivalent
to ad - be = 1, so G^l) = PSL(2, R). Q

There is an alternative proof of Theorem 2.8. l(i) using inversion: one
uses Theorem 2.7.3 (with C = ft) to show that if TsG(k) then T(z) = T(z)

for all z, and this implies that the coefficients of T are real.
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2.9 Conjugacy classes in PGL(2, C)

If G is any group, then elements g,heG are conjugate in G if there exists
aeG such that g = afca" *. Conjugacy is an equivalence relation on G, and
the equivalence classes are called conjugacy classes. In many cases it is
important to determine these classes: for example, if G occurs geometrically
(as does PGL(2,C)) then conjugate elements have similar geometric
properties, such as numbers of fixed-points. We say that z e l is & fixed-point
of some TePGL(2, C) if T(z) = z; then U(z) is a fixed-point of the conjugate
transformation VTV~lePGL(2X\

To consider fixed-points and conjugacy classes of elements of PGL(2, C),
it is more convenient to work with PSL(2, C): the two groups are identical,
but we now write Mobius transformations in the form T(z) = (az + b)/
(cz + d) with ad - be = 1, not simply ad — bc^ 0.

We have T(oo) = a/c, so T fixes oo if and only if c = 0. If c ^ 0, then
zeC is a fixed-point of T if and only if

cz2 + (d-a)z-b = 0;

this equation has two roots z, and so T has two fixed-points in I ,
unless

in which case the equation has a double root and T has a unique fixed-
point. Using ad - be = 1, this condition becomes

so T has a single fixed-point if and only if (a + d)2 = 4.
If c = 0 then T fixes oo; we have ad = 1 and T(z) = a2z + ab, so there is a

second fixed-point z = ab/(l - a2) ^ oo if and only if a2 # 1, or equivalently
(a + d)2* 4. When a2 = 1 we have T(z) = z ± fc, so that T is the identity for
b = 0, and T has a unique fixed-point (at oo) for b # 0. Thus we have

Theorem 2.9.1. Let T(z) = (az+ b)/(cz+ d), with ad-bc=l. If
(a + d)2^ 4, then T has two fixed-points in Z. If (a + d)2 =4andT^I9 then T
has one fixed-point in 2. •

(Note that this gives an alternative proof of Corollary 2.5.3, that if T
fixes more than two points then 7 = /.)

We can use the function {a + d)2, considered above, to determine the
conjugacy classes in PSL(2, C). If

* = (a %GL(2X),
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we define the trace of A by

tr(A) = a + d
By direct calculation, we observe that tr (AB) = tr(BA), so that if B is
invertible then

Thus tr(̂ 4) depends only on the conjugacy class of an element AeGL(2, C).
Now each Mobius transformation T is represented by a pair ± A of
matrices in SL(2,C), and we have tr(— A) = — tr(A), so that

is a well-defined function of 7, depending only on the conjugacy class of
TinPSL(2,C).

Example. Let U(z) = kz, AeC\{0}. In SL(2,C), U is represented by the
matrices

k 0

and so tr2(U) = (Jk + 1/^/A)2 = A + A"* + 2.
We now describe the conjugacy classes in P5L(2, C). In any group, the

identity element forms a conjugacy class; the remaining conjugacy classes
of P5L(2, C) are described by selecting a representative from each class.
If AeC\{0} we define

[kz i f A # l ,

Theorem 2.9.2. If T is a non-identity element of PSL(29 C), then there
exists some AeC\{0} such that T is conjugate to UX.

Proof Suppose that T has just one fixed-point z0. By Theorem 2.5.1,
there exists some SePSL(2, C) such that S(z0) = oo. Then STS~l fixes only
oo, and so STS'^z) = z + t for some teC\{0}, that is, STS~l = Tt in the
notation of §2.3. Let V(z) = z/t. Then VTtV

 l(z) = z + 1, and hence

(VS)T(VS)~l = Uli

so that T is conjugate to Uv

Now suppose that T has two fixed-points zl9 z2. By Theorem 2.5.1,
there exists some WePSL(2, C) such that W(zx) = 0 and W(z2) = oo. Then
WTW~l fixes 0 and oo, and hence it is easily seen that

for some AeC\{0,1}. •
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To describe the conjugacy classes completely, we have to determine
when UK and Ux are conjugate.

Theorem 2.9.3. UK is conjugate to Ux if and only if K = A or K = k~l.

Proof We deal with U1 first. Since Ux fixes only oo, SL^S"1 fixes only
S(oo) for each SePSL(2, C). Thus UY cannot be conjugate to any Vx(k # 1),
since these elements fix 0 and oo.

Now suppose that UK and Ux are conjugate, where *c, A # l . Then
t r 2 ( l / J = tr2((7A) and hence

K + - + 2 = A + - + 2,
K A

giving K = k or K = I/A. Conversely, UK is conjugate to Ul/K, for if J(z) = 1/z
then

Corollary 2.9.4. Two non-identity elements 7\, T2 of PSL(2,C) are
conjugate if and only i / tr2(7\) = tr2(T2).

Proof We need show only that tr2 (7\) = tr2 (T2) implies that 7\ and T2

are conjugate. Let 7\ and T2 be conjugate to UK and l/A respectively;
then tr2(T1) = tr2(T2) implies that tv2{UK) = tr2{Ux\ so that K = k or
KA = 1, and hence C/K and (7A are conjugate, so Tl and T2 are conjugate. •

2.10 Geometric classification of Mobius transformations

We now consider the geometric behaviour of a non-identity Mobius
transformation 7, and in particular the limiting behaviour of Tn as n -> oo.
We saw in §2.9 that T is conjugate in PSL(2, C) to some Ux(k # 0). Now
T does not determine A uniquely since T is also conjugate to Ul/X; we
call the pair {A, I/A}, which is uniquely determined by T, the multiplier of
7. It follows from §2.9 that two non-identity Mobius transformations are
conjugate if and only if they have the same multiplier, so the multiplier
is just as effective as the function tr2 for determining conjugacy. The
connection between these two invariants is that

so that k and I/A are the roots of the quadratic equation

z2 + (2 - t r 2 (T) )z+ l=0 .
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We have seen that T has a unique fixed-point zoeZ if and only if
tr2 (T) = 4, or equivalently, A = 1; we call such transformations T parabolic.
In this case, we have T=V~lU1V for some VePSL(2X) satisfying
V(z0) = oo. Now

lim U\(z) = lim (z + n) = oo
n-* oo n~* oo

for all z e l , and hence

lim Tn(z)= lim V~lUH
lV(z) = F"1(oo) = z0

n-* oo n-» oo

for all zeZ. Thus each zeZ is eventually moved by Tn towards the
fixed-point z0, as n increases.

If T is not parabolic, then T has two fixed-points zx and z2, so let
V(z) = {z — z1)/{z — z2), mapping these fixed-points to 0 and oo. Then
VTV~l = Ux, fixing 0 and oo, for some A # 0 , 1. We have U\(z) = A"z, so
if | A| < 1 then limll_>0Ol/;(z) = 0 for all z ^ oo, and hence limn_^ Tn{z) = zx

for all z T*z2; similarly, if | A| > 1 then lim^^T^z) = z2 for all z # z x . (Of
course, these two cases are essentially the same, since transposing zx and
z2 corresponds to replacing A by I/A.) Thus if | A| / 1 then T progressively
moves all points z ^zx,z2 away from one of these fixed-points and towards
the other; we call such a transformation T hyperbolic if A is real and
positive, and loxodromic otherwise. If |A| = 1 then Uk is a rotation Re of
£, using the notation of §2.3, with A = ew, so U\{z) has no limit for z # 0,
oo, and hence neither has Tn(z) for z ^ z t,z2; we call T elliptic in this case.

Now T is conjugate to Uk if and only if tr2 (T) = tr2 {Ux\ and we have
2 A-hA-1-f 2, so:

T is elliptic if and only if 0 ^ tr2 (T) < 4;

T is parabolic if and only if tr2 (T) = 4;

T is hyperbolic if and only if tr2 (T) > 4;

T is loxodromic if and only if tr2(T) < 0 or tr2(T)£IR.

The distinction between hyperbolic and loxodromic transformations
becomes clear when we consider discs in Z: a non-identity transformation
T leaves a disc invariant if and only if it is conjugate to an element of
PSL(2,R), by Theorem 2.8.1(ii). Elements of PSL(2,R) (and hence their
conjugates) must have real traces, and therefore cannot be loxodromic,
whereas every hyperbolic element is conjugate to some UxePSL(2, R),
A > 0. Thus hyperbolic elements leave a disc invariant, loxodromic elements
do not. Similarly, all elliptic and parabolic elements leave a disc invariant.

The period (or order) of a transformation T is the least positive integer
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m such that Tm = /, provided such an integer exists; if there is no such
integer m, we say that T has infinite period.

Theorem 2.10.1. If T is a non-identity element of PSL(2, C) with finite
period, then T is elliptic.

Proof T is conjugate to some Ux, so Tn is conjugate to Un
x for each

integer n, and hence Ux has finite period. Now U\(z) = z + n, so Ul has
infinite period, and hence A # l . Thus U\(z) = Xnz, so putting 1/? = /
(where m is the period of T and hence of Ux), we get Xm = 1 and therefore
|A| = 1. Thus T is elliptic. •

However, not every elliptic transformation has finite period: putting
A = ei9

9 with 0e R, we see that Ux is elliptic if and only if 0 is not an integer
multiple of 2n, and that Ux has finite period if and only if 0 is a rational
multiple of 2TC, SO if 0 is an irrational multiple of 2n then Ux is an elliptic
element of infinite period.

2.11 Conformality

If Sx and S2 are surfaces, then we say that a map f'-Sl->S2 is conformal
if it preserves angles, that is, whenever curves cx and c2 on Sl meet at a
point Q with an angle 0, then /(Cj) and /(c2) meet at f(Q) with the same

Fig. 2.5
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angle 9 (the angle between two curves is defined to be the angle between
their tangents). A map / is an isometry if it preserves the distance between
each pair of points; for example, rotations and reflections of Euclidean
space Un are isometries. Since angles in IR" can be expressed in terms of
distances, isometries of Un induce conformal maps between surfaces in Un.

Theorem 2.11.1. Stereographic projection n~1:C->S2\{N} is conformal.

Proof. Let PeC, and let /x and l2 be straight lines in C, meeting with
an angle 9 at P (see Fig. 2.5). If Tlj is the plane through N and lj(j = 1,2),
then S2 n ri; is a circle C, in S2. For each point JR on /,, the line NR meets
S2 at n~l{R)eS2nTlp so C, is the projection Tr '^-ufoo}) of the circle
/;U {oo} in Z; in particular, Cx and C2 meet at N and at Q = n~1(P). The
tangent plane T to S2 at N is parallel to the equatorial plane C, so the
lines nij = TnIT;, which meet at N, are parallel to the lines lj = CnTip
and hence they make an angle 9 at N. Now the circles C, meet at the
same angle at their two points of intersection N and Q (since Cl and C2

are mapped to themselves by reflection in the plane perpendicularly
bisecting the segment NQ); since m>} is the tangent to C, at N, this angle
must be 9, so 7r"" 1(/i) and rc"1^) meet with an angle 9 at Q = ^"^P) , as
required. •

Corollary 2.11.2. Stereographic projection n:S2\{N}-+C is conformal.

Proof If curves cl9 c2 on S2 meet at Q # iV with an angle 0, then (by
definition) so do their tangents t} at Q(j =1,2). Let II; be the plane through
N and tp so that S2 n II; is a circle C, in 52 passing through N and Q,
and C o n , is a line /7 in C passing through P-n(Q). Now Cx and C2

make an angle 9 at Q (since their tangents f, do), so the argument used
in the proof of Theorem 2.11.1 shows that lt and l2 make an angle 9 at
P. Since l} is the tangent to n(Cj) at P, this shows that n is conformal. •

We define the angle at oo between two curves cu c2 in C to be the
angle at N between the curves rc"1^) and 7i"1(c2), provided this angle
exists; it immediately follows that the stereographic projections 7i:S2-^Z
and n'^'.H^S2 are conformal. Since J:ZH+ l/z induces a rotation n~1Jn
of S2, sending an angle 9 at N to an angle 9 at S, the angle between ci

and c2 at oo is equal to the angle between J(ct) and J(c2) at 0, so a function
/ on Z is conformal at oo if and only if f°J is conformal at 0.

A conformal map from an oriented surface to itself is directly or indirectly
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conformal if it preserves or reverses the orientation; for example, rotations
and reflections of S2 are directly and indirectly conformal, respectively.
Since 7r:S2->Z and n~1:yL-*S2 are conformal, it follows that a function
/:Z->Z is directly (indirectly) conformal if and only if the induced map
n~ifn:S2-+S2, shown in Fig. 2.6, is directly (indirectly) conformal. The
next two results show that these functions / are the automorphisms (anti-
automorphisms) of Z.

i 7 - *

Theorem 2.113. Each automorphism (anti-automorphism) T of Z is a
directly (indirectly) conformal homeomorphism o/Z onto itself

Proof By §2.1, T is a homeomorphism of Z onto itself.
If 7eAut(Z), then TePSL(2,C), so putting T(z) = (az + b)/(cz + d) with

ad — be = 1, we have the derivative

Thus T(z) * 0, oo for each zeC\{ - rf/c}, so by Theorem A.12, T is directly
conformal at z. The remaining cases are:

(i) z = oo and T(z) ^ oo;
(ii) z = oo and T(z) = oo;

(iii) z = - d/c ^ oo and 7(z) = oo.

In case (i) we have c ^ 0. The transformation

. . _ . a + bz
U = T°J:zh-> -

c + dz
satisfies l/'(0) = - 1/c2 ^ 0, oo, so U is directly conformal at 0, and hence
T is directly conformal at oo.

In case (ii) we have c = 0 and hence a ^ 0. The transformation

V— J°T°J:z\-+
a + bz

satisfies V'(0) = I/a2 ^ 0, oo, so V is directly conformal at 0, and hence so
is T at oo.
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In case (iii) we have c # 0. The transformation

az + b

satisfies W'( — d/c) = — c2 # 0, oo, so W is directly conformal at — d/c, and
hence so is T.

Thus r is directly conformal on Z. Each ann'-automorphism T of Z
has the form z i-> T+(f), where T+ e Aut (Z). Since complex conjugation is an
indirectly conformal homeomorphism of Z onto itself (corresponding to
reflection of S2 in the plane x2 = 0), and since T+ is directly conformal,
it follows that T is an indirectly conformal homeomorphism of £ onto
itself. •

Theorem 2.11.4 is a little stronger than the converse of Theorem 2.11.3,
since we do not require / to be a bijection:

Theorem 2.11.4. Each directly (indirectly) conformal map f from Z to itself
is an automorphism (anti-automorphism) of Z.

Proof Let /:Z->Z be directly conformal. We may assume that
/(oo) = oo, by composing / with a suitable automorphism. We now show
that / is meromorphic at each point aeZ.

(i) If aeC and /(a)eC, then since / is directly conformal at a there exists
f'(a) ^ 0, oo by Theorem A. 12, so / is analytic at a, and a is a simple
point for / .

(ii) If aeC and f(a) = oo, then since the rotation J is directly conformal,
J°f is directly conformal; since (J°f)(a) = 0, the previous argument
shows that J°f is analytic with a simple zero at a, so / is meromorphic
with a simple pole at a.

(iii) Since /(oo) = oo we have (J°/> J)(0) = 0, and a similar argument shows
that / is meromorphic with a simple pole at oo.

Thus / is meromorphic on Z, so / ' is meromorphic and hence rational,
by Theorem 1.4.1. In case (i) we have f'(a) # 0, and in (ii) / ' has a (double)
pole at a, so f'(a) = oo # 0. In (iii),

f(z) = axz + a0 + a_ xz~ * + ...

for large z, with ax # 0, so

for large z, and hence /'(oo) = ax # 0. Thus / ' is a rational function which



40 Mobius transformations

does not take the value 0, so / ' is a non-zero constant (either by Theorem
1.4.2, or because 1 / / ' is analytic and bounded, and hence constant). Hence
/ is a polynomial of degree 1, so /eAut(Z) by Theorem 2.1.1.

If/ is indirectly conformal, then the map z>—•/(£) is directly conformal
and therefore an automorphism, so / is an anti-automorphism. •

2.12 Rotations of Z

We define a transformation T:Z->Z to be a rotation of Z if the induced
transformation n~1Tn:S2-+S2 is a rotation of the sphere S2. Under
composition, the rotations of Z form a group Rot (Z), isomorphic to the
group of rotations of S2. We shall show that every rotation of Z is a
Mobius transformation, and then determine which Mobius transfor-
mations arise in this way.

The rotations of S2 are directly conformal, and hence so are the rotations
of Z, so Theorem 2.11.4 implies that Rot(Z) is a subgroup of Aut(Z).

If Q = (x1,x2, x3)eS2, then the antipodal point of Q is the point
(5 = (— xu — x2, — x3)eS2; if ZGZ then we define the antipodal point of z
to be z = n(Q), where Q = n~l(z). It follows easily from equation 1.1.1
that z = — 1/z, so the antipodal map zi-+z is an anti-automorphism of Z.

If TeRot(Z), then T maps each antipodal pair z,z to an antipodal
pair T(z\ T(z\ so T(- l /z)= - 1/T(z) for all zeZ. Putting T(z) =

{az + b)/(cz + d\ with ad — be = 1, this implies that

bz — a —cz — H

dz — c az + T>
for all zeZ, and hence

b -a\ (-c -a
d -c) \ a I

for some AeC\{0}. Taking determinants we have X2 = 1, so either b = — c
and a = 3, or else b = c and a = - d. However, in this second case we have

1 = ad - be = - ad - bF= - \a\2 - |fc|2,

which is impossible. Hence

T(z)= aZ*b , M + fr5=l. (2.12.1)
— bz + a

It is easily verified that the transformations of type 2.12.1 form a sub-
group of P5L(2, C). For reasons we shall explain shortly, this subgroup
is denoted by PSl/(2,C). We have shown that Rot ( Z K PSU(2, C) and
now we shall show that these two groups are equal.
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First observe that if a transformation T of type 2.12.1 fixes 0, then b = 0
and so ad— 1. Thus T(z) — a2z with \a2\ = 1, so T is a rotation Kfl of Z
(in the notation of §2.3), with a2 = ei0. Now let T be any transformation
of type (2.12.1), and let T(0) = zo. Since the rotation group of S2 acts
transitively on S2, there is a rotation R of Z satisfying R(zo) = 0, so RT
is an element of PSl/(2,C) fixing 0. By the above argument, RT=
ReeRot(L) for some 0, so T= K~ %eRot(Z). Thus we have proved

Theorem 2.12.2. Rot (Z) = {T:z h* (az + fc)/( - Bz + a) | aa + bB = 1} =
PSl/(2,C). D

Each rotation of S2 extends to a unique rotation of R3 about the origin,
and conversely each such rotation of R3 induces a unique rotation of S2.
These rotations of R3 are the linear transformations represented by 3 x 3
real orthogonal matrices of determinant 1 (using the standard basis of
R3), and such matrices form a group SO(3, R), the special orthogonal group,
isomorphic to the rotation group of S2. We therefore have

Corollary 2.12.3. PSl / (2 ,QsSO(3f R). •

PSU(2,C) arises algebraically in the following way. A matrix AeGL(n,C)
is called unitary if

AAX = /,

where A* denotes the transpose of the complex conjugate of A, Now
) = det(>l), so if A is unitary then |det(>4)| = 1; thus A is invertible,

and one easily sees that the unitary matrices in GL(n,C) form a group
under multiplication. We call this the unitary group l/(n,C); the special
unitary group SU(n,C) consists of those unitary matrices of determinant

1. If A = (a jeSl/(2,C), then

' b u -:
so A = I j. _ I with ad + bh — det (A) = 1; conversely, every such matrix

A is in Sl/(2,C). The scalar matrices A/eS£/(2,C) are just ± J, so the
group of Mobius transformations of Z induced by Sl/(2,C) is Sl/(2,C)/
{± / } , the protective special unitary group PSU(2,C).

The matrices I r _ }, with a, fceC, form a 4-dimensional vector
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space Q over R, with basis

'1 0\ . (i

These four matrices, together with their negatives, form a non-abelian
group of order 8, the quaternion group Q8, satisfying

ij = k,ji= - k , etc.,

where i,j and k may be permuted cyclically in the last two equations.
This shows that Q is closed under multiplication, so it is an algebra,
isomorphic to the quaternion algebra of W.R. Hamilton (1805-65). An
element A = ae + jffi + yj + <5k of Q lies in 5(7(2, C) if and only if a2 + p2 +
y2 + S2 = 1, so SU(2, C) is homeomorphic to the 3-sphere S3 c R4. We
obtain PSU(2, C) from Sir(2, Q by identifying each AeSU(2,C) with - >4,
so PSU(2, C) is homeomorphic to the real projective space P3(R) obtained
by identifying antipodal points of S3.

For further details, see P. du Val [1964], also relevant to the next section.

2.13 Finite groups of Mobius transformations

The aim of this section is to determine the finite groups of Mobius trans-
formations of Z. By Theorem 2.10.1, every such group consists of elliptic
transformations (together with the identity), and by §2.10, each elliptic
transformation is conjugate to some rotation Re of I (conversely, it is
easily seen that each non-identity rotation is elliptic). The following classical
result shows that if T is a group (finite or infinite) of elliptic transformations,
then its elements are simultaneously conjugate to rotations, that is
V~1rV^PSU(2,C) for some KePSL(2,C); the proof we give is due to
R.C. Lyndon and J.L. Ullman [1967]. For notational convenience, we
will identify Z with S2 by means of stereographic projection n.

Theorem 2.13.1. Let V be a subgroup of PSL(2, C) consisting of elliptic
transformations together with the identity. Then T is conjugate in PSL(2, C)
to a subgroup ofPSU(2,CY

Proof Let f be the inverse image of T in SL(2, C). Then apart from
T= ± /, the matrices Tet satisfy tr(T)eR and |tr(T)| < 2; since conjugate
matrices have the same trace, any conjugate of f in SL(2, C) shares this
property.

We may assume that |T| > 1, so that f contains some 7V ± /. Then
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T induces an elliptic transformation of I . If UeSL(2,C) is chosen to
send {0,oo} to the two fixed-points of T in I , then S=U~lTU fixes 0

and 00, so 5 = ( x ) for some A G C \ { 0 } . Since T # ± 7 , A # ± l .
\ 0 k J

Since S is elliptic, | / | = 1, and hence 5 = 1 " _ j . Replacing f by

U~ltU9 that is, replacing f by a conjugate subgroup of P5L(2,C), we
may assume that Set.

From now on, let T = ( . I be an arbitrary element of f. First we
\c d)

f * ) = STet. Now
/x /.dj

= tr(T)6R, so d-deU since Im (a) = - Im (a) = Im (d)\ similarly,
using 57. Since J^U, this implies that d = a.

Next we show that ft = 0 if and only if c = 0. If c = 0 then T= ( _ j and

so f contains

this has trace 2, so (k2 — \)ab = 0 since F contains no parabolic transfor-
mations. Now k2 # 1, and a # 0 since T is invertible, so ft = 0. The converse
is similar.

Now we show that there exists reR\{0}, depending on f but not on
T, such that c = rl for all Tef. If T is not a diagonal matrix, then ft # 0 ^ c,
so we can take r = c/B ^ 0; since aa — rftB = det (T) = 1, we have reR. If

are non-diagonal elements of t(j= 1,2), then f contains

we have shown that the diagonal elements of this matrix must be complex
conjugates, so r2 = r1=r1 . Thus the non-diagonal matrices in t all
determine the same value of r, which we may also use for the diagonal
matrices since they satisfy ft = c = 0. (If f consists entirely of diagonal
matrices, we can make an arbitrary choice of relR\{0}.)

Let v = |r|1/4 and V= (V _{ jeSL(2,C). Putting bx = v2b, we have
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ul

a

V~*r*1 ~ ' ' - "M ifr<0.
i d )

Call these matrices types (1) and (2) respectively. Then, replacing f by
VtV'1, we may assume that the elements of f are all of type (1) or all
of type (2), that is, r = ± 1. Since

St/(2'C) = { ( -5 \
it is sufficient to prove that all matrices Tet are of type (2), so let

r _ )ef, with b^O. Since VSV~1=S, we still have Set, so f
b a)

contains

V * aa-Vbl
Now

\\x(W) = Re(ad- X2bh) = \a\2 - |fe|2Re(/l2) = 1 + |fc|2(l - Re(A2)),

using the fact that \a\2 - \b\2 = det(T) = 1. Since |A| = 1 and X2 ̂  1, we
have Re(A2)< 1 and hence tr(W)>2. Thus W induces a Mobius trans-
formation which is neither the identity nor elliptic. This contradicts our
hypothesis on F, so the theorem is proved. •

Corollary 2.13.2. Every finite group of Mobius transformations is
conjugate to a group of rotations of Z.

Proof. By Theorem 2.10.1, every such group consists of elliptic trans-
formations, together with the identity, so the result follows from Theorem
2.13.1. •

We have shown that every finite subgroup of PSL(2, C) is conjugate to
a subgroup of PSU(2,C), the rotation group, and our aim is now to
determine the finite groups of rotations. First we need to determine the
finite groups of rotations which have an orbit of length 1 or 2 (the orbit
of a point z under a group F is the set of all images g(z), geT; the length
is the number of points in the orbit).

Lemma 2.13.3. Let F be a finite group of rotations of I* with a fixed-point
zoeZ; then F is conjugate within PSU(2,C) to the subgroup generated by
some rotation /^:zi->e'*z(0 ^ <f)< 2n), and in particular, F is cyclic.
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Proof PSU(2X) acts transitively on I , so there is some UePSU(2X)
with U(z0) = 0, as illustrated in Fig. 2.7. Then f = UTU'1 is a finite group
of rotations fixing 0, so T also fixes the antipodal point oo, and T consists of
transformations

Re:z\-+eiez

for various 0, 0 ̂  0 < In.

Fig. 2.7

Let <j> = min {9 > OIK^eT}. Then T contains R^ and therefore contains
all powers RJ = R^neZ. Suppose that T contains some Re where 0 is not
a multiple of </>, as in Fig. 2.8. Then m<f><0<(m+ 1)0 for some meZ,
and since T contains both Ke and Rm<l>y T contains ReR~J= Rd_m<f), with
0 < 0 — m</> < 0, contradicting the minimality of <f>. Hence T consists of
the powers of R^ so f is cyclic. Since F ̂  f, F is also cyclic. •

Fig. 2.8

(In fact, if |F | = n, then ^ = 27t/n.)

For any integer n ̂  3, we define the dihedral group Dn to be the symmetry
group of a regular polygon with n sides; Dn consists of n rotations (including
the identity) and n reflections, so \Dn\ = In (hence this group is sometimes
denoted by D2n, especially by group-theorists). Dn is generated by a rotation
a (though 2n/n) and a reflection fc, satisfying

For n = 1 and 2, these generators and relations also define a group Dn\
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for n = 1, Dx is a cyclic group of order 2, while for n = 2, D2 is a non-cyclic
group of order 4. By a dihedral group, we shall mean any group isomorphic
to Dn for some n ̂  1.

Lemma 2.13.4. Let A be a finite group of rotations of Z with an orbit of
length 2 in Z; then A is a dihedral group.

Proof. Let Q = {zo,z1} be the orbit of length 2. Since A permutes O
transitively, A has a subgroup F of index 2 fixing z0 and z^ by Lemma
2.13.3, Tis cyclic.

If |F| = 1 then |A| = 2, so A is a dihedral group, being isomorphic to
Dx. We therefore assume that |F| > 1, so that z0 and zx, being the only
fixed-points of F, must be antipodal. We now choose UePSU(2,C) so
that (7(zo) = 0 (and hence C/(Zi)=oo), and we define & = UAU~l,
r =UTU~l. By Lemma 2.13.3, f is generated by some R0. Now A
permutes {0, oo} transitively, so there is some Te J \ f transposing 0 and oo,
as illustrated in Fig. 2.9. Such a rotation T must be through an angle n9

about an axis passing through the equatorial circle |z| = 1, so

T2 = I,TR(f> = R_<i>T=R-lT.

Now R^ generates f, and 2L\T = Tf, so R^ and 7 generate A. Thus A is a
dihedral group, and hence so is the conjugate group A. •

Fig. 2.9

Theorem 2.13.5. Let F be a finite group of rotations o/Z. Then one of the
following holds:

(i) F is cyclic,
(ii) F is dihedral,

(iii) F is the rotation group of a regular tetrahedron, octahedron, or
icosahedron inscribed in Z.
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Proof Let | F| = /V, and let

<D={(z,T)|zeI, TeF, T±l, and T(z) = z}.

There are N — 1 elements T e r \ { / } , each having two fixed-points, so

For each z e l , let Nz = |TZ|, where Fz = {TeT\ T(z) = z} is the subgroup
of F fixing z. Then

z

this sum being finite since Nz = 1 for all but finitely many zeE. Each zeZ
lies in an orbit Q of length

by the orbit-stabiliser theorem; the value of Nz depends only on the orbit
Q, and not on the particular element zeQ. Let Q!,...,Qk be those orbits
of F on E with lengths \ilj\ < N (equivalently, containing points z with
Nz> 1), and let n} be the common value of Nz for zeQ,, so n,> 1. Each
Qj contributes |Q;| = N/n} summands equal to ni — \ in £Z(N2 — 1) so we
have

Combining this with |O| = 2(N — 1), we have

Now each n} ^ 2, so 1 — n},
 l ^ ,̂ and hence

On the other hand, 2(1 - N l)<2> and so k/2 < 2, giving k = 1, 2 or 3.
If /c=l then equation 2.13.6 gives 2(1 - N~l)= 1 - nf1 < 1, so

1 — N"J < i and hence N = \. Thus F is a cyclic group of order 1.
If k = 2 then equation 2.13.6 gives 2(1 - N~l) = 2- n^1 - n^\ so

that 2N" l = n~1 + n~2
 l and hence {N/n,)-^(N/n2) = 2. Now N/nj = |Q,|

is a positive integer, so in this case each \Qj\ = 1. Thus F has a fixed-point
(two, in fact), so Lemma 2.13.3 implies that F is cyclic.

If/c = 3 then 2(1 - AT1) = 3 - n f 1 - n^1 - n j 1 , giving

1 1 1 f 2 f
— + — + — = 1 + — > 1 .
nx n2 n3 N

We may choose the numbering so that nx ^n2^n3. Then nx =2 , for
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otherwise each nj ^ 3 and hence ^jnjl < 1. Putting nl = 2, we get

_L _ L - 1 1 1

and simple arithmetic gives the following possibilities:

(a)
(b)
(c)
(d)

2
2
2
2

2
3
3
3

"3

n
3
4
5

N

In
12
24
60

Fig. 2.10

Fig. 2.11

Fig. 2.12
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In case (a), n is any integer n ^ 2. Then |O31 = N/n3 = 2, so Lemma 2.13.4
implies that F is a dihedral group.

In case (b), F has an orbit O3 of length |Q3| = N/n3 = 4. For each zeQ3,
the stabiliser Tz is a cyclic group of order N2 = n3 = 3, fixing z and its
antipodal point, and permuting all other points of £ in cycles of length
3. Since Fz leaves ft3\{z} invariant, it permutes these three points
transitively, so they are all equidistant from z. Applying this argument to
each ZGQ3, we see that the four points in Q3 are equidistant from each
other, so they are the vertices of a regular tetrahedron 3T inscribed in X
(see Fig. 2.10). Since F consists of rotations permuting these vertices, F
is a group of rotations of 9~. Now any regular tetrahedron has just 12
rotations, and |F | = N = 12, so F is the group of all rotations of 9~.

Similar arguments may be used in cases (c) and (d). In case (c) one shows
that Q3 consists of N/n3 = 6 points of Z, each of which is antipodal to
one point of Q3 and is equidistant from the remaining four. Thus Q3 is
the set of vertices of a regular octahedron 0, as in Fig. 2.11, and F consists
of the 24 rotations of 0. In case (d), Q3 is the set of vertices of a regular
icosahedron «/ as in Fig. 2.12, and F consists of the 60 rotations of J. (In
cases (b), (c) and (d), the orbits Cll and Q2 consist of the mid-points of the
edges and of the faces of the regular solid.) •

One can show that the groups F in case (iii) are isomorphic to A4, S4

and A5 respectively: the rotation group of the tetrahedron 9~ induces
all the even permutations of the four vertices, so F s A4; the rotation
group of the octahedron 0 induces all the permutations of the four pairs
of opposite faces, so F ^ S4; the twenty faces of the icosahedron may be
painted with five colours, no pair of adjacent faces having the same colour,
in such a way that F induces all the even permutations of these five colours,
giving F £ As. Combining this with Corollary 2.13.2 and Theorem 2.13.5:

Corollary 2.13.7. Every finite subgroup ofPSL(2, C) is cyclic, dihedral, or
isomorphic to AAi 5 4 or A5. •

For each of the regular solids ^ , C and J, we have a single conjugacy
class of finite subgroups F ^ PSL(2, C). For example, suppose that F is
conjugate to the rotation group Rot (0) of a regular octahedron (9 inscribed
in Z; there exists a rotation UePSL(29C) sending C to the octahedron (9*
with vertices {0, oc, ± 1, ± /}, so that Rot(O = U"lRot(C*)U and hence
F is conjugate to Rot(£T*). Similarly, the tetrahedral and icosahedral sub-
groups F each form a single conjugacy class, as do the cyclic and the
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dihedral groups of any given order. Thus two finite subgroups of PSL(2, C)
are conjugate if and only if they are isomorphic.

We close Chapter 2 with two sections which are only loosely related
to the rest of the chapter, but which will give us some useful analogies
when we consider later generalisations.

2.14 The area of a spherical triangle

The geodesies on the sphere S2 are the great circles, that is, the circles
C = S2nTl where II is a plane containing the origin of U3. The antipodal
map K:Q M. - Q of S2 leaves each great circle C invariant, and interchanges
the two hemispheres bounded by C.

Any two great circles Cl and C2 intersect in a pair of antipodal points
Q and Q (since Cx nC2 is a set of two points invariant under K), and Cy

and C2 divide S2 into two pairs of antipodal regions; we call any such
region a lune. In Fig. 2.13 the lunes A! and A2 are antipodal, as are A3

and A4.

Fig. 2.13

'S2

We denote the area of any measurable region R^S2 by fi(R); clearly,
= ^K(R)\ since K is an isometry of S2. If great circles Cx and C2

enclose a lune A, and meet at an angle 0 within A, then /*(A) is proportional
to 0; now S2, having radius 1, has area n(S2) = 4n, so /i(A)->^/x(S2) = 2n
as 0 -* 7T, and hence /*(A) = 20.

Three great circles Cl9 C2 and C3 divide S2 into four pairs of antipodal
regions, called spherical triangles. Let A be a spherical triangle, illustrated

Fig. 2.14



The area of a spherical triangle 51

in Fig. 2.14, with internal angles a, /?, y at its vertices QieC 2 nC 3 ,

ly Q3eC1r\C2. Then we have

Theorem 2.14.1. fi(A) = a + /? + y-7i .

Proof. Of the eight triangles bounded by Cu C2 and C3, let Al9 A2 and
A3 be the three which meet A across its sides Q2Q3, Q3Q1 and QiQ2

respectively. Then A and A, form a lune A7 with internal angle a, /?, y for
7 = 1, 2, 3, so we have

MA) + fi(Ai) = fi(Al) = 2a,

and hence

Now the triangles A, A1? A2, A3, together with their antipodal triangles,
form a partitition of S 2 \ (C 1uC 2uC 3 ) , and this has area 4n. Since anti-
podal triangles have the same area, this gives

Eliminating £/*(A7-) from these two equations, we have

H(A) = a + j3 + y-7r. •

For example, suppose that S2 is tessellated by F congruent equilateral
spherical triangles, with v triangles meeting at each vertex. Each triangle
A has area n(A) = fi(S2)/F = 4n/F, and has interior angles a = /? = y = 2n/v,
so

4xc 6TT

giving
4 _ 6
J~v~ '

Now 4/F > 0, so v < 6, and hence v = 3, 4 or 5, giving F = 4, 8 or 20
respectively. These three solutions correspond to the tessellations of S2

formed by projecting onto S2 the edges of a regular tetrahedron,
octahedron or icosahedron respectively (see §2.13 for illustrations).
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2.15 PGL (2, C) as a Galois group

We have given an analytic representation of PGL(2, C) as the group Aut (£)
of meromorphic bijections of Z; we now give an algebraic representation
of PGL(2, C) as the Galois group T of the field extension C(z) ID C, that
is, as the group of all automorphisms of the field C(z) of rational functions
in one variable z, which leave the field C of constant functions fixed. The
following lemma shows that each yeT is determined by its effect on the
identity function /:E -• E, where we regard / as the rational function zeC(z).

Lemma 2.15.1. Let yeT and let y{I) = geC(z). Then deg(#)=l, and
y(f)=f°gforallfeC(z).

Proof. Each feC(z) is a rational function f:z\-+f(z) = £7- 1 fl/zVEJ-1 bjZJ,
where ajy fc,eC, so we have / = I>,/VE V > giving / as a rational function
of/. Now y is a field-automorphism of C(z), fixing the field C of constants,
and hence fixing the coefficients ap by Therefore

where g = y(/), so that y(f) =f°g for all /eC(z).
Since y is an automorphism of C(z), y is onto, so / = y(f) =f°g for some

/eC(z). Since / is one-to-one as a function £->£,£ must also be one-to-one,
so deg(^)= 1 by Corollary 1.4.3(ii). •

Thus y maps each rational function /(z) to the rational function f(g(z)\
where g(z) = (az + b)/(cz + d) (ad -bc^O) depends only on y. Now g lies
in the group PGL(2,C), so it has an inverse function g~lePGL(2,C).

Theorem 2.15.2. There is an isomorphism 0\T^PGL(2,C) given by
= 9~\ where yeT and g = y(/).

Proof Using the lemma, we have seen that each yeV determines an
element g'lePGL(2X\ so let 0:r->PGL(2,C) be given by
If 6(yj) = gjl for elements yl9 y2eF, then each y, acts on C(z) by

so that the composition yxy2 acts on C(z) by
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and hence

%iy2) = (^2^l)'1=^r1^21=%l)°%2).

Thus 9 is a group-homomorphism. (Notice that the apparently more
natural function y h* g is not a homomorphism, since it reverses the order of
products.)

If 0(y) = g~1 is the identity element of PGL(2,C), then y acts on C(z)
by y'f*->fog=f, so y is the identity automorphism of C(z); thus 6 is
one-to-one. If we choose any hePGL(2, C), then fi = g~ 1 for some g( = Ji~*)
in PGL(2,C), and the map y:C(z)-^C(z) given by f*-+f°g is a field-auto-
morphism of C(z) fixing C: for example, y sends fx ±f2 to (/x ±f2)°9 =
(/i °#) ± (fi°9\ anc* similarly for products and quotients; the inverse of y is
given by f\->f°h. Thus yeT and 0(y) = #~ l = fc, so 0 is onto, and hence 0 is
an isomorphicm T s PGL(2, C). D

In fact, if F is any field, and F(z) is the field of rational functions in one
variable z with coefficients in F, then the Galois group of the extension
F(z) z> F is isomorphic to PGL(2, F). The proof is more difficult in the
general case (see N. Jacobson, Lectures in Abstract Algebra, Vol. HI,
IV. 4), since a rational function g which is one-to-one need not have degree
1, so we cannot easily prove a result corresponding to Lemma 2.15.1: for
example, g(z) = z3 for F = R, or g(z) = zp for F = GF(p), the field of integers
mod (p) where p is prime. When F = C, however, we have the fundamental
theorem of algebra (which lies behind Corollary 1.4.3 (ii)) to prove that
g has degree 1.

EXERCISES

2A. Let z0, z1? z2, z3 be four distinct points in I . Show that there are precisely two
values of k such that the ordered quadruple (z0Jzltz2,z3) can be mapped to
(1, — 1,/c, — k) by a Mobius transformation.

2B. Find the type (i.e. parabolic, hyperbolic, etc.) and the multiplier of each of the
following Mobius transformations.

2 + 1 /.-v I ' Z + 1

(l) Z N — (ll) Zh+ -
z -I- 3 z -h 3i

— z
(Hi) z\-+iz+ 1 (iv)

z + 4

2C. Let S and T be Mobius transformations with a common fixed-point. Prove
that STS~ lT~l is parabolic or the identity. (Hint: assume the common fixed
point is oo. Why is this method valid?)
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2D. Let 5 be a hyperbolic transformation with fixed-points p and q. Let T be a
Mobius transformation which maps p to q. Prove that

(i) STSlT~l is hyperbolic,
(ii) STST1 is parabolic.

In the following three problems inversion is any transformation Ic where C
is a circle in L. Thus it is inversion in a circle in C or reflection in a line in C.

2E. (i) Show that the circle

c = O (a, ceU)

does not intersect the real axis if and only if (Re(fc))2 < ac.
(ii) Deduce that the composition of two inversions /C l

o/c2 *
s hyperbolic if the

circles Cx and C2 do not intersect. (Hint: It is enough to show this when one of
the circles is the real axis - why?)

Show that the composition of the above two inversions is parabolic if Cl

and C2 touch and elliptic if Ci and C2 intersect in two points.
2F. Show that if k > 1 then Uk is a composition of two inversions in concentric

circles, if k = 1 then Ux is a composition of two reflections in parallel lines and
if | k | = 1 (k ^ 1) then Ux is a composition of two inversions in intersecting lines.
Deduce the converse of 2E (ii).

2G. Prove that if k is not positive or if \k\ # 1 then Uk is a composition of four
inversions and hence show that every loxodromic transformation is a
composition of four inversions.

Problems 2H-2L concern the isometric circle of a Mobius transformation.
For more details and some uses of this circle see Ford [1951].

Let T(z) = {az + b)/{cz + d)(a,bic,deC,ad-bc = 1). Its isometric circle
J(T) is the circle {zeC\\cz + d\ = 1}.

2H. Show that Tmaps J(T) onto J(T~l) and that if z, weJ(T) then | T(z) - T(w)|
= \z - w\. (Thus T maps J(T) isometrically onto J(T~l) - hence the name.)
Show also that T maps the centre of J(T) to oo. (Thus T maps the interior of
J(T) to the exterior of J(T~ *). We can also regard the interior of a circle as the
region to the left of the circle as we travel around it in an anti-clockwise
direction. As T preserves orientation, T maps J(T) with an anti-clockwise
orientation to J(T~l) with a clockwise orientation. As T preserves distance
on J(T) this means that once the image of one point of J(T) is known then the
images of all points of J(T) are known.)

21. Show that if T is hyperbolic then J{T) and J(T~l) are disjoint, if T is
parabolic then J(T) and J(T~r) touch at one point and if T is elliptic with
T2 & I then J(T) and J(T~l) intersect at two points. Show that J(T) and
J(T~l) coincide if and only if T2 = /.

2J. Suppose that T2 ^ /• Let the straight line-segment joining the centres of J(T)
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and f{T~l) cut J(T) at zx and J(T~l) at z2. Show that

da a + d
- = - - z 2 = :c c \a + d\c'

and deduce that if T is not loxodromic then T(zY) = z2. Prove that if T is not
loxodromic then T is a composition of an inversion in J(T) followed by a
reflection in the perpendicular bisector L of the straight line-segment joining
the centres of J(T) and J(T~l). (No calculations are needed; just use the
remarks made in 2H and Corollary 2.5.2.)

2K. If T is loxodromic show that

where <t> = arg(a + d). Deduce that T is a composition of an inversion in J(T)
followed by a reflection in Lfollowed by a rotation about the centre of J(T " *)
through an angle of — 2<j>.

2L. If T2 = / prove that T is a composition of an inversion in J(T) with a suitable
reflection.

2M. Let C be a circle in Z passing through zlt z2, z3. Prove that /c(z) = w if and only
if

(w,z1;z2,z3) = (z,z1;z2,z3).

2N. If A # 0, ± 1 show that there are precisely two matrices of determinant 1 of the
fform

(p

{p,qeC) such that

V0 l/xj\-q 2-p
has trace equal to 2. Deduce that every non-parabolic element of PSL(2, C) is a
product of two parabolic elements. (Thus PSL(2, C) is generated by parabolic
elements.)

2P. Let H be a normal subgroup of P5L(2, C) containing more than just the
identity element. Use the double transitivity of PSL(2, C) on X to show that if
H contains a non-parabolic element then it contains an element with two
prescribed fixed points. Use Exercise 2C to show that H contains parabolic
elements and deduce that H = PSL(2,C). (Thus PSL(2,C) is simple.)

2Q. Verify that a rotation of 1 is (represented by) an elliptic element of PSL(2, C).
2R. Show that an elliptic element whose fixed-points are antipodal points of L is a

rotation of I .



3
Elliptic functions

Having considered the sphere and its meromorphic functions in the first
part of this book, we now turn our attention to another compact surface,
the torus, and its meromorphic functions. These are the elliptic functions,
which arise naturally as the doubly periodic meromorphic functions on C.
First we consider periodicity in general, and then, having obtained the torus
as a quotient-space of C, we consider the elementary properties of elliptic
functions (regarded as functions from the torus to the Riemann sphere I). It
is not a simple matter to construct non-constant elliptic functions, and for
this purpose we have included sections on uniform and normal convergence
and on infinite products (some readers may prefer to omit these sections at
first reading, and refer back to them later, while others who are familiar with
this type of analysis may be able to omit them completely). These
techniques enable us to construct the Weierstrass functions &(z\ £(z) and
<r(z), and in the final sections of this chapter we use these functions to deduce
further properties of elliptic functions in general.

3.1 Periods

Let / be a function defined on the complex plane C. Then a complex
number co is called a period of/if

f(z + co)=f(z)

for all zeC, and/is called periodic if it has a period co^O.
For example, sinz and cos 2 have period 2n,ez has period 2ni, and

s\n(2nz/co) has period co for any complex number co ^ 0. Every function has
period co = 0.

The set Clf of periods of a function /has two important properties: one
algebraic, valid for all / , and one topological, valid for non-constant
meromorphic functions/. These properties are given in Theorems 3.1.1 and
3.1.2.
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Theorem 3.1.1. Let Clf be the set of periods of a function/defined on C; then
Qf is a subgroup of the additive group C.

Proof Let a, j8eQ/. Then/(z + (a + j»)) =/((z + a) + P) =f(z + a) =/(z),
and so a + jSefty. Moreover, / ( z - a ) = / ( ( z - a ) + a)=/(z), and so
-aeClf. Finally, /(z + 0)=/(z), and so 0eQf. Thus Qf is a subgroup
ofC. •

A subset A of a topological space is called discrete if every XGA has a
neighbourhood U such that 1/nA = {x}. For example

(i) the integers Z form a discrete subset of R;
(ii) any finite subset of IR" is discrete;
(iii) {\/n\neZ,n ^0} is a discrete subset of U.

However, {l/n|neZ, n / 0} u {0} is not discrete, since every neighbourhood
of 0 contains real numbers of form 1/n, weZ.

Theorem 3.1.2. Let £lf be the set of periods of a non-constant meromorphic
function f defined on C; then £lf is a discrete subset ofC.

Proof If Qf is not discrete then there exists coeO.f such that every
neighbourhood U of co contains points of Qy^co}. By taking these
neighbourhoods to be discs, centred at o)y with radii approaching 0, we
obtain a sequence of periods con^co with limn_> „ con = co. Since co, toneClf we
have/(co) =/(0) =f(con). If/(0) = oo then/has a convergent sequence of
poles, which is impossible by Theorem A.8. If /(0)# oo then the mero-
morphic function g(z) =/(z)— /(0) has a convergent sequence of zeros,
implying that g is identically zero (by Theorem A.8), and so/is constant. In
either case, we have a contradiction. •

To summarise, the set of periods of a non-constant meromorphic
function is a discrete subgroup of C. We now show that there are three types
of discrete additive subgroups of C, isomorphic to {0},Z and Z x Z
respectively.

Theorem 3.1.3. Let Qbea discrete subgroup ofC. Then one of the following
holds:

(i) n = {0};
(ii) Q = {ncol \neZ}for some fixed coj eC\{0}, and so Q is isomorphic to Z;
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(iii) O = {mcD^ + na>2\m9neZ} for some fixed a>l9a)2eCy where cox and a>2

are linearly independent over U, that is, o)x ^ 0 # co2 and col/co24U; in

case, Q is isomorphic to Z x Z.

Proo/. Suppose that O # {0}. We first show that there exists c^
with least value of la^ |. Since O is discrete, there is some e > 0 such that the
disc \z\ < e contains no elements of Q\{0}. It follows that for any coeQ, the
disc \z — o)\ < e contains no elements of Q\{co}: for if zeQ satisfies 0 <
\z — a>\ < e, then z — co is an element of Q (since Q is a group) within distance
e of 0 (as in Fig. 3.1), which is impossible. Thus each coeQ. is the centre of a disc
of radius e (independent of a>) containing no other elements of Q. Therefore,
discs of radius ^e, centred on the elements of ft, are disjoint from each other.
Now choose a disc \z\ < r sufficiently large to contain at least one element of

Fig. 3.1

Fig. 3.2

Fig. 3.3

- c o , +co2

2co.

- C O , - ( 0 2
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Q\ {0} together with its surrounding disc of radius | e ; this disc has area nr2,
so, as in Fig. 3.2, it can contain only finitely many disjoint discs of radius \e
(at most 4r2£~2, in fact); hence there are only finitely many elements of
Q\{0} within distance r of 0, and out of this finite set we may choose col to
have least modulus. (Of course, col is not unique: — a)l will do equally well.)

Now let L= {AcoJAeR} be the line through 0 and cox in C; then Q
contains {ncoJneZ}, and this subgroup lies in L. First suppose that Q ^ L;
we then claim that Q = {na> x | n s Z}, so that Q is of type (ii). For if Q contains
some co T* no)i, then since Q ^ L we have co = A(DX for some AeR\Z, so n <
/ < n + 1 for some neZ. Since Q is a group containing co and nwl, it
contains co — na>l = (/ — n)ct)l. However, 0 ^ |(A — wjwj < IcoJ which con-
tradicts the minimality of la^ |. Hence Q = {ncol |neZ}, and we are in case (ii).

Now suppose that Q £ L. By an argument similar to that used for a>u we
can show that Q\L has an element co2 with least modulus. Then Q contains
the subgroup A = {ma>l + Mco2|m,neZ}, and since a>2£L, &>! and a>2 are
linearly independent over R, so A consists of the vertices of a tessellation of
C by congruent parallelograms, as shown in Fig. 3.3.

We now show that Q = A. If this is not the case, then there exists coeQ
with co # majl + na>2 for any m,neZ. Let co = Aa^ + \ao2 with A,^elR; then
by adding or subtracting suitable multiples of a>l and co2 we may assume
that | / | < i , ||/| ^^ . If/i = 0 then w = /co1eL, with \a>\ = \ka)x\ < ICDJ; by
minimality of |coj | we have co = 0 and hence coeA, against our assumption.
If / = 0 then co = /ico2, and again co = 0, this time by minimality of |co2|.
Hence ).(JOX and /zco2 are non-zero and therefore linearly independent over
R, giving

|co| < l/coj + |/ico2| ̂ l l c o j -f ^|co2| ̂ i |co2| +i|co2| = |co2|,

the first inequality being strict because ACO1 and /ico2 are linearly independ-
ent. Now coeQ\L (since fi #0), so by minimality of |co2| we have co = 0,
contradicting the fact that / , / i ^ 0 . Thus COG A, so Q = A and we are in
case (iii). •

Definition. If a function / has its set £lf of periods of type (ii), then / is simply
periodic; if Qf is of type (iii), then/is doubly periodic. Groups Q of type (iii)
are called lattices, and any pair a>l,a>2 such that Q = {mo)l + nco2|m,neZ}
is called a basis for the lattice. The above results show that periodic
functions are either simply or doubly periodic (apart from constant
functions, where Q = C, and non-meromorphic functions, where Q can be
any subgroup of C, not necessarily discrete). Our main concern in this
chapter will be with doubly periodic functions; however, we first look at
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some generalisations of the ideas in this section, and then we briefly
consider simply periodic functions.

3.2 Topological groups

Definition. A topological group is a topological space G which is also a
group, in which the group multiplication and the taking of inverses are
continuous operations. More precisely, the maps

m:G x G-^G, defined by m(g,h) = gh,

i:G-*G, defined by i(g) = g~1
9

are continuous.
Thus C, with its additive group structure, is a topological group, since the

group operations m(z, w) = z + w and i(z) = — z are continuous. Other
important examples of topological groups are:

(i) The circle S1 = {zeC||z| = 1}, with multiplication of complex num-
bers as the group operation.

(ii) GL(n,C), with matrix multiplication as the group operation. We
obtain the topology on this group by considering the nxn matrix (a0) to be
the point (all,al2,..-,alina2i,..., a2n,..., ann) in C 2 ; the operations m and i
of this group may be expressed in terms of rational functions of the
coordinates a0, so they are continuous. Similarly, GL(n, U) is a topological
group.

(iii) PGL(n,C), with multiplication of the cosets of {A/|A#O} as the
group operation (see §2.2). In this group, the matrix AeGL(n, C) is identified
with XA (AeC\{0}), so we topologise the group by identifying the point
( f l l l v . . , f l j in C"2 with the point (Aali9...,Aam) and using the identific-
ation topology. Similarly, PGL(n, R) is a topological group.

In any topological group G, the map mg defined by

mg{x) = xg (x,geG)

is a continuous bijection with a continuous inverse m{g-\y Thus mg is a
homeomorphism G-*G, known as right translation. If x,yeG then

and so there is a homeomorphism of G taking any given point to any other.
(In other words, the group of homeomorphisms of G is transitive; see §2.5.)
This means that any one point of G looks topologically like any other point
of G; in the case of C and Sl this is visually apparent. In particular, each
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neighbourhood of a given point in G is homeomorphic to a neighbourhood
of the identity eeG, so we can define a discrete subgroup Q, of G to be a
subgroup with the property that there is a neighbourhood U of e in G such
that UnQ = {e}. (This idea of translating neighbourhoods from an
arbitrary point back to the identity element has already been used at the
beginning of the proof of Theorem 3.1.3.)

An extension of Theorem 3.1.3 shows that the discrete sub-groups of Un

are isomorphic to {0} or to Zm where 1 ^ m < n. In general, however, it is
difficult to describe the discrete subgroups Q of an arbitrary topological
group G; for later applications (especially in Chapter 5 where we consider
G = PSL(2, U)) we will now show that Q meets each compact subset of G in
only finitely many points.

Let Jf denote the collection of all open subsets of G containing e. If xeG
then {mJJJ^Us^V*} is the collection of all open sets containing x, so the
open sets in G are determined by the elements of Jf. If (7, VEJV then
UVeJT and U"lG^r, where UV= {uv\ueU,veV} and U~l =
{u~l\ueU}. If U = U~l then U is called a symmetric open set.

Lemma 3.2.1. IfUejV then there exists a symmetric open set VeJf such
that VV^U.

Proof. Let W denote m~\U) = {(x,y)eG x G\xyeU}. Since m:G x G-+G
is continuous and (e9e)e\V, it follows that W is an open neighbourhood
of (e,e) in G x G, so by definition of the product topology, there exist
Vl9 V2ejV such that VxxV2^W and hence Vx V2 £ U. Now let V3 =
VxnV2\ then V3V3^U, so if we put V=V3nV;x then VeJf, V is
symmetric, and VV^U. •

Theorem 3.2.2. If Q is a discrete subgroup of a topological group G, and ifK
is a compact subset of G, tfeen QnK is finite.

Proof Since Q is discrete there exists UEJV such that l / n Q = { e } , and by
Lemma 3.2.1 there exists a symmetric Ke^T such that VV^U. The open
sets gV(gsG) cover G, and hence cover K, so by compactness there is a finite
subcover, g-1Vv...vgnV^K. We now show that for each i= l , . . . ,n ,
IQr̂ .̂-Kj ^ 1. For suppose that hl9h2€ttngiV; then there exist vl,v2eV
such that hj^g^j ( ; = 1 , 2 ) and hence hi1h2 = Viigfl.giv2 =

Vilv2eV-lV=VV^U, so that hl=h2 since h^1h2eUnQ = {e}.

Thus |QnX| ^ n, as required. •
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Corollary 3.2.3. In a compact topological group, every discrete subgroup is
finite. •

For example, in §2.12 we showed that the rotation group Rot(Z) is
homeomorphic to P3(U), the quotient of S3 by the antipodal map. Since S3

is compact, so is Rot (Z), so it follows that the discrete groups of rotations of
X are just the finite groups listed in Theorem 2.13.5.

We could have used Theorem 3.2.2 to shorten the proof of Theorem 3.1.3
(see Exercise 3B), but we preferred to give a more elementary proof, using
the Euclidean metric on IR2.

In Theorem 3.2.2, the condition that Q is a subgroup is necessary: for
example, let G = U (under addition), Q = {l/n|w = 1,2,3,...}, and K =
[0,1]; then Cl is a discrete subset of G (though not a subgroup), K is
compact, and QnK is infinite.

3.3 Simply periodic functions

In this section we will show that a simply periodic meromorphic function
can be expressed in terms of the standard exponential and trigonometric
functions. (In fact, all we require of the set of periods is that it should contain
a subgroup isomorphic to Z, so our results are also valid for doubly
periodic functions; however, we shall see later on that much stronger results
are available for such functions.)

I f / i s simply periodic with set of periods Oy = {ncoJneZ}, then by
replacing z by coxz we can assume that Clf = Z (for example, replacing sinz
by sin 2nz, or ez by elKiz), so we have

/ ( z ) = / ( z + n) for all nel.

We define complex numbers zlyz2 to be congruent mod Z if and only if
Zj — z2eZ. This defines an equivalence relation on C, in which the equi-
valence classes are the cosets of Z, and / takes the same value at
congruent points. Each complex number is congruent to precisely one
point in the infinite vertical strip S = {zeC|0 < Re (z) < 1}, so the behaviour

Fig. 3.4
6 ° v C\{0}
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of / on C is determined by its behaviour on S, this behaviour being
repeated on each parallel strip S + n9neZ.

The function e:zh-» £ = e2niz has / as its set of periods, and it is a bijection
between S and C\{0}. We define

so that if / is a simply periodic function from C to a set X, then <j> is a
function from C\{0} to X (see Fig. 3.4). Notice that although log( is not a
single-valued function of (, successive values of log( differ by 2TU, SO
different values of {l/lni) log ( differ by integers, and since these integers are
periods of /,</>(£) = / ( ( l/27ii) log () is a single-valued function of (:the
periodicity of/cancels the many-valued nature of log (. In general, 0(() is a
simpler function than/(z). For instance, if/(z) = sin27rz then

<MC)=/(z) = sin27rz = i ^

and similarly if/(z) = cos2nz then <t>(Q = i(C + C"1)-
Conversely, if (/>:C\{0}-»X is any function, then we obtain a simply

periodic function/= <t>°e:C-+X given by

Thus the functions f:C->X which are periodic with respect to Z are
precisely those of the form/ = </>°fi, that is, the functions of C = e2niz.

In a sufficiently small neighbourhood of each point in C\{0}, there is a
single-valued analytic branch of log(, so if / is a simply periodic
meromorphic function C -+ Z then <f> is a meromorphic function C\ {0} -> E,
with poles in one-to-one correspondence with the congruence classes of
poles of /on C. (Of course, 0 may have singularities at 0 and oo, since log (
does.) For example, if/(z) = tan rcz, with a single congruence class of poles at
z = n + \ (neZ\ then <£(C)= - * ( C - 1)/(C+1) with a single pole at
C = ~ 1 = e2*I(n + 1/2>. Conversely, if <£ is meromorphic then so if / , since
f=(t>°s and e is analytic.

We sum up these results in

Theorem 3.3.1. The functions f for which Z^Qf are the single-valued
functions </>(£) of ( = e2niz\ f is meromorphic on C if and only if (f> is
meromorphic on C\{0}, and the congruence classes of poles off on C are in
one-to-one correspondence with the poles of <j> on C\{0}. •
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If we now assume that/ is meromorphic then its poles are discrete, so by
an argument similar to that at the beginning of the proof of Theorem 3.1.3
we can find a rectangle R = {z\yx < Im(z) < y2, 0 ^ Re(z) < 1} within the
infinite strip S such that R contains no poles of/. Now the function
e:zi->C = e2niz maps the edges {x + iyJO ^ x < 1} of R to {e-2ny'.e2nix\0 ^
x < 1} for j = 1,2, and these are circles of radii r, = e~2nyj in the C-plane,
so R is mapped by e to an annular region e(R) given by r 2 < | C I < ^ n
within which 0(0 is analytic (see Fig. 3.5).

It follows that </>(£) has a unique Laurent expansion

valid for r2 < |(| < r2 (at least), so that/(z) has an expansion

/(z)= £ flne2^,
n= - ao

valid for yx < Im(z) < y2. Putting e2nniz = cos2nnz + i sin 27rnz, we obtain
the Fourier series (J.B.J. Fourier, 1768-1830)

/(Z) =

where An = an + a_n and £„ = i(an — a_n) for M ^ 1. This series is valid in the
horizontal strip yt < Im(z) < y2 consisting of R and its translates R + m,
meZ. However, different choices for the rectangle R may give rise to
different Fourier series for/, valid on disjoint horizontal strips (see Exercise
3D).

Fig. 3.5
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3.4 Lattices and fundamental regions

We now turn to the study of doubly periodic functions, starting with a
closer look at some of the algebraic and geometric ideas involved. A group
Q of type (iii) in Theorem 3.1.3 is called a lattice, and is denoted by Cl(coly a>2)
where {co x, co2} is a basis for Q, that is, a pair of generators for Q. There are
other bases for Q besides {a)li(o2}: for instance {couC^ + co2} is also a
basis, for if COGQ(CO1,O)2) then

co = mcol + nco2 = (m — n)col + n ^ + co2),

with m — n, neZ. In general, if a^, a ^ e Q ^ , ^ ) then

b<ol9

to\ =cco2 + dcoli

where a, b, c, d are integers.

Theorem 3.4.2. Equations (3.4.1) de/ine a basis {(o'uco'2} for Q(a)l9o)2) if
and only if ad — be = ± 1.

Proo/. It is convenient to write (3.4.1) using matrix notation

where c :
If ad - be = ± 1, then A 1 has integer coefficients, and we have

>

Thus a)|,Q)2€A(a)i,a}2) and hence O.(co1,co2)
i^0.((o'u(o'2). The reverse

inclusion is obvious, so 0(0^ co2) = Qi<o'u co2) and hence {co\9 co'2} is a basis.
Conversely, suppose that equation (3.4.3) defines a basis {a>i,a>'2} for

Q(a>1,a>2). Expressing the elements co^coj in terms of this basis, we have

\(0j \(0j

for some matrix B with integer coefficients, so

(3.4.4)
a>J \(o
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Now C is a 2-dimensional vector space over (R, and since col and a>2 are
linearly independent over U they form a basis for C. It follows from (3.4.4)
that the matrix BA induces the identity linear transformation of C, so
BA = I and hence

det(£).det(/4)=l.

Since A and B have integer coefficients, their determinants are integers, so
det(A)= ± 1, that is, ad-bc = + 1. •

It is easily seen that there are infinitely many sets of integers a,b,c,d
satisfying ad — be = ± 1, so any lattice ft has infinitely many bases. Exercise
3E gives necessary and sufficient conditions for an element coeft to be
contained in a basis.

F U N D A M E N T A L REGIONS

Given a lattice ft, we define zl, z2 eC to be congruent mod ft, written zl^ z2,
if zt — z2eft. Congruence mod Q is easily seen to be an equivalence relation
on C, and the equivalence classes are the cosets z + ft of ft in the additive
group C. Alternatively, we may regard ft as acting on C as a transformation
group, each coed inducing the translation

of C; since
t f gf
l ( U l + O>2) 10 \ O>2>

we have a group isomorphism ft ^ {tJcoeQ}. Then two points zi, z2eC are
congruent mod Q if and only if they lie in the same orbit under this action
ofQ.

A closed, connected subset P of C is defined to be ̂ fundamental region for
Qif

(i) for each zeC, P contains at least one point in the same Q-orbit as z(i.e.
every point zeC is congruent to some point in P);

(ii) no two points in the interior of P are in the same Q-orbit (i.e. no pair of
points in the interior of P are congruent).

If, as is usually the case, P is also a Euclidean polygon, with a finite
number of sides, then we call P a fundamental polygon for ft; in particular, if
P is a parallelogram, then it is called a fundamental parallelogram for ft.

For example, the parallelogram P, shown in Fig. 3.6, with vertices
0, o)u co2, o)x + co2> is a fundamental parallelogram for the lattice (l(a>l,co2).
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Conditions (i) and (ii) ensure that if Pis any fundamental region for a lattice
Q, then P and its images under the action of Q (that is, its translates
P + (o,coeCl) cover the plane C completely, overlapping only at their
boundaries; this type of covering is known as a tessellation of C, and the
diagram shows the tessellation arising from a fundamental parallelogram.
By using Theorem 3.4.1 we can obtain fundamental parallelograms of
different shapes, and hence obtain different tessellations of C.

If P is any fundamental region for Q, then for fixed reC, the set

p + t = {z + r|zeP}

is also a fundamental region. This is useful when we need to find a
fundamental region containing or avoiding certain specified points; for
example, we can always find a fundamental parallelogram for Q with 0 in its
interior.

We can obtain fundamental regions which are not parallelograms, nor
even polygons, by the following procedure. Let P be the fundamental
parallelogram for ft^,^) with vertices 0,co1,co2,co1 +co2. The trans-
formation zi-> z + co2 maps one side of P to the opposite side. If we cut out a

Fig. 3.6

Fig. 3.7

l+ i
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section S of P which intersects this side and glue on S + co2 at the opposite
side, then we still have a fundamental region (P\S)u(S + co2). This is
illustrated in Fig. 3.7 where Q = Q(l, i). Similarly, we can use the transform-
ations zh+z — o)2 and z\-+z ± (ox. By performing several of these cutting
and gluing operations, we can obtain a fundamental region which is the
union of two squares, as shown in Fig. 3.8; this gives a neat proof of
Pythagoras' theorem (see the comment after Theorem 3.4.6).

Fig. 3.8
-tl+i

As a final example of a fundamental region for a lattice Q, we consider the
Dirichlet region (G.P.L. Dirichlet, 1805-59)

D(Cl)= {zeC\\z\^\z-w\ for all coeQ}.

This is the set of points which are at least as close to 0 as they are to any
other lattice-point. Clearly, 0eD(Q\ and as Q is discrete D(Q) contains some
neighbourhood of 0. For each coeQ\{0} the set {zeC||z| ^ |z-a>|} is a
closed half-plane bounded by the perpendicular bisector of the line segment
joining 0 and co. Thus D(Q) is an intersection of half-planes, each of which
is convex, and so D(Q) is convex. Since D(Q) is an intersection of just finitely
many half-planes (why?), and since D(Q) has non-empty interior (contain-
ing 0 for example) it follows that D(Q) is a polygon. For this reason the
Dirichlet region is often called the Dirichlet polygon.

Figs. 3.9 and 3.10 illustrate two examples of Dirichlet polygons. In the
most general case, as in Fig. 3.9, D(Q) is a hexagon with its opposite sides

Fig. 3.9 Fig. 3.10
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parallel and of equal lengths, but when Q is "rectangular", that is, Q has a
pair of perpendicular generators, as in Fig. 3.10, then D(Q) is a rectangle.

Theorem 3.4.5. D(C1) is a fundamental region for Q.

Proof. Let zxeC and let z0 be a point in the Q-orbit of zx with smallest
modulus; such a point exists by the argument used at the beginning of the
proof of Theorem 3.1.3. Then |zo| ̂  \z0 — co\ for all coed, and so zoeD(Q).
Thus Z)(Q) contains at least one point from every Q-orbit.

Next we show that if zl9 z2 are in the interior of D(Q) then they cannot lie
in the same Q-orbit. If \z\ = \z — co\ for some COGQ\{0}, then either z^D(Q)
or else z lies on the boundary of D(Q); hence if z is in the interior of £>(Q) then
\z\ <\z-a>\ for all COGQ\{0}. If two interior points zXiz2 lie in the same Q~
orbit then this implies that | z j < |z2| and \z2\ < IzJ, a contradiction. Thus
the interior of D(Q) contains at most one point in each Q-orbit.

Being an intersection of closed half-planes, D(Q) is closed. Since D(Q) is
convex, it is path-connected and hence connected. Thus D(Sl) is a
fundamental region. •

We have seen that a fundamental region for a lattice is not unique.
However, as the next theorem shows, its area is unique, and may therefore
be regarded as a function of the lattice alone. Even though this result is true
for any 'reasonably well-behaved' fundamental regions, in order to avoid
having to consider pathological cases we will just prove it for fundamental
polygons.

For any measurable set X £ C, let n(X) be the area, or measure, of X. For
notational convenience, we will write co(X) for X + a>\ since the translation
zh->z + co is an isometry of C, we have fi{co(X)) = fi(X).

Theorem 3.4.6. Let Px and P2 be fundamental polygons for a lattice Q.

Proof. If Qj is the interior of Pj(j =1,2) then //(/>,) = n(Qj). Now

P, 2 P , n U o>(Qi)= U (Pi

As Q2 is the interior of a fundamental region, the sets Pinco(Q2) are
disjoint, and hence



70 Elliptic functions

since a> ranges over Q as — co does. Now as Px is a fundamental region,

and hence

caeil

Hence

giving

Interchanging Px and P 2 we have fi(P2)^ n(Pi\ and hence fi(Pl) =

. •
Applying this result to the fundamental regions in Fig. 3.8, we get a proof of
Pythagoras' theorem.

3.5 The torus

If a function/is doubly periodic with respect to a lattice Q = Q(a>l, a>2), then
its behaviour on C is determined by its behaviour on a fundamental region
P for Q, which we can take to be the parallelogram with vertices 0, a>ly co2,
o)i +co2; this behaviour is then repeated on all translates P + w (coed).
Hence we can regard/as a function defined on P, and since/takes the same
values on congruent boundary points we may as well identify them and
regard/ as a function defined on the resulting space T, which is known as a
torus (see Fig. 3.11). Conversely, any function defined on T may be regarded
as a doubly periodic function on C.

Fig. 3.11 „ (o,+co2co2 f ^ _

CO) "1-0)2

0 = 0)] =(02 = 0)] + ( 0 2
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By the definition of a fundamental region, we see that for every Q-orbit on
C there is just one point of T, and vice-versa, so we can think of Tas the set
of Q-orbits, that is, as the set C/Q of cosets of Q in C. Since Q is a normal
subgroup of the additive group C (normal since C is abelian), the quotient
set T = C/Q has the structure of a group (also abelian). Since there is a
continuous function from the closed bounded set P onto T (given by
identifying boundary points), it follows that T is compact.

This construction of T from the action of Q on C may be generalised as
follows. Let X be a topological space and G a group of homeomorphisms of
X. Then the action of G on X breaks X up into G-orbits. We denote the G-
orbit of x by [x]G, so that >>e[x]G if and only if g(x) = y for some geG. The
set of G-orbits is denoted by X/G and is called the orbit-space (or quotient-
space) of X by G. We define the projection map p: X -> X/G by p(x) = [x] G;
then we topologise X/G by defining a set F g X / G to be open if and only if
p~ l(V) is open in X. With this definition, p is clearly continuous; p is also
open (see §1.5) since if U is open in X then

geG

is also open (as each geG is a homeomorphism), and thus p(U) is open. For
example, if Z acts on R by translation (n(x) = x + n for all xeR, neZ) then
R/Z is homeomorphic to the circle S1; the quotient of the sphere S2 by the
group G generated by the antipodal map (xl9 x2, x3)t->( - x1? - x2, - x3) is
homeomorphic to the real projective plane.

Returning to the torus T = C/Q, we see that for each point [z] = [z]ne T,
P ~* ( M ) is the Q-orbit [z] = z + Q of z, and is therefore discrete. Let d be the
smallest distance between any two points of p " x([z]) (we have d > 0 by the
argument in Theorem 3.1.3), and let U be an open disc of radius at most d/2,
centred on any point in p ~x ([z]), for example on z itself. Then U contains at
most one point from each Q-orbit, so if we define V = p(U) then the map
p: U -> Kis bijective, open and continuous, and is therefore a homeomorph-
ism. Thus every point [z]eT has a neighbourhood V homeomorphic to an
open set in C. Such a space is called a surface; the torus is the simplest

Fig. 3.12



72 Elliptic functions

compact surface other than the sphere. (See Chapter 4 for further details
about surfaces.)

Note that p~ l(V) consists of disjoint open sets of the form U + o (a>eQ),
each of which is mapped homeomorphically onto Vbyp (see Fig. 3.12). Thus,
in the terminology of §1.5, C is a covering space of T, and p is a covering
map. There are infinitely many sheets, and no branch-points.

3.6 General properties of elliptic functions

Definition. A meromorphic function/:C->Z is elliptic with respect to a
lattice Q c C if / is doubly periodic with respect to Q, that is, if

f(z + co) =/(z) for all zeC, weQ,

so that each OJGQ is a period of/.
The connection between doubly periodic functions and the ellipse is

tenuous, but historically interesting. From the second half of the seven-
teenth century onwards, much attention was devoted to certain integrals,
which, it seemed, could not be evaluated using so-called 'elementary'
functions. These were known as elliptic integrals, since they included the
integral

a2-ex2

giving the circumference of the ellipse (x2/a2) + (y2/b2)= 1, where
e— 1 —(b2/a2). In the late 1790s, Gauss noticed that, just as the inverse
functions of the integrals

dx C dx
=- and

give the simply periodic trigonometric functions tan x and sin x, the inverse
functions of certain elliptic integrals, such as

f—
give doubly periodic functions. These ideas were unpublished, and were
rediscovered in the 1820s by Abel and Jacobi, who gave the name 'elliptic'
to these doubly periodic functions.

If / is elliptic with respect to Q, then we may regard / as a function
/ :T-»Z, where T is the torus 7 = C/Q. When we considered meromorphic
functions / : £ - • £ , the compactness of the domain L allowed us to use
Liouville's theorem to show that if / is analytic then / is constant: the
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proofs of Theorems 1.3.3 and 1.3.4 are based on this idea. Here the domain
T is compact, so we can prove similar results for elliptic functions; we
shall see that elliptic functions are related to the torus in the same way
that rational functions are related to the sphere.

So far, the only elliptic functions we have met are the constant functions,
and it is a substantial problem to construct non-constant elliptic functions.
Before doing this, in §3.9, we will examine some of the elementary properties
which elliptic functions must possess.

Suppose that / is elliptic with respect to a lattice Q, that e e l , and that
/ is not identically equal to c. Then the solutions of f(z) = c are isolated,
and each solution has finite multiplicity, congruent solutions having the
same multiplicity. Since the solutions are isolated, any fundamental
polygon P for Q contains only finitely many solutions (since P is compact),
and, by replacing P by P + t{teC) if necessary, we may assume that there
are no solutions on the boundary dP of P. Let the solutions within P be
z = zl9...,zn with multiplicities kl9...,/cr, and let N = kx + ... + kr. Then
we say that 'there are N solutions of f(z) = c\ Since z1 ? . . . , zr are represen-
tatives of the congruence classes of solutions of f(z) = c, for zeC, we can
think of N as the sum of the multiplicities of the solutions of / ( [z] ) = c,
where [z]eT=C/Q.

With this in mind, we define the order ord (/) of an elliptic function /
to be the number of solutions of f(z) = oo, that is, the sum of the orders
of the congruence classes of poles of / . (This is analogous to the degree
deg(/) of a rational function / , equal to the number of solutions of
/ ( z )= oo, counting multiplicities, by Theorem 1.4.2.) For the rest of this
section, we assume that / is elliptic with respect to Q, that ord (/) = N9

and that P is a fundamental parallelogram for Q with vertices t, t + (ol9

t + co2> t + o»l+ (w2, where {co^coj} is a basis for Q, and t is chosen so
that dP contains no zeros or poles of / (see Fig. 3.13).

Fig. 3.13

f+(0.

Theorem 3.6.1. f is constant if and only ifN = 0. (Thus an analytic elliptic
function must be constant.)
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Proof. If / is constant and meromorphic, then it has no poles in C, so
N = 0. Conversely, suppose that N = 0. Then / has no poles, so / is
analytic on C. Now P is compact, and / is continuous, so f(P) is a compact
subset of C and is therefore bounded. Since /(C) =f(P), it follows that /
is bounded on C, so Liouville's theorem implies that / , being analytic and
bounded, must be constant. (Equivalently, we can use the compactness of
T= C/fi to prove that / is bounded, since /(C) =f(T).) •

Theorem 3.6.2. The sum of the residues of f within P is zero.

Proof. Since / is meromorphic, and is analytic on dP, (l/2ni)$dpf(z)dz is
equal to the sum of the residues within P.

Now let F\, F2, F 3 and F 4 be the sides of P from Mo t + cou t + o)x

to t + coj + co2, t + w 1 + c o 2 t o t + a>2, and r + a>2 to t respectively, so that

f f(z)dz= £ [ f(z)dz,
JdP ;=ijr.

where the direction of integration along Tj is consistent with the positive (i.e.
anti-clockwise) orientation of dP, as in Fig. 3.14. Now

f(z)dz= f
r3 Ji

f(z + a)2) dz (since a>2 is a period of/)
r3

(since F 3 = Tl + co2 with the reverse orientation)

= — f(z) dz (substituting z — co2 for z).

Similarly jY4/(z)dz= —jr2f(z)dz since a^ is a period, so $8Pf(z)dz = 0
and hence the sum of the residues is zero. •

Fig. 3.14

Corollary 3.6.3. There are no elliptic functions of order N = 1.
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Proof If/ were elliptic of order 1, it would have a single pole of order 1 in
P, say at z = aeP> so

X

/ ( z )= £ aj(z-a)j nearz = a,

with a_! / 0. Thus the sum of the residues of / within P is equal to a_ 1?

which is non-zero, contradicting Theorem 3.6.2. •

Later, we shall construct an elliptic function P of order 2, and then
show that all other elliptic functions may be expressed in terms of P, just
as all simply periodic functions may be expressed in terms of e2niz.

Theorem 3.6.4. Iff has order N > 0 then f takes each value e e l exactly
N times.

Proof This is the definition of N if c = oc, so we may assume that ceC.
Replacing / by /— c (which has the same order as / ) , we may assume
that c = 0. Now / ' / / is meromorphic, and since dP contains no poles or
zeros of/, / ' / / is analytic on dP. We may therefore integrate / ' / / around
dP. Since / is elliptic, so is / ' and hence so is / ' / / , so applying the argument
used in the proof of Theorem 3.6.2, we see that

f fw

and hence the sum of the residues of / ' / / within P must be zero.
Now / ' / / has poles at the zeros and poles of / , and nowhere else.

Suppose that / has a zero of multiplicity k at z = aeP, so that /(z) =
(z-a)kg(z) near z = a, where g is analytic and g(a)^0. Then f'(z) =
k(z — a)k~lg(z) + (z — afg'(z) near z = a, and so

f\z) = k g\z)
f(z) z-a g(z)

near z = a, so that / ' / / has residue k at z = a. A similar argument, with
f(z) = (z — a)~kg{z), shows that / ' / / has residue — k at each pole of
multiplicity k o f / Since the sum of the residues of / ' / / is zero, the number
of zeros of / must equal the number of poles, counting multiplicities, so
the equatfon /(z) = 0 has N solutions, as required. •

Compare the above result with Theorem 1.4.2 for rational functions.
Similarly, there are analogues of Theorems 1.3.3 and 1.3.4:

Theorem 3.6.5. Let f and g be elliptic functions with respect to Q, with
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poles at the same points in C, and with the same principal parts at these
points. Then f(z) = g(z) + c for some constant c.

Proof. The function /— g is elliptic, and has order 0 since it has no poles,
so /— g is constant by Theorem 3.6.1. •

Theorem 3.6.6. Let f and g be elliptic functions with respect to O, with
zeros and poles of the same orders at the same points ofC. Then f(z) = cg(z)
for some constant c^O.

Proof Replace /— g by f/g in the proof of Theorem 3.6.5. •

A rational function / : £ - + £ , which is not identically zero, must have
finitely many zeros (say at al9..., ar with multiplicities kl9..., kr) and finitely
many poles (say at bi9..., bs with multiplicities ll9..., ls); conversely, given
any choice of points au...,ar, bl,...ibsel, and multiplicities kl,...,kn

ll9..., /5 ̂  1, there exists a rational function / with these zeros and poles,
with these multiplicities, provided

(i) kx + ... + kr = lx + ... + /s (both must equal the degree of / ) , and
(ii) the sets {al9..., ar) and {bi9..., bs} are disjoint (zeros and poles cannot

coincide):

we take f(z) = Y\AZ ~ ^ /VFI / 2 ~" bj)1', where these products range over
all j such that aj9 fc,eC, but exclude factors where a} = oo or bsf = oo.

If an elliptic function /:C-^Z is to have its zeros and poles at the
congruence classes [fli],.. . ,[ar] and [fci],...,[&J with multiplicities
kl9...9kr and / l5.. . ,/s , then condition (i) is necessary by Theorem 3.6.4,
and corresponding to (ii) we have the necessary condition

(ii)' the sets [ f l i ]u . . .u[ar] and [ fr i ]u . . .u [bj are disjoint.

The next result shows that, in contrast with the situation for rational
functions, these conditions are not sufficient for the existence of / .

Theorem 3.6.7. Let the congruence classes of zeros and poles of an elliptic
function f be O i ] , . . . , [ a r ] and [fc i ] , . . . , [ fcj , with multiplicities ku...,kr

and / x , . . . , / s . Then

Z M i - t Ijbj mod a

Proof. As usual, let P be a fundamental parallelogram for Q, chosen so
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that / has no zeros or poles on dP. The effect of replacing any a, or bj
by a congruent point is to add an element of Q to ̂ TMfij ~ Z'A> anc* *^s

does not affect the conclusion of the theorem, so we may assume that a,,
bj€P for all j .

First we prove that

The poles of z /7 /are at the zeros and poles of / , and if / has a zero of
multiplicity k at z = a, then /(z) = (z — a)kg(z) near z = a, with 0 analytic
and g(a) # 0. Then

kz zg\z)
+z-a g(z)

near z = a, with zg'/g analytic at a, so z / 7 / h a s residue kaatz = a. Similarly,
if / has a pole of multiplicity / at z = b, then zf'/f has residue — Ib at
z = b. Now the zeros and poles o f / w i t h i n Pare at a l 9 . . . 9 ar and 6l 9 . . . , fcs

with multiplicities fcl9..., kr and /l9 . . . , / „ so

2ni)e

which is equal to the sum of the residues of zf'/f takes the value

If we label the sides of P as in the proof of Theorem 3.6.2, then

f zf'(z) J f (z
~f(r)~dZ= ~

Jr2 7Ui Jr2

-I
-I r4 ./UJ

for some n^Z, using the facts that F4 is just the path r2 — o)l, with
reverse orientation, that / and / ' are periodic, and that log/(z) changes
its value by an integer multiple of 2ni as z travels along F2 from t + col

to t + G^ + co2 (since / ( t 4- a^) =/(£ + a^ + a>2)).
Similarly, we have
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for some n2eZ, and hence

f'(z)

2ni

which is an element of Q, as required. •

When we come to construct elliptic functions, we shall see that conditions
(i) and (ii)', together with the condition

(iii) T.kjCij - ^Ijbj mod Q,

are sufficient for the existence of an elliptic function / with prescribed zeros
and poles.

3.7 Uniform and normal convergence

In §3.9 we shall construct elliptic functions explicitly, using infinite series
and products. To illustrate some of the ideas involved let us briefly consider
simply periodic functions. Suppose that we wanted to construct such a
function F(z) without assuming knowledge of the exponential or trigono-
metric functions. We might try defining F(z) by means of an infinite series

F(z)= £ f(z-n\

where/ is chosen so that this series converges at z. By this series we mean

F(z)= ~x7(z-")+ £/(z-n)

n = - l n=0

m=0

so that F is a function of period 1. For example, we shall see later that
Z*=-oo(z~~ n)~2 represents the simply periodic meromorphic function
n2 cosec2 nz.
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We can use the same technique to construct a doubly periodic function
with respect to a lattice Q, by defining

Now the order of summation over Q is not so apparent, and we may need to
rearrange this series in order to prove periodicity. However, if the series is
absolutely convergent then its sum is independent of the order of
summation and so this procedure is justified.

Another difficulty is to ensure that the simply or doubly periodic function
F is meromorphic; for this we require/ to be meromorphic and the series
defining F to be uniformly convergent, since this allows term-by-term
differentiation. After considering these problems in a little more detail, we
will therefore introduce the concept of normal convergence, since this
implies both absolute and uniform convergence.

The theory of infinite series usually deals with summation of terms which
are indexed by the set N of non-negative integers. However, as indicated
above, we will need to consider series (and also products) whose terms are
indexed by the set Z of all integers, or by a lattice Q. Now each of these
indexing sets A( = Z or Q) is countably infinite, that is, there is a bijection
wi-> Xn between N and A, so that the elements of A may be arranged in a
sequence. For example,

0, 1, - 1 , 2, - 2 , 3, - 3 , . . .

gives an ordering of Z, and we will show in §3.9 how the elements of a lattice
ft may be ordered.

If A is any countably infinite set, with a particular ordering k0, ku l2,...,
then by SACA^A w e wiH mean linin->aoZj=oaA, provided this limit exists. In
general, the value (and even the existence) of this limit will depend on the
particular ordering we choose for A, but if the series is absolutely
convergent (that is, if limH^go^t'}1sO\aXj\ exists), then ZAEA^A i s independent
of the ordering of A. For example, if we choose the ordering 0, 1, —1,2,
— 2,. . . of A = Z, then the sum of an absolutely convergent series ^XeAax *s

easily seen to be ZiT=°oan + Z*= i an\ however, if JiXelax is conditionally
convergent, then neither Y.n^oan n ° r Z*=ifln nee<* converge.

We can simplify the notation by writing b} for aXj. Then it is easy to check
that our definition of SACA^A coincides with the traditional definition of
£J°=o^> so in effect we have replaced A by f̂J as an indexing set, where f̂J is
ordered in the usual way. We will therefore state our results in this section
for series of terms indexed by N, but the reader should bear in mind that
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these results generalise in a straightforward way to all countably infinite
indexing sets provided we have absolute convergence.

Definition. Let (un) be a sequence of functions wn: £ -• C, defined on some
set £; then un converges uniformly to a function u:E-+C if, for every e > 0
there exists noef^ (depending possibly on £ but not on z) such that
\un(z) — u(z)\ < e for all n > n0 and for all ze£.

For example, if Ek = {zeC | \z\ < /c}, then zn converges uniformly to 0 on
Ek provided k < 1 (since n >ln(e)/ln(fc) implies |z"|<£ for all zeEk).
However, if k = 1, then although zn still converges to 0 on E x, convergence is
no longer uniform, since for each fixed n we have Iim2_1z

n = 1 and hence
there is no n satisfying \zn\ < e = \ for all zeEl. Nevertheless, each compact
subset K e El is contained in some Ek with k < 1, so zn converges uniformly
on all compact subsets of Ex\ this property, which we now define precisely,
turns out to be sufficient to prove the results we need.

Definition. Let R be a region in C, and let (un) be a sequence of functions
un :R->C; then (un) converges uniformly on all compact subsets of R if, for
each compact K^R, the sequence of restrictions (un\K) converges
uniformly on K. Since K can be covered by the interiors of finitely many
closed discs D^R, it is easily seen that this condition is equivalent to the
property that (un\D) converges uniformly on D for each closed disc D^R.

Then we have the following important theorem:

Theorem 3.7.1. Let (un) be a sequence of analytic functions on a region
R^C, uniformly convergent to a function u on all compact subsets ofR. Then
u is analytic on R9 and the sequence of derivatives {uf

n) converges uniformly to
u' on all compact subsets of R.

Proof (outline). As remarked we just need to prove this result for a closed
disc D^R which we will suppose has centre z0 and radius r. We use the
following well-known and easily proved properties of uniform convergence:
(i) the limit function u is continuous in D, (ii) l im, ,^ Jyun = Jyw, for all closed
curves y in D.

Now as un is analytic, Cauchy's theorem implies that Jywn = 0, and hence
by (ii) jyu = 0 for all closed curves y in D. Hence by Morera's theorem
(Theorem A.5), u is analytic in D.

To prove that u'n -• u' we use the Cauchy integral formula (Theorem A.3).
This implies that if S is a circle with centre z0 and radius p>r whose interior
is contained in R then
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-dw

and standard estimates now show that u'n converges to u'. •

2rijj (w-z)2

We can extend this result from sequences to series in the usual way. We
say that £®=ow*(2) converges uniformly to u(z) on a set E if the sequence of
partial sums J^=oun(z) converges uniformly to u(z) on E as m-^ oo. We
immediately deduce:

Corollary 3.7.2. Let {un) be a sequence of analytic functions on a region
/ ? c Q i/Z*=own(z) is uniformly convergent to u(z) on all compact subsets of
R, then u(z) is analytic on R and £*=ou'n(z) is uniformly convergent to u'(z) on
all compact subsets of R. •

For example, Z®=oz'1 is uniformly convergent to (1 - z)~ l on all compact
subsets of Ex (though not on £ t itself), and differentiating term-by-term,
Z^iwz""1 converges uniformly to (d/dz)(l - z ) " 1 =(1 - z ) ~ 2 on all
compact subsets of Ex.

In order to apply Corollary 3.7.2, we need to be able to prove uniform
convergence of ̂ =oun(z) on compact subsets. This can often be done using

Theorem 3.7.3 (Weierstrass' M-test). Let (un) be a sequence of functions
un:E->C, defined on some set £, such that

(i) for each neM there exists MneU satisfying \un(z)\ ^ Mnfor all zeE,

(») Z*=oMn converges.

Then Z*=own(z) converges uniformly on E, and converges absolutely for each
zeE.

Proof Absolute convergence follows immediately from (i) and (ii) by the
comparison test. For a proof of uniform convergence, using Cauchy's
criterion, see Apostol [1963]. •

A useful method of applying Weierstrass' M-test is to use normal
convergence. We define the norm \\f\\ = | | / | | £ of a function / : £ - * C to be
supZ6£|/(z)|, provided/ is bounded, and we say that a series of functions
Xwn(

z) is normally convergent on E if

(i) each un is bounded on £,
(ii) the series XII un II converges.
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By taking Mn = ||uj| in Theorem 3.7.3, we see that normal convergence
implies both uniform and absolute convergence of Xwn on E.

For example, suppose that each function un is analytic on some region R;
then \un(z)\ is continuous, so \\un\\K exists for each compact K^R. The
series £II "n II K consists of non-negative real numbers, so we may be able to
prove that it converges by using elementary tests, such as the comparison,
ratio or integral tests; if so, then £wn is normally and hence uniformly and
absolutely convergent on compact subsets of R, so it represents an analytic
function and may be differentiated term-by-term.

We also need to deal with series of meromorphic functions. Suppose that
(un) is a sequence of meromorphic functions on a region R, and that for each
compact subset K^R there exists NKeN such that

(i) un(z) has no poles (and is thus analytic) in K for n > NK,
(ii) Zn>/v

 un(z) is uniformly convergent on K.

Then we say that 2X(z) converges uniformly on all compact subsets of R.
Since J^n^N un(z) is meromorphic on the interior K of K (being a sum of
finitely many meromorphic functions), and since Zn > N un(z) is analytic on
K (being a uniformly convergent series of analytic functions), the function

£ 11.(2)= X Un(z) + £ 11,(2)

is meromorphic on X, its poles being included among the poles of the
functions un(z) for n ̂  NK. (It is easily seen that, for any given z, the value of
]EX(z) is independent of the choice of K or o(NK.) Since each point zeR has
a neighbourhood with compact closure K ^ R, ZMn(z) is meromorphic
on R.

From Corollary 3.7.2 and the above argument we have

Theorem 3.7.4. Let ^un(z) be a series of meromorphic functions on a region
R^C, uniformly convergent to u(z) on all compact subsets ofR. Then u(z) is
meromorphic on R, and the series SMn(z) converges uniformly to u'(z) on all
compact subsets of R. •

For example, consider the series Z^= -ao(z ~ ")~2; here we are summing
over Z rather than f̂ i, but this is no problem provided we have absolute
convergence. Each compact set K ^ C is bounded, so all but finitely many
of the meromorphic functions (z - n)~2 are analytic on K. By comparing
XII(z - n)~21|K with the convergent series 2 > ~ 2 it is not difficult to show
that X(z — n) ~2 converges normally, and hence uniformly and absolutely,
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on all compact subsets of C, so this series represents a simply periodic
meromorphic function on C, with double poles at each neZ.

3.8 Infinite products

In order to construct elliptic functions, we shall consider certain infinite
products of analytic functions. The terms of such a product will be indexed
by a lattice Q, but as in the case of infinite series, it is sufficient to state
general results for products indexed by f̂ J.

We first consider products of non-zero complex numbers; later, when we
consider products of functions, we will consider products in which some
factors may be zero. Let (bn) be a sequence of non-zero complex numbers,
and let pn = bobl ...bn. Then f]^=<A converges to p, written I~[^=(A = P> if
peC and

(i) limn^oopn = p,
(ii) p # 0 .

If n * = ( A converges, then l i m ^ ^ bn = l i m ^ ^ pjpn.l =
limn_>xpn/limn^a pn_j = 1, using condition (ii). Thus, putting bn = 1 + cn

we see that the convergence of I~I*=oO + O implies that l i nv^c , , = 0.
We can convert infinite products into infinite series by using logarithms.

For complex numbers, log (z) is not a uniquely defined function of z, distinct
values differing by multiplies of 2ni. We therefore introduce the principal
value of log (z), defined to be

Log(z) = ln(|z|) + iarg(z)

for each z / 0, where — n < arg(z) ^ n and In (|z|) is the unique real value of
log(|z|). We cannot assume that Log(afc) = Log (a) + Log(ft), since the two
sides may differ by ± 2ni. However, as exp(27n) = 1 we have

ab = exp(Log(afc)) = exp(Log(a) + Log(fc))

for all a, b ^ 0.

Theorem 3.8 J. If bn ^ 0 for all «, then n*=o^n converges if and only if
converges, in which case Y\?=obn = expX^°=oL°g(*>„)•

Proof Suppose that Z*=oL°g(^n) converges to w. As the exponential
function is continuous, we have

/
exp(w) = exp lim £ Log(bk)
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= lim ( exp £ Log(bk) )

= Mm ( ft 0 -
Since exp(w)^O, this shows that Ti^oK converges to exp(w) =

Conversely, suppose that n*=o^n converges to p (so p^O). Thus
l i m ^ p , , = p where pn = YlUoK Putting

sn = t Log(frfc),
* = 0

we have

where qneZ for each n. We need to show that qn is constant for all
sufficiently large n. We have

2ni(qn+1 - <?„) = sn+ x - sw + Log(pn) - Log(pn+ J

r, + 1) + arg(pB)-arg(pn + 1)).

Equating imaginary parts, we have

k« +1 - <1*\ = 2^|arg(bn^ i) + (argpn - argp) + (argp - argpn + x) \ .

As n-* oo we have frn + x - • 1 and pn, pn + 2 ->p, so for sufficiently large n we
can make each of |arg(bn+x)\9 |argpn — argp| and |argp — argpw + x | less than
f n. This gives \qH+x - qn\ < 1, so qn + x = qn since qn+i - qneZ. Hence qn is
constant, say qn = ,̂ for all sufficiently large n, giving

lim sn = lim (Log(pn) -f 2niqn)
n-*ao

so Z*=oL°g(^n) converges to Log(p) + 2 ^ , and hence

We say that an infinite product Fl^o^n of non-zero terms converges
absolutely if the series Z*=oL°g(&n) converges absolutely. An important
property of absolutely convergent series is that the order in which we sum
the terms can be altered without affecting the convergence of the series or
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changing its sum, so that, in a sense, the commutative law applies to
absolutely convergent series. Since we can obtain all infinite products of
non-zero complex numbers by applying the exponential function to the
appropriate infinite series, it follows that the terms of an absolutely
convergent infinite product may be rearranged without affecting the
convergence or the value of the product. We have a simple criterion for
absolute convergence of infinite products:

Theorem 3.8.2. If l + c n # 0 / o r all H, then Y[?=o(l+cn) converges
absolutely if and only i/Xn°=ocn converges absolutely, that is, if and only if
Z«x=okJ converges.

Proof As the derivative of Log(l + z) at z = 0 is 1, we have

z-0 Z

and so for sufficiently small \z\ we have

i | z | < | L o g ( l + z ) | < 2 | z | . (3.8.3)

Now if Z^=oknl converges, then |cJ-+0 as n->oo, so |Log(l +c n ) |<
2|cJ for all sufficiently large n, and hence Z*=olLog(l + cn)\ converges by
the comparison test, that is, n^°=oO + O is absolutely convergent.

Similarly, if Z^=0|Log(l +cB)| converges, then Log(l +cn)-»0 as
n -> oo, so cn ->0 as n -> oo, and hence j\cn\ ^ |Log(l + cm)\ for all sufficiently
large n\ by the comparison test, it follows that Z*=olcnl converges. •

So far, we have insisted that the terms bn in an infinite product should be
non-zero, so that we can take logarithms. However, in order to deal with
products of functions we need to allow some terms to take the value zero, so
we extend the definition of an infinite product as follows.

Definition. Let (bn) be a sequence of complex numbers. Then n*=o^n
converges if there exists NeN such that

(i) bn * 0 for all n > N9

(ii) T[?=Nbn converges to a non-zero complex number (in the sense that
.bm-^p*O as m->oo).

We define the value of Yl^oK to be
ao

(b0bl...bN-l).
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It is easily seen that this is independent of the choice of N, and that

n^O^fi = 0 i f a n d Only if S O m e bn = 0.

Definition. Let (/„) be a sequence of functions /„:£ -• C. Then Yi?=ofn(z)
converges normally on E if

(i) fn(z) -> 1 uniformly on E (so that || /„ - 11| < 1 and hence Log (/„) is well
defined for large w, say for n ^ N\

(") Z n ^ L o g / ^ z ) is normally convergent to a function w(z) on £.

Then we write

clearly this is independent of the choice of N.
The following result shows that normal convergence of an infinite

product is equivalent to normal convergence of an appropriate series.

Theorem 3.8.4. Let fn=\ + Fnbe a sequence of functions fn:E -• C. Then
Y\™=ofn *5 normally convergent on E if and only |fZB

M=oFn is normally
convergent on E.

Proof Suppose that n*=o/« converges normally on £, so that
conditions (i) and (ii) are satisfied. By (i), | |Fn| |-^0 as n-*oo, so for all
sufficiently large n, say n^ N, the function Log(l + Fn) = Log( / J is well
defined on E and satisfies i|Fn(z)| ^ |Log(/B(z))| for all zeE, using (3.8.3).
Hence \ || Fn \\ ^ || Log (/„) || for all n^N; since £ || Log fn \\ converges, the
comparison test implies that £ | | F n | | converges, so ^Fn is normally
convergent on E.

Conversely, suppose that £ | | F J | converges. Then \\FH\\ - •0 as n-*oo,
s o / « " • 1 uniformly on £, giving (i). As above, Log(l -h Fn) = Log(/n) is
well defined on E for large n and satisfies |Log(/n(z))| ^2\Fn(z)\ for all
zeE, by (3.8.3). Hence || Log(/n) || < 21| Fn \\ for large n, so the comparison
test implies that £ | | Log(/n)|| converges, giving (ii). D

Corollary 3.8.5. If f]^°=o/w I5 normally convergent on £, then Yl?=ofn
is absolutely convergent on E.

Proof If Ylfn converges normally on E then so does XFn by Theorem
3.8.4, where /„ = 1 + Fn. Hence ^Fn(z) is absolutely convergent for each
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ze£, so by Theorem 3.8.2, ]~]0 + Fn(z)) = Y\fn(z) is absolutely convergent
for each zeE. •

Theorem 3.8.6. Let (fn) be a sequence of analytic functions on a region
/ ?gC, and suppose that n«°=o/n converges normally on all compact
subsets of R. Then the function / = f]*=o/n *5 analytic on R.

Proof Given any compact K^R, the product f ] / n converges normally
on K, so there exists N = NKeN such that | | / „ - 1 \\K< 1 for all n^N
and such that ^,n>NLog(fn) converges normally to a function w(z) on K.
Now each function Log(/n) is analytic on /£, and ^n>N Log(/n) converges
uniformly on K, so w is analytic on it and hence so is f=Y[?=ofn =

exp(w).fo...fN_l. Since each point in R has a neighbourhood with
compact closure, the result follows. •

For example, consider the function

The series Z*=iz2/"2 converges normally on all compact subsets of C
(by comparison with the convergent series I>~ 2 ) , so by Theorem 3.8.4
the above product converges normally on all compact subsets, and hence
S(z) is analytic on C by Theorem 3.8.6.

Theorem 3.8.7. Let f fn and R be as in Theorem 3.8.6, and let zeR. Then
f(z) = 0 if and only if fn(z) = Ofor some neN, in which case there are only
finitely such n and the order of z as a zero of f is the sum of the orders of
z as zeros of these functions fn.

Proof. If some fn(z) = 0 then clearly / = \\fn vanishes at z. Conversely
it follows from the definition of infinite products of arbitrary complex
numbers (given after Theorem 3.8.2) that if f(z) = 0 then some fn(z) = 0.
At most finitely many factors fn(z) can be zero (again by definition of
convergence), and writing f=(fofi...fN-x). l\n>Nfm with fn(z)*O for
n^N, we have Yin^sfni2)^^ and so the final part of the theorem
follows. •

For example, the function S(z) defined above has simple zeros at each
neZ, and is non-zero on C\Z.

If we consider the product / = / 0 . . . / m of a large number of analytic
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functions /„, then the formula for the derivative of / , in terms of the
functions /„ and their derivatives, is a little complicated. Rather simpler
is the logarithmic derivative of / , which is defined to be

and which can be expressed as

f rkofn

This formula can be considered as valid even at the zeros of/, where both
sides have poles of the same order. We now consider the logarithmic
derivative of an infinite product of analytic functions.

Theorem 3.8.8. Let f, fn and R be as in Theorem 3.8.6. Then Z*=o/«//«
converges uniformly to f'/f on all compact subsets of R.

Proof. If K is any compact subset of R, then n*=o/« converges
normally on K, so there exists NeN such that n ^ N implies U /„ — 1 \\K < 1,
and hence /„ has no zeros in K.

Let 0 = / O / I / I - / N - I ^nd h = Y\n>Nf» b°th analytic on &. We have
/ = gh, and so

f g h

J

Since Yl?=ofn converges normally on K, E^Logf / , , ) converges
normally to a function w on K, where

by Theorem 3.8.1. Since h is non-zero and analytic on it (by Theorems 3.8.7
and 3.8.6 respectively), we have

h! w'exp(w)
,

h exp(w)

on /£. Now w = £ o N L o g ( / n ) is a normally and hence uniformly
convergent sequence of analytic functions on X, so we may differentiate
term-by-term to give

, v^ J n



Infinite products 89

Thus

f N-l f f

•L. — v _ -u v —
oo f

this series converging uniformly on all compact subsets of l£, by Corollary
3.7.2. This argument is valid for all compact K^R, so the result
follows. •

For example, the infinite product

converges normally on all compact subsets of C, so by the previous
theorem its logarithmic derivative Z(z) is given by

S'(z)
Z(z) =

S(z)

1 °° / 1 1 \

Z A\Z-B Z+B/
(3.8.10)

this series converging uniformly on all compact subsets of C. By Theorem
3.7.4 we can differentiate Z(z) term-by-term to obtain a meromorphic
function. Thus if P(z) = - Z\z) then

1 0

this last step being valid since the series is absolutely convergent, as shown
at the end of §3.7.

Clearly, P(z) is a simply periodic meromorphic function, with Z as its
group of periods. In the exercises we shall see that P(z) = n2 cosec2 nz, and
hence that Z(z) = n cot nz and S(z) = n sin nz. In the next section we shall
construct functions fp (z), £(z) and <J{Z) analogous to P(z), Z(z) and S(z), in
such a way that P(z) is elliptic.
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3.9 Weierstrass functions

Let Q = Cl(col9co2) be a lattice with basis {col9co2} and let P be a
fundamental parallelogram for Q with no elements of Q, on dP. We need
to construct non-constant functions / which are elliptic with respect to
£1 By Theorem 3.6.1 we know that such a function / cannot be analytic
and so it must have poles in P. By Theorem 3.6.3 we know that / cannot
have just one simple pole in P, so the simplest non-constant elliptic function
has order 2, with either two simple poles or else a single pole of order 2
in P. In this section we shall introduce the Weierstrass function P(z) which
is elliptic of order 2 with respect to Q and has a single pole of order 2 in
P. This will be our basic elliptic function in the sense that every function
which is elliptic with respect to Q is a rational function of P and its
derivative P' (see Theorem 3.11.1).

It is not difficult to construct elliptic functions of order N ^ 3 directly
(see Theorem 3.9.3), but the method of construction does not apply so
easily to the case N = 2. Instead of constructing £>(z) directly we shall
derive it from the Weierstrass sigma-function a(z\ which is related to
P (z) in much the same way as S(z) = n sin nz is related to P(z) = n2 cosec2 nz
in the theory of simply periodic functions (see §3.8). Just as the convergence
of the products and series defining S(z\Z(z) and P(z) depends upon
the convergence of £^= tn ~2, the convergence of the products and series
defining the Weierstrass functions depends on similar sums indexed by
the lattice Q. To clarify the meaning of summation over Q we must first
describe a particular ordering of SI.

The sets ITr= {acox + bo)2\aibeU and max(|a|, |6|) = r}, for integers
r ^ 1, are similar parallelograms centred on 0, as shown in Fig. 3.15.
Defining Qr = QnFIr, we have

Slr = {ma>i + /ico2|w,neZ and max(|m|, |n|) = r}.

Now Q is a disjoint union Q = {0}uQ1uQ2
u*-•» a n ^ for each r ^ l we

have
ia i = 8r. (3.9.1)

Fig. 3.15
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We can order the elements of Q by starting at 0 and then listing the
elements of fix, Q2,... in turn, rotating around each Qr in the order rcou

rol + co2,..., ra>! - a)2 so that the sequence spirals outwards from 0 (see
Fig. 3.16).

Fig. 3.16

If we denote this ordering by a>(0), a)(i\ co{2\... then co(O) = 0, a>(1) = a)l9

a){2) = col + a>2, co(3) = w 2 , . . . ,co ( 8 ) = a)l - co2i coi9) = 2ou (oil0) =

2a>! + co2,....; clearly |co(k)[-^oo as k->oo.
By Z«€« a nd ZUn w e shall mean the sum over all (respectively all

non-zero) lattice-points co taken in the above order; thus
Zr=oM^(k)) for any function h, and similarly ZUnM^) =
By Ylcxn a n ^ Y[a*n w e sha^ mean the product over all (respectively all
non-zero) lattice-points, again in the above order. For convenience we
will often abbreviate the notation to Z,Z', etc., the particular lattice Q
being understood. In practice, the particular ordering of Q will not often
be important, as the sums and products which concern us are usually
absolutely convergent and hence invariant under rearrangements.

The convergence properties of the Weierstrass functions depend on the
following result, which is a 2-dimensional analogue of the fact that the
series Z ^ i r ~ s defining the Riemann zeta-function converges if and only

Theorem 3.9.2. IfseU, then ZUnl^l"5 converges if and only ifs>2.

Proof If D and d are the greatest and least moduli of the elements of
the parallelogram Ilj containing Qu then since

we have rD ^ |a>| ̂  rd for all coedr. Defining

COCOr

we see by (3.9.1) that ar^s lies between 8r(rD)"s = 8rx ~SD~S and &r(rdys =
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gri - y - j Thus Zr°̂ î r,$ converges if and only if S * = i r l s converges,
that is, if and only if s > 2. Since the terms of £'|co|"s are positive and
can be grouped together to give Zr^i^r.s* it follows that Z 'M~ S

converges if and only if s > 2. •

It is now easy to construct elliptic functions of each order N ^ 3.

Theorem 3.9.3. For each integer N ^ 3, the function F^z) = J ^ ^ z — a>)~N

is elliptic of order N with respect to Q.

Proo/. If K is any compact subset of C\Q then the terms (z - o)~N are
analytic and therefore bounded on K. Since K is bounded, for all but
finitely many coeQ (say for all coe<t> ^ Q) we have |co| ^ 2\z\ for all zeK.
It follows that |z — co| ^ \co\ — |z| ^%\co\ for all zeJC, weO, and hence
\\(z-co)-N\\K^2N\o)\-N for all O>GO. If N ^ 3 then Theorem 3.9.2 and
the comparison test imply that J^nea\\(z — co)'mN\\K converges, so
£w€ft(z — o))~N is normally convergent on K. Since each term (z — co)~N

is analytic on K, Corollary 3.7.2 implies that F^z) is analytic on C\I2. A
similar argument, using Theorem 3.7.4, shows that F^z) is meromorphic
at each coeQ, with a pole of order N corresponding to the term (z — a))~N.
Thus Ff^z) is meromorphic on C.

Since normal convergence implies absolute convergence, we may
rearrange the series defining FN(z), and so if o)0eCl then we have

FN(z + co0) = X (z + o>o ~ o>)~"
<oetl

1

where cor = co — coo ranges over Cl as co does (though in a different order).
Thus FN(Z) is periodic with respect to Q, and is therefore elliptic. Since
Ff^z) has a single class of poles of order N, FN(z) has order N. •

Clearly, this method fails to produce an elliptic function F2(z) of order
2, since Theorem 3.9.2 cannot be used to prove convergence of £(z -co)'2.
In order to guarantee convergence, we make the terms of this series smaller,
replacing (z - co) ~2 by (z — w) ~2 — a> ~ 2 for each co / 0. The resulting series

z2 ^ n V ^ - ^ ) ®
P(z) = i + ? (t

 l - —l-j] (3.9.4)
z2 ^ V ^ ^ ) ® /

represents an elliptic function of order 2, Weierstrass' pe-function. Since
#> (z) does not have the form £«€n/(z — co), the periodicity of P(z) is not



Weierstrass functions 93

obvious, and we shall prove it indirectly by integrating the derivative
P\z\ which is the elliptic function — 2F3(z). It is straightforward and
traditional to prove that P(z) is meromorphic by imitating the proof of
Theorem 3.9.3, comparing the series with S l ^ l " 3 (see Exercise 3L), but
we shall take a slightly different approach, and obtain P (z) from the
Weierstrass sigma-function

. II g(a),z),
where (3.9.5)

(The factor (1 —(z/co)) is included in g(co,z) to give <r(z) a simple zero at
each lattice-point co, while the exponential factor is included to guarantee
convergence of the infinite product.)

If K is any compact subset of C, then since K is bounded and since
\wik)\ -+ oo as k -• oo, it follows that g(co(k\z)-> 1 uniformly on K as k -> oo.
Hence there exists an integer Nx such that for all k > Nl9 Log(g(a)ik\z))
is well defined for zeK and satisfies

Moreover, since K is bounded, there exists an integer N2 such that \(o(k)\ >
2\z\ for all zeK, k > N2. Thus for all zeK and k > max(Nl9 N2) we have

z \[ ^ 2

|Log(0(a)«z))| =
2\(o{ ,<*)

CO'ik)

co(k)

It follows from Theorem 3.9.2 that ]£k Log (g(<oik\ z)) is normally convergent
on K, and hence zf l^^cw, z) is normally convergent on K. By Theorem
3.8̂ 6 this product converges to a function <x(z) which is analytic on C.
Since #(co, — *) = (̂— co,z) it follows that <T(—Z)= — <r(z), that is a{z) is an
odd function. The analogy between a{z) and the function S(z) of §3.8
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becomes clear if we write

nf 0

By Theorem 3.8.8 the logarithmic derivative of o(z) will give an infinite
series converging uniformly on compact subsets of C to a meromorphic
function, which we denote by £(z). This is the Weierstrass zeta-function
(not to be confused with the Riemann zeta-function ((s) = Y?=ir~5\ I
by

= ^ ( L 0 g (T(Z))

i V| 0.9.6)

Since a(z) is an odd function, f(z) is also odd. It has simple poles at the
lattice-points, and is analytic on C\Q. As a series of meromorphic
functions, £(z) converges uniformly on compact subsets of C (in the sense
of the definition at the end of §3.7), so by Theorem 3.7.4 we may differentiate
term-by-term to obtain a meromorphic function £'(z). Writing P(z) =
— ('(z) we then have

( 3 9 J )

an even function which is analytic on C\ft and has poles of order 2 at each

Theorem 3.9.8. P (z) is an elliptic function with Q as its lattice Qp of periods.

Proof We have seen that P(z) is meromorphic, so it is sufficient to prove
that H = QP. Since the series (3,9.7) defining P(z) is uniformly convergent on
compact subsets of C, we can differentiate term-by-term, giving

where F3(z) is the elliptic function of order 3 constructed in Theorem 3.9.3.
It follows that for each coed the function P \z + o) — P \z) is identically
zero, and hence P (z + co) — P (z) is constant, say P (z + co) — P(z) = c^ for
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all zeC. Putting z = - co/2 we have c^ = P(co/2) - P(-co/2) = 0 since (P(z)
is an even function. Thus P(z + o) = P(z) for all zeC and coeQ, so Q £ Qp.
Since 0 is a pole of P(z\ there is a pole at every point in Qp; since P (z) has no
poles in C\H it follows that Q P c n , S o f i = (lp. Q

Theorem 3.9.9. P(z) has order 2, and P'(z) has order 3.

Proof. P(z) has a single congruence class of poles (the lattice-points
coefi), each of order 2, so P(z) has order 2; similarly, P\z) = — 2F3(z) has
a single class of poles of order 3, so P\z) has order 3. •

It is important to note that the Weierstrass functions P(z\ (U) and a{z)
depend on the particular lattice Q, so to be precise we should write P(z, Cl\
etc. However, in most cases the lattice O is understood, and the abbreviated
notation is unambiguous.

3.10 The differential equation for P(z)

In this section we derive an important equation connecting P(z) and P'(z\
obtained from the Laurent series for P(z) near z = 0. We start by finding
the Laurent series for

+ I ' ( ^ Y (3-10.1)
CO CO*

Let m = min{\co\\coeQ\{0}}, and let Z) = {zeC||z| <rn}, the largest
open disc centred at 0 and containing no other lattice-points. Since

1 1 z _ z2

z — co co co2 co2(z — coY

we see, by comparison with £' |co|"3 , that ]T'((z — w)"1 4-(1/co) 4-(z/co2))
is absolutely convergent for each zeC\Q. Moreover, for each coeQ\{0}
the binomial series

1 _ 1 z z2

Z — CO CO CO2 CO3

is absolutely convergent for zeD, so we may substitute this in (3.10.1) and
reverse the order of summation (see Apostol [1963], 13.9, for example), to
obtain

c w - j - - - •'
_ 1

z
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for all zeD, where

(these series Gk are the Eisenstein series for fl, absolutely convergent for
/c^3 by Theorem 3.9.2). For odd k the terms co~k and ( — o)~k cancel,
giving Gk = 0, so the Laurent series for ((z) is

1 »
^) = --l2

G2nZ2n-\ (3.10.2)

and hence

P(z)= -C'(z) = i + f ( 2 n - l)G2nz2"-2; (3.10.3)

this is the Laurent series for p (z), valid for zeD. Now a straightforward
calculation gives

P'W = 7 T + 6 G ^ + 20G6z
3 + ...,

and so

2 _ 4 24G4

1 + ^ + 60G6

where </>!(z), (/>2(z) and </>3(z) are power series convergent in D. These last
three equations give

P'(z)2 _ 4 P(Z)3 + 60G4 P(z) + 140G6 = z2<f>(z),

where 4>(z) — <t>i(z) — <t>2(z) + <f>3(z) is a power series convergent in D. As P
and P' are elliptic with respect to Q, the function

f(z) = P'(^)2 - 4P(z)3 + 60G4P(z) + 140G6

is also elliptic. Since f(z) = z2<t>{z) in D, with </>(z) analytic, / vanishes at
0 and hence at all coeCl. However, by its construction / can have poles
only where P or P' have poles, that is, at the lattice-points. Therefore /
has no poles and so by Theorem 3.6.1 f(z) is a constant, which must be
zero since /(0) = 0. Thus we have proved

Theorem 3.10.4. P'(z)2 = 4 P(z)3 - 60 G4 P(z) - 140 G6. •
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This is the differential equation for P(z). It is customary to write

so that

P'(z)2 = 4P(z)3-g2&(z)-g3. (3.10.6)

If we put z = P(t) then we see that

so that

where p(z) is the cubic polynomial 4z3 — #2z — 03- This shows how the
inverses of elliptic functions appear as indefinite integrals, in much the
same way as inverses of trigonometric functions do (see §3.6). This idea
will be explored in greater detail in Chapter 6; for example, we will show
that given any cubic polynomial

p(z) = 4z3 - c2z - c3

with distinct roots, there exists a lattice Q such that c2 = g2(Q) and c3 =
03(Q). Here we will prove the converse, that the polynomial 4z3 — g2z — g3

has distinct roots, by considering the zeros of P'.

Theorem 3.10.7. Let Q be a lattice with basis {co1,a>2}, and let co3 =
031 + co2. ' / P

 IS a fundamental parallelogram with 0, j(ou yco2 and %a)3

in its interior, then j(ou jco2 <*n& 2^3 are the zeros of &' in P.

Proof By Theorem 3.9.9, P' has order 3 and hence has three zeros in
P. If weCl then because jco ^comodQ we have p'(^co)= P\-\co)\
since &' is an odd function we have P'( - %co) = - P\\(x)) and hence
P\%(o) = 0 or 00. Since the only pole of P' within P is the triple pole at
0 we have P ' ( W = 0 for ; = 1, 2, 3. •

We define e)= P(iw7) for j= 1,2,3. Since S = [ i a> 1 ]u[ | c
is the set of all zeros of P' on C, we see that {eu e29 e3} = P(S) is independent
of the particular basis {a>ua>2} chosen for Q.

Corollary 3.10.8. For each ceZ\{e1,e2,e3,00} the equation P(z) = c has
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two simple solutions; for c = el9e29e3
 or °° the equation has one double

solution.

Proof. Since P is elliptic of order 2, it takes each value eel, twice by
Theorem 3.6.4, giving either two simple solutions (at z and — z since P
is even) or one double solution. If ceC then P(z) = c has a double solution
if and only if P'{z) = 0, giving z ~ j(Oj(j = 1,2,3) and so c = ey The pole
of order 2 at z = 0 shows that P (z) = oo has a double solution. •

Theorem 3.10.9. el9 e2 and e3 are mutually distinct.

Proof. Let ffz) = P (z) — e, for j = 1, 2, 3. As the poles of fj are the same
as those of P, fj is an elliptic function of order 2 and therefore has two
classes of zeros, counting multiplicities. As

/,- has double zeros on l^coj] and hence has no other zeros. In particular,
^0 for j^k. Since

it follows that e} # ek for yV fc. •

By (3.10.6) the polynomial

p(z) = 4z3 - g2z - g3

has zeros at z = P(t) where P'(t) = 0, so p(z) has three distinct zeros z = eu

e2 and e3.

3.11 The Held of elliptic functions

In this section we consider a fixed lattice Q; an elliptic function will mean
a function which is elliptic with respect to Q. If / and g are elliptic, then
so are f+g, f—g and fg, and if g is not identically zero then \/g is
elliptic. Thus the set of all elliptic functions is a field, which we shall denote
by £(O). This field contains the subfield £t(ft) consisting of the even elliptic
functions. The constant functions form a subfield of E^Q) isomorphic to
C, so we may regard £(Q) and E^Q) as extension fields of C. Since E^il)
contains P(z) = $o (z, Q) it contains all rational functions of P(with complex
coefficients); these rational functions form a field C(P), the smallest field
containing P and the constant functions C. Similarly, E(il) contains P
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and P', and hence contains the field C(P, P') of rational functions of P
and P'\ this is the smallest field containing P, p' and C.

Theorem 3ALL

(i) / / / is an even elliptic function, then f= Rx(p)for some rational function
RXithus £1(Q) = C(P).

(ii) / / / is any elliptic function, then

where RY and R2 are rational functions; thus E(Q) = C(P, P'\

Proof, (i) Let / be an even elliptic function. The result is obvious for
constant functions, so suppose that / has order N > 0. If fceC, then f(z) = k
has multiple roots only where f'(z) = 0, and this occurs at only finitely
many congruence classes of points z; thus f(z) = k has all its roots simple
for all but finitely many values of k. We can therefore choose two distinct
complex numbers c and d so that the roots of f(z) = c and of /(z) = d are
all simple, and so that none of these roots are congruent to 0 or
±a)j(j= 1,2,3). Since / is even, a complete set of roots of f(z) = c will
have the form au —au a2, —a2,...,an, —ani these being simple and
mutually non-congruent, and similarly for the roots bx, — bl9..., fcn, — bn

of f(z) = d. Hence the elliptic function

has simple zeros at au —al9...,an, —an, and simple poles at bx>
— bl9...,bm — bn.

Now Corollary 3.10.8 implies that the equations P(z) = Pfa) and P(z) =
P(bi) have simple roots z — ±at and z= ±b( respectively (1 ^ i ̂  n), so
the elliptic function

h( JP(z)-P(al))(P(z)-P(a1))..\P(z)-p{an))
[Z) (P(z)-P(bl))(P(z)- P(b2))...(P(z)-P(bn))

has the same zeros and poles as g, with the same multiplicities (all simple).
Hence Theorem 3.6.6 implies that g = \ih for some constant \i ^ 0. Solving

f(z)-c= (P(z)-P(al))...(p(z)-p(an))
f(z)-d fl(P(z)-P(bl))...(P(z)-P(bn))

for /(z), we see that / is a rational function (with complex coefficients)
Rl(p)oi p.

(ii) If/ is odd, then / / W is even, so by (i) we have / = P'R2{ #>) for some
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rational function R2. In general, if / is any elliptic function then

where i ( / ( z ) + / ( - z ) ) is even and elliptic while i(f(z)—f( — z))
and elliptic, so by the above arguments we have

where Rx and K2 are rational functions. •

Using the differential equation ( P'j1 = 4 <P3 — g2 P — #3, we can reduce
any rational function of P and P' to the form /?j(P)+ @'K2(#) by
eliminating powers of P'; for example

P P ' ( P ' - l ) ( 4 P 4 - ^ 2 P 2 - ^ 3 P ) - P'P

We can view Theorem 3.10.4 as an algebraic equation between the
functions P and P\ We now show that any two functions in E(Q) are
connected by an algebraic equation.

Theorem 3.11.2. If / , 0e£(Q) f/ien there exists a non-zero irreducible
polynomial O(x, y), wj'rfc complex coefficients, such that <D(/, #) is identically
zero.

Proof. If we choose any polynomial in two variables x, y, say

F(x9y)= £ £oiklx
kyl (afc/eC),

* = i z = i

then the function fc(z) = F(f{z\ g(z)) is an elliptic function with poles only
at the poles of / or g. If / and g have Af and N poles respectively, then
h has at most mM + HN poles (counting multiplicities in each case). There-
fore, unless h is identically zero, it has at most mM + nN zeros by Theorem
3.6.4. We now show that if m and n are large enough then we can choose
the coefficients <xkl so that h has more than mM + nN zeros and hence
h(z) = 0.

To do this, we let z!, . . . , zmn_ j be mn — 1 non-congruent points distinct
from the poles of / and of g. Now regard

h(zj)=t i«kif(Zj)k9(Zj)l = 0 ( 7 = l , . . . , m n - l ) (3.11.3)
* = i / = i

as a set of mn — 1 homogeneous linear equations in the mn unknowns ak/.
As there are more unknowns than equations, this set of equations has a
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non-trivial solution, that is, there exist ak/, not all zero, satisfying (3.11.3).
Thus F(x,y) is not identically zero, but F(f(z\ g(z)) = h(z) = 0 at z =
z!,...,zmn.Y. Now for m, n large enough,

mn — 1 > mM -f wN,

and so by choosing the coefficients (xkl as above we must have h(z) = 0,
that is, F(/,0) = O.

We can factorise F(x, y) within the polynomial ring C[x, y] as a product

F(x,y) = Fl(x,y)F2(xiy)...Fr(x,y)

of irreducible polynomials. Thus Fx(f9 g)F2(f, g).. .Fr(/, g) — 0 within the
field £(Q), so some F,(/, g) = 0, and we can take 0 to be Ff. •

3.12 Translation properties of £(z) and <r(z)

The functions £(z) and a(z) introduced in §3.9 are not elliptic, for, as
we shall show, they are not invariant under the translations z\-+z + a>
(weCl). However, an examination of their behaviour under translations
will enable us to construct elliptic functions with prescribed properties in
§§3.13 and 3.14.

Since tl\z)=-$)(z\ we have ('(z + ajj) = ('(z) for ; = 1 , 2, so that
integration with respect to z gives

C(z + o>,.) = C(z) + >7; 0* = 1 , 2 ) ,
where rjl9 rj2 are constants, independent of z. If coeCl then CD = ma)l 4- nco2,
where m, neZ, and hence

C(z + ©) = CW + f?, (3.12.1)
where

ri = mrjl+nri2. (3.12.2)

Let P be a fundamental parallelogram for Q, containing 0 within its
interior, with vertices t, t + a^, t + a>x + a>2, t + co2

 a n d s ^es r t , F2, F3,
F 4 directed as shown in Fig. 3.17. Since C(z) is meromorphic and has a

Fig. 3.17

r,
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single pole in P (at 0) with residue equal to 1, we have

CU)<fc.

Now

so

Similarly,

f f
C(z)dz = - {(.

Jr3 Jr,

- J .
f t{z)dz+ f «z)dz=- f
Jr, Jr3 Jr,

r r
£{z)dz+ C(z)dz = rjlc

Jr2 Jr4and hence
^ w 2 — ŷ2co1 = 2ni. (3.12.3)

This equation is usually referred to as Legendre's relation. It implies
that at least one of rjl9 rj2 is non-zero, so £(z) is not elliptic.

To see how cr(z) behaves under translation, we use

From this and (3.12.1) we deduce

a\z + (o
cx(z 4- co) CT(Z)

where >/ = mnx + nij2 for co = rnc^! H- wco2. Integrating this, we obtain

log cr(z + co) = log cr(z) + rjz + c,

where c is a constant depending only on co, and hence

cx(z + co) = cx(z) exp (rjz + c).

We now evaluate c. First suppose that ^co^ft, so that o(\<o) ^0 . Putting
z= —\o) and using the fact that cr is an odd function, we obtain

<r(%a)) = — (T{JCO) exp (— \rjco -f c),

and so cancelling cr(̂ co) we get

exp c = — (
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Thus
<T(Z 4 (o) = - cr(z) exp rj(z + j<o), (3.12.4)

provided \co$Cl. Repeating this, we have

3(o
o(z 4- 2w) = a(z) exp >/(z + ^co) exp f7 (

= a(z)exp2j/(z 4- co),

so if a)' = 2co satisfies \(o'eQ, then

a(z + a;') = a(z) exp ̂ '(z 4- \co')9 (3.12.5)

where rjf = 2*/. Combining (3.12.4) and (3.12.5) we have

<T(Z + O)) = S<J{Z) exp rj(z 4 %co)9 (3.12.6)

where r\ = m ^ 4- n^2 for co = ncoj 4- mo2,
 a n ( i where

-hi if
1 — 1 otherwise.

Putting co = mcol 4- nco2, we see that \coeCl if and only if both m and n
are even, so e = ( - l ) m i l + m + " .

3.13 The construction of elliptic functions with given zeros and poles

We now return to the problem, posed in §3.6, of finding elliptic
functions/e£(Q) with given sets of zeros and poles. At the end of §3.6
we showed that if/ has [a x ] , . . . , [ar] and [ fc j , . . . , [fcj as its congruence
classes of zeros and poles in C, with multiplicities ku...,kr and ll9...Js

respectively, then

(ii) the sets [a x ] u . . . u [ar] and [b x ] u . . . u [bJ are disjoint,

(iii) T!}= i M ; ~ SJ= i 'j^j m o c ' ^*

As promised in §3.6, we now show that these conditions are not only
necessary but also sufficient for the existence of/; this is in contrast with
the situation for rational functions on the sphere, where conditions corres-
ponding to (i) and (ii) are necessary and sufficient.

Theorem 3.13.1. Let [ a j , . . . , [ar] and [ 5 J , . . . , [bs] be elements of C/Q
for a lattice fl, and letkl9...,kr9ll9...,lsbe positive integers. If conditions (i)9

(ii), and (iii) hold, then there exists an elliptic function feE(Q) with zeros of
multiplicity kj at each [aj\, poles of multiplicity lj at each [fcj, and no other
zeros or poles.
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Proof. Let u l 9 . . . ,un be the elements al9...,an each a} being listed k}

times, so that n = £ '= t /c,-; similarly let t^,... , vn be the elements ftx,..., ft$,
counting multiplicities /;. Then condition (iii) takes the form

and there is no loss in replacing ux by ux + co so that (iii) now gives

£",= I vj. (3.13.2)

Now consider the function

J{) a(z-v1)...<r(z-vn)'

Since o(z) is an analytic function,/(z) is meromorphic. By (3.12.6) we have

o{z - Uj + a)i) = ~(j(z- Uj)exp(iy£(z - Uj + ^co,)) (; = 1 , . . . , n; i = 1,2),

and similarly for a(z — Vj + CDJ, SO for i = 1,2 we have

(-l)"exp( i ^ )
y = ± ( J(z)

n

using (3.13.2). Thus/(z) is doubly periodic with respect to Q, and hence
f(z) is elliptic. Applying Theorem 3.8.7 to the infinite product (3.9.5) for
o(z\ we see that a(z) has simple zeros at the lattice-points zeQ and that
cr(z) # 0 for z^Q. Hence the zeros and poles of/(z) are at [fli],...,[flr]
and [ b j , . . . , [ b j with multiplicities ku...,kr and lu...Jsrespectively. •

If g is any other elliptic function with the same zeros and poles as / ,
then by Theorem 3.6.6, g(z) = cf(z) for some constant c / 0.

3.14 The construction of elliptic functions with given principal parts

It is possible to construct a rational function on Z with any given finite
set of poles and with any given principal parts at those poles. That this
is not possible for elliptic functions on C/Q is shown by Theorem 3.6.2
which imposes a constraint on the residues at these poles. Specifically, if
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an elliptic function/ has s distinct classes of poles [ftx] , . . . , [fts] in C, with
principal part

V a^J (3.14.1)
fct^i (Z - ftj)k

at each ft, (1 ^ ; ^ s), then

J>i,; = 0. (3.14.2)

The main result of this section is that (3.14.2) is not only necessary but
also sufficient for the existence of an elliptic function f(z) with principal
parts given by (3.14.1). First we need the following lemma.

Lemma 3.14.3. Let cl9...,cs be complex numbers. Then g(z) =
Zj=ic./C(z — bj) is elliptic if and only I / £ J « I C J = O.

Proof Since ((z) is meromorphic, so is g(z). If coeQ, then by (3.12.1)
s

g(z + a))= Y, Cj£(z + Q> — bj)
7 = 1

s s

where ?7 = mrjl + M?72 for <y = mcOi + nco2. By Legendre's relation (3.12.3)
at least one of r\u r\2 is non-zero, so rj ^ 0 for some co # 0, and hence g(z)
is elliptic with respect to Q if and only if £ J - x c ; = 0. •

Theorem 3.14.4. Let bu...9bs be complex numbers, mutually non-
congruent with respect to the lattice Q, and let ll9...Jsbe positive integers.
If akJ are complex numbers (1 ^ fc< / j , 1 ^ j ^ s ) such that (3.14.2) holds
and aljtj^0for each j , then there exists an elliptic function feE(Q) with
poles at [fti],...,[ftJ, the principal part at bj being as in (3.14.1).

Proof We define

/(*)= t t akJFk(z-bj). (3.14.5)

where Ft = f, F2= P, and for fc ^ 3, Fk(z) is the elliptic function
S J z - c o ) " * constructed in Theorem 3.9.3. Now Y)^ialJFl(z-bj) is
elliptic by (3.14.2) and Lemma 3.14.3, and since Fk is elliptic for each k ^ 2
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it follows t h a t / is elliptic. Each Fk has a single class of poles of order /c,
at the lattice-points coeQ, the principal part at 0 being z~\ so it follows
that the poles of/ are at [bj ] , . . . , [b ;] , the principal part at bj being given
by (3.14.1), using the fact that alj%j # 0. •

If g is another elliptic function with the same poles and principal parts as/ ,
then Theorem 3.6.5 implies that g differs from / by an additive constant.

Now let V=V(ll9bl; /2,b2;...;/s,bs) be the set of all elliptic functions
(with respect to Q) which are analytic on C\([b 1 ]u . . .u[fe j ] ) and which
are analytic or have poles of order at most lj on each class [fc7], 1 < ; ^ s.
Hf,geV then f + geV and cfeV for all constants ceC, so V is a vector
space over C.

Theorem 3.14.6. V has dimension lx + ... + ls over C.

Proof. By the proof of Theorem 3.14.4, and the remark following it, the
most general form for an element g of V is given by g = / + c, where ceC
a n d / is as in (3.14.5), the constants akj being arbitrary apart from the
relation (3.14.2) (we allow atjj = 0, so that g may have a pole of order less
than lj at [b,]). It follows that V is spanned by the lx + ... + ls — s functions
Fk(z - bj) (2 < fc < /j, 1 <7 ^ s), the s - 1 functions Fx(z - bj) - Fx(z - bx)
( 2 ^ ; ^ 5 ) , and the constant function 1, so that V has dimension at
most /j + ... + /s. By considering their principal parts it is easily seen that
these functions are linearly independent over C, so they form a basis for V
and hence V has the required dimension. •

For example, a basis for V= K(2,0) is given by {P, 1}; thus dim V= 2,
and the most general elliptic function with poles of order at most 2 on Q
(and analytic on C\fl) has the form a p(z) + c, with a,c arbitrary elements
ofC.

We can consider Theorem 3.14.6 as a statement about spaces of mero-
morphic functions on the torus C/Q. As such, it is closely related to the
important Riemann-Roch theorem, which gives information about the
dimensions of spaces of meromorphic functions defined on compact
Riemann surfaces (see, for example, Springer [1957], Chapter 10).

3.15 Topological properties of elliptic functions

We saw in §1.5 that a rational function / : ! - • £ of degree d>0 may
be regarded as a d-sheeted branched covering of the Riemann sphere I
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by itself. Now suppose that a function /:C-» I is elliptic with respect to
a lattice Q and that / has order N > 0. Then / induces a function
/ : C/Q -> I by/( [z]) = /(z) for each [z] eC/Q, and we shall see that/is an N-
sheeted branched covering of the sphere Z by the torus C/Q.

Suppose that aeC, and/(a) = e e l with multiplicity k. If 1/ is any neigh-
bourhood of a, sufficiently small that no two points of U are congruent
mod Q, then as shown in Fig. 3.18 the projection p:£ ->C/Q, zi-+ [z], maps
17 homeomorphically onto a neighbourhood 0 of [a] in C/Q (such a neigh-
bourhood 1/ exists since Q is discrete). The arguments used in §1.5,
applied to U, show that / is an open mapping and is locally /c-to-one at
a; using the homeomorphism U -> 0 we see that / is an open mapping and
is locally fc-to-one at [a].

Fig. 3.18

c/n

The branch-points of/ are the points of multiplicity k> 1, that is, the
zeros of/' and the multiple poles (if any) of/. Since / a n d / ' are mero-
morphic, these sets are discrete and therefore finite (by compactness of
C/Q). The arguments of §1.5 show that away from the branch-points,
/ is a covering map, the number of sheets being | / " l ([a]) | = N by Theorem
3.6.4. If we include the branch-points then we see that / is an N-sheeted
branched covering of the sphere I by the torus C/Q.

For example, let / be Weierstrass' elliptic function P. Then N = 2, so
P is a 2-sheeted branched covering of I by C/Q. By Theorem 3.10.7, fp'
has three congruence classes of zeros, namely [ ia^] , [ia>2] and [|co3],
where {w1,a>2} is a basis for Q and 0)3 = 0^+ a>2. The multiplicity k of
P at each of these zeros must satisfy 1 < k ^ N = 2, so k = 2. There is a
single congruence class of poles of (?, namely [0] = Q, these poles having
multiplicity k = 2. Hence P :C/Q-^I has four branch-points of order
/c — 1 = 1, these being the classes [ico] for a>eQ.

We can visualise P as follows. Let P be the fundamental parallelogram
for Q with vertices i( ± a)j ± co2), so that 0 is the centre of P. Now P is
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even and of order N = 2, so if zl9 z2eP then ^(z^ — @(z2) if and
only if z2 = ± zx, the corresponding condition for points zl9z2edP being
z2~ ±zx. Hence the image @(C/Q) = P(C) = P(P)may be obtained from
P by identifying each point zsP with — z, and each point zeSP with
the points in [ ± z~\ndP. Now the transformation p\z\-+ — z is a rotation of
P about 0 by an angle n (see Fig. 3.19), and since p maps congruent pairs
of points in dP to congruent pairs, p induces a map /) from the torus C/Q
to itself, given by p([z]) = [p(z)] = [ — z]. The fixed-points of /) are the
classes [z] = [ - z], that is the classes satisfying [2z] = [0] = Q, so these
are the four branch-points Qco] of P. We can visualise C/Q as a torus

Fig. 3.19

Fig. 3.20

c/n

Fig. 3.21
H

Fig. 3.22
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in R3, with p represented by a rotation through an angle n about an axis
meeting C/Q in these four branch-points (see Fig. 3.20). As shown in
Figs. 3.20 and 3.21, we may divide C/Q into two halves H and p(H\ which
are interchanged by p and which meet across the two circular boundary
components Cx and C2 of if. Each point in C/Q is equivalent under p
to a unique point in /f, except that for each f = 1,2, points on Ct are
equivalent in pairs. We therefore obtain the quotient space P(C/Q) from
H by identifying pairs of points on Cx u C2 as indicated by the arrows in
Fig. 3.21. The resulting space (Fig. 3.22) is homeomorphic to a sphere, as
we must expect since $(C/Q) is the Riemann sphere Z. To sum up, the
effect of 9 on C/Q is to identify each class [z] with [ — z]; since the
rotation p has the same effect, the image $ (C/Q) is just the quotient space
under the action of /5, and this is homeomorphic to a sphere. We shall
return to this branched covering map in §4.9(iv), where we show
that if p(z) is a cubic polynomial with distinct roots, then the Riemann
surface of the equation w2 = p(z) is a torus, a two-sheeted covering of Z
with four branch-points.

3.16 Real elliptic curves

We have seen that # satisfies a differential equation (P')2 = P(#)* where
p(x) is the cubic polynomial 4x3 — g2x — g3i so every point teC/Q
determines a point (P(t), <P'(t)) on the elliptic curve

We can think of E as the graph of the equation y2 = p(x), for x,)/eZ. As
a subset of Z x Z, E has a natural topology; the next result shows that E
is homeomorphic to a torus.

Lemma 3.16.1. The map 0:C/Q -• £, fh* (@(t\ p'(f)), is a homeomorphism.

Proof. The points f = [0], [ i ^ j ] (and no others) are mapped by 9 to
(oo,oo) and (ej90) respectively, for 7 = 1,2,3. For each remaining point
(x,y)e£, we have x^co,e} and y 7* 00, 0; since P is even and of order 2,
with a simple point at each t # [0], [ia>,], it follows that for each
x ^ o o , e 7 there are two distinct solutions r = ± 1̂ of P(0 = «̂ Now
P'(t J = - P'( - ft) ^ P( - tj), so P'(rj) and P'( - t t ) take the two values
of V P ^ O )

 =
 \JP(X)>

 anc* o n e °f these values is y. Thus there is a unique
r( = tx or - f,) in C/Q satisfying 0(f) = (x,y), so 0 is a bijection.

Being meromorphic and not constant, Q and Pf are continuous open
functions, and hence so is 0, so 0 is a homeomorphism. •
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A>0(sog2>0)

A<0, g2>0, g3>0

A<0, g2<0
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This embedding of a torus C/ft, as a subset E of a product I x l o f two
spheres, is rather hard to visualise, and we shall return to it in §4.9 (iv), when
we construct the Riemann surface of the equation y2 = p(x). For the time
being, we shall concentrate on the 'real points' of E, those for which x, yeU,
under the extra assumption that the coefficients g2,93 of p(x) are real.
Assuming this, we define the real elliptic curve £R to be {(x,y)eU2\y2 =
p(x)}, the graph of y2 = p(x) as an equation between real variables.
Clearly £R is symmetric about the x-axis of R2, and other properties of ER

are easily found by sketching the graph of p(x) and then taking square roots
whenever p(x) ^ 0. For example, being a real cubic polynomial with no
repeated roots, p(x) has one or three real roots, as the discriminant A =
g\ — 27g\ is negative or positive (this can easily be seen by considering the
stationary points of p(x)); the curve JER then has one or two components
respectively as shown in Fig. 3.23, the curves on the left representing
y = p(x\ those on the right y2 = p(x).

First we examine the conditions under which the coefficients #2>03 a r e

real. We define £ meromorphic function/: C -• Z to be real if/(z) =/(z) for
all zeC (where do is interpreted as oo). We define a lattice ft to be real
if H = ft (where fi denotes {6J\(OEQ.}).

Theorem 3.16.2. The following conditions are equivalent:

(0 02,03eR;
(ii) GkeUfor allk^3;

(iii) P is a real function;
(iv) ft is a real lattice.

Proof (i) =>(ii). Differentiating (<P')2 = 4 #3 - g2 P - g3, and then dividing
by 2 F (which is not identically zero), we have

r = 6 P 2 - —. (3.16.3)

Now by (3.10.3), P (z) has a Laurent expansion

z- 2 + f anz2\

valid near z = 0, where

The coefficient of z2n in the expansion of Q"(z) is therefore (2n + 2)
{In + l )a n + 1 , while the coefficient of z2n in P(z)2 is 2an+l +£r+s = naras .
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Equating coefficients in (3.16.3) we therefore have, for each n ^ 1,

and hence

aras.

For n ^ 2 we therefore have

e x p r e s s i n g a r t + 1 in t erms of a ! , . . . , a n . T h u s

3ai), etc.

By induction on n, we see that each coefficient an is a polynomial in ax and
a2, with rational coefficients. Using an = (2n+ l)G2n+2> 02 = 6OG4, and
<73 = 140G6, we see that each Gk (k even, k ^ 4) is a polynomial in #2

 anc^ ^3
with rational coefficients, so if g2 and g3 are real then so is Gk; since Gk = 0
for all odd /c, (ii) is proved.

(ii)=>(iii). If Gk€R for all k ^ 3, then the coefficients of the Laurent series

arefor P(z) are real, so P(z)= P(z) near z = 0. Now P(z) and
meromorphic functions, identically equal on a neighbourhood of 0, so they
are identically equal on C by Theorem A.8. Thus P is a real function.

(iii)=>(iv). Let coeQ. Then P(z + co) = P(z + 0) = ~P(f) = P(z) since P is
real and has a; as a period. Thus d)eQ, so f i ^ Q. Taking complex
conjugates, we have fi = ftcn, soQ = H and Q is real.

(iv)=>(i). This follows immediately from ^2
 = 60X!wco~4 an<l 93=

"6- •
RFig. 3.24

01
b |

(0,

(i)
Q real rectangular

(ii)
Cl real rhombic
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This raises the problem of determining the real lattices. We say that Q is
real rectangular if Q = Q(co1,co2) where <ox is real and co2 is purely
imaginary, and that Q is real rhombic if ft = Q(col5 co2) where d>1 = co2. (The
fundamental parallelogram with vertices 0,co!,co2 and co3 = coj + co2 is
rectangular or rhombic respectively, hence the names; see Fig. 3.24.)

Theorem 3.16.4. A lattice Q, is real if and only if it is real rectangular or real
rhombic.

Proof If Q = il(a)lia>2) is real rectangular, with co1eU and co2eiR, then
fi = Q(a)1,d>2) = Q(a>1, — a>2) = Q(a;1,co2) = 0 , so Q is real. A similar
argument applies to real rhombic lattices.

Conversely, suppose that Q is real. If coeCl then co + co, co — coeft, so Cl
contains both real and purely imaginary elements, and these form discrete
subgroups QnR = AZ and n n i R = /iiZ for certain A,/*eR, A,/z>0.
Clearly ft 3 XZ 4- /i/Z, and if we have equality then Q is real rectangular
since {A,pi} is a basis. Hence suppose that there exists coeCl\(AZ + /xiZ).
By adding a suitable element of XZ + /xiZ to co we may assume that
0 ^ Re(co) < X and 0 ^ Im(co) < \i. Now

2co = (co + (I>) + (a> — co),

with co-hcoeftnlR = XZ and co — coeftni'IR = /iiZ, so we have

2co = mX 4- n/iJ

for integers m, n, and the conditions on Re(co) and Im (co) force m and n to
take the values 0 or 1. Since co is neither real nor purely imaginary, we must
have m = n = 1 and so co = \(X +111). Thus every element of Q\(XZ -I- \iiT)
has the form

for integers a,fc, while every element of XZ + /11Z has the form

Thus Q = Q(£(A 4- ̂ 0» i(>- — M0)» which is real rhombic. •

Theorem 3.16.5. Let Clbe a real lattice. Then the real elliptic curve £R has
one or two*components as Q is real rhombic or real rectangular respectively.

Proof Since £R is the graph of y2 = p(x), we can count its components by
counting the roots of p(x\ that is, the points (x,y)eR2 for which y =
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P'(z) = 0 and x = &(z)eU for some zeC. Since p(x) is a cubic polynomial
with distinct roots, there are one or three such points, and ER has one or two
components respectively. The only solutions of P'(z) = 0 are of the form
z~±(Oj(j= 1,2,3), so it is sufficient to determine which of ej=fp(^a)j)
are real.

Suppose that Q = Q(co1,co2) is real rectangular, with coleU and oj2eiU
(see Fig. 3.25). Since V is real, P(R)c Ru{oo}, so ex= PifaJeR. If
ze$co2 + R then z = z - co2 and hence P(z) = P(z - co2) = P(f) = Q(z), so
P (z)eiR; in particular, putting z = ^cy2, i

w 3 w e 8e t ^2>^3e^- Thus p{x) has
three real roots, so £R meets the x-axis in three points el9e2,e3 and hence
has two components, one unbounded, containing (el50), corresponding to
zeR, the other bounded, containing (e2,0) and (e3,0), corresponding to
ze\co2 + R (see Fig. 3.26).

Fig. 3.25

CD./2

-co2/2l F

-©2/2 + R

Fig. 3.26

Fig. 3.27
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If Q = Q(co1,co2) is real rhombic, with cbi = co2, then again we have
P ( R ) g i u { o o } and so e3eU. Now \(b1=jco2, so e2 =

 <P(?o>2) = ^(2^1)
= Qtyoii) = ex; since ^ and e2

 a r e distinct, neither of them can be real, so
p(x) has a unique real root, and £R has just one component, meeting the x-
axis at (e3,0), and corresponding to zeU (see Fig. 3.27) (Also see Du Val
[1973] and Ailing [1981]).

3.17 The addition theorem

A function / is said to possess an addition theorem if there is an identity
between f(zx\f(z2) and / (z t -I- z2) of the form

R(f(zi\f(z2\f(zi + z2)) = 0 (3.17.1)

for all zl9z2, where R is a non-zero rational function (with complex
coefficients) of its three variables; if we multiply (3.17.1) by the denominator
of R then we may assume that R is a polynomial.

The first important examples of addition theorems which we meet are
those involving the exponential and trigonometric functions, for instance

exp(zx +z 2 ) = exp(z1).exp(z2) (3.17.2)
and

tanzi + tanz2

tan(zx + z2) = — — i — ^ - ,
1 — tanzr. tanz2

both of which are equivalent to identities of the form (3.17.1). We obtain
an addition theorem for the sine function from

sin(z! +z 2 ) = sinz1.cosz2 + sinz2.cosz1

by putting cosz — ^/O -sin2z7) for j= 1,2 and then squaring twice to
eliminate square roots; similar techniques may be applied to the other
trigonometric functions.

The rational functions also possess addition theorems (though in this
case (3.17.1) is generally neither obvious nor particularly useful). lff = p/q
is a rational function of z, with p and q polynomials, then

g{u) = p(u)-f{zi)q(u\
h(v) = p(v)-f{z2)q(v),

and

k(u, v) = p(u + v) -f(zl 4- z2)g(u + v)

are polynomials in u,v, and in u and v respectively, with coefficients of
the form a + bf(zx\ a + bf(z2) and a + bf{zx + z2) for various constants
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a,b obtained from the coefficients of p and q. Moreover, the equations

1 = 0,

(3.17.3)

have a common solution atu = zl9v = z2. Now a necessary and sufficient
condition for two polynomial equations s(u) = 0 and t(u) = 0 to have a
common solution u is the vanishing of a polynomial in the coefficients of
5 and t called their resultant (see Appendix 3). Thus we may eliminate u
between g(u) = Q and k(u,v) = Q to obtain the resultant polynomial l(v\
and then we may eliminate v between l(v) = 0 and h(v) = 0 to obtain an
addition theorem of the form (3.17.1). For example, if/(z) = z/(z + 1) then
g(u) = u -f(zx)(u + 1), etc., so equations (3.17.3) take the form

"(l-/(zi))-/(zi) = 0,

v(l-f(z2))-f{z2) = 0,
(u + v)(l -f(zx + z2)) -f(zx + z2) = 0,

and eliminating u and t; we have the addition theorem

(The elimination of w and v is usually much harder to perform when/has
degree greater than 1.)

A similar argument, also using the addition theorem (3.17.2) for the
exponential function, shows that if O)EC\{0} then any rational function of
exp (2niz/(o) has an addition theorem; taking o = 2n we get the addition
theorems for the trigonometric functions.

We shall now show that elliptic functions have addition theorems; in
fact the development of the theory of elliptic functions can be traced back
to the investigations of C.G. Fagnano and L. Euler in the eighteenth
century into the addition theorems of certain elliptic integrals. Conversely,
a deep result of K. Weierstrass shows that a meromorphic function with
an addition theorem must be a rational function, a rational function of
cxp(2niz/(o) for some a> # 0 , or an elliptic function with respect to some
lattice (see Forsyth [1918], Chapter xm); this illustrates the strong
links between the rational, simply periodic and doubly periodic functions
we have considered so far in this book.

We first show that Weierstrass' function j? has an addition theorem;
it is convenient to do this by considering the group structure on the elliptic
curve E.

We have seen in Lemma 3.16.1 that there is a bijection 0:t\->( P(t)y



The addition theorem 117

from the torus C/Q to the elliptic curve £ = {(x,y)eE x l.\y2 = p(x)}. Since
C/fi is a group we can use 8 to impose a group structure on £:if P 7e£
for ; = 1,2 then we define Px + P 2 t o b e 0(t1 +12) where P, = 6(tj); thus
0:C/I2->£ is an isomorphism. For example, the zero element of E is
0([O]) = (P(O), P'(0)) = (cx),oo)randifP = (x,y) = («>(r), P'(t))e£ then the
inverse of P is - P = (P( - f), P'( - r)) = (P(r), - P'(t)) = (x, - y), so taking
inverses corresponds to 'reflection in the x-axis\

It is a little harder to describe addition in E in terms of the coordinates
x, y. Let Pj = (x,, yj) = 0(tj)eE for; = 1,2, so Px + P2 = 0(tl +12). To avoid
trivial cases, we assume that Pu P2 and Pi + P2 are non-zero in £, that
is, tl912, rx + f2 # [0]. Now suppose that we had an elliptic function g of
order 3 with a triple pole at [0] and simple zeros at tx and t2 (or a double
zero at tx if tx = t2); then # must have a third zero at t3eC/fl where
*! +1 2 + 1 3 = [0] by Theorem 3.6.7, so putting P3 = (x3, .y3) = 6{t3) we get
Px -h P2 -h P3 = 0 and hence Px+P2= - P3 = (x3, - >>3). (Notice that our
hypotheses about tt and r2 guarantee that none of the zeros tj coincides
with the pole [0], and that f3 / tl9t2.) We now show that such a function
g exists.

Consider the function
g{t)=P'(t)-*P(t)-fi (3.17.4)

for suitably chosen constants a, j?eC. Certainly, any function of this form
has order 3, with a triple pole at [0]. Suppose first that tx ̂ t2. Then g
will have the required zeros provided that

that is,
yj = *xj + p (3.17.5)

for 7 = 1 , 2 ; since tx # ± t2 and tl9 t2^ [0], we have xx and x2 distinct
and finite, so there exist a, jSeC satisfying (3.17.5). Since g{t3) = 0, (3.17.5)
holds for; = 3 also, and thus the points Pu P2 and P3 are collinear in
C x C. Putting P3 = (iP(tx + r2), - Q\tx -h t2)) we deduce from this that

2 0,
Pih+t2) -

which is valid also when tl = t2. Expanding this determinant, we have a
form of addition theorem involving P' as well as P.

We now show that # has an addition theorem of the form

*(P('i). P(*2). P('i + '2» = 0 (3.17.6)
for some rational function R; we do this by calculating the coefficient a
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in (3.17.4) in t w o different ways . Firstly, if tl^t2 then (3.17.5) impl ies that

a = ^ ^ - . (3.17.7)
* l - * 2

Secondly, using y) — p(Xj) and y} = axj + /? we obtain

^ - ( a x ^ / J ^ O

for; = 1, 2, 3, so that xlt x2 and x3 are the roots of the cubic polynomial

p(x) - (ax + pf = 4x3 - a2x2 - (g2 + 2a)8)x - fo3 + /?2).

The formula for the sum of the roots of a polynomial now gives

a2

x, + x2 + x3 = j , (3.17.8)

so that using (3.17.7) and 9{tl + t2) - *Q( -13) = <?(t3) = x3, we obtain

valid for tx,t2,tx ±t2 # [0]. This is usually referred to as the addition
theorem for £>, though strictly speaking we should now use ( Q')2 = p(@)
to eliminate the derivatives and get an equation of the form (3.17.6). For
each fixed t2 ¥" [0], equation (3.17.6) is valid for all tx ^ [0], ± t2; we can
regard RiQitJ, %\t2)9 P(rj +12)) as an elliptic function of tl9 continuous
as a function C/Q-*Z, so by taking limits as tx approaches each of these
exceptional values we see that (3.17.6) is true for all tx and for all t2 / [0];
now fixing tx and letting t2~>[0] we see that (3.17.6) is true for all tl9

t2eC/Cl. As an example of this limiting process, if we fix t2(= u say) and
let tx-+t2 then we get the duplication theorem

K ) 2 (3"mo)
(see Exercise 3T). Alternatively, we can modify our proof of the addition
theorem to prove (3.17.10): when ^ = ^(=0* w e n e ed the function
g=&f-(xP-p to have a double root at t, so that ®"(i) - a &'(t) = 0, that
is, a = Q"(t)/ *?'(t), and now (3.17.10) follows from (3.17.8).

Returning to the group-structure of £, we see that Px + P2 is the point
(x3, — y3)eE where

... .... (3.17.11)
^ \ X 1 ~~ X2 ,



The addition theorem 119

= ax3

xl-x2

We have

with

and so

y =
 (*3~~ X2)yi-(x3-*i)y2 (3.17.12)

X1-X2

This shows that the coordinates of Px 4- P2 may be expressed as rational
functions (with rational coefficients) of the coordinates of Px and P2;
similarly inversion (x,)>)h*(x, —y) is expressed rationally, so £ is an
example of an algebraic group (see Borel [1956]).

Now suppose that Q is a real lattice (see §3.16). If we adjoin the zero
element (oo, oo) of £ to the real elliptic curve £R = {(x, y)e£|x, yelR}, then

£R = £Ru{(oo,oo)}

is a subgroup of £, since by the previous paragraph it is closed under the
group operations. Given Px ^ P2 in £R, we can find Px + P2 by using the
collinearity of P1? P2 and P3: we take the straight line y = ax + fl through
Pj and P2, find its third intersection P3 with £R, and reflect this in the x-axis
to get Px + P2 = - P3 (see Fig. 3.28). If Px = P2 then we take the tangent to
£R at Px and proceed as before.

A similar argument shows that if g2, g3eQ then the 'rational elliptic
curve'

£Q = {(x,y)eE\x,yeQ}v{(ao9ao)}

is a subgroup of £; this is of great importance for the number-theoretic

Fig. 3.28

/>,+/>2=_P3
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problem of finding solutions x, yeZ of y2 = p(x) (see Mordell [1969], and
Lang [1978]).

Finally, we fulfil our promise to show that every elliptic function / has an
addition theorem. By Theorem 3.11.2 there is a polynomial <D of two
variables such that OH*3,/) = 0. If we eliminate Q(zx\ P(z2) and P(zx + z2)
from the equations

then we get a polynomial identity between / ( z j , f(z2) and /(zx + z2), that
is, an addition theorem for / .

EXERCISES

3A. (i) Show that Z[i] = {m + m|m,neZ} and Zlp~] = {m4-np\m,neZ}, where
p = i( - l + J - 3) is a cube root of 1, both form discrete subgroups of C.

(ii) Show that £ [ ^ 2 ] = {m + n v/2|m,neZ} is a subgroup of C but that it is
not discrete.

3B. Use Theorem 3.2.2 to show that if Q is a discrete subgroup of R" then there
exists c^efiXlO} with least positive value of \(ot\9 where \co\ denotes the
Euclidean distance of o from 0. (This can be used to shorten the proof of
Theorem 3.1.3.)

3C. Show that a non-constant rational function cannot be periodic.
3D. Using the ideas presented in §3.3 find the Fourier series expansion for

cosec 2nz valid in the region {z|Imz > 0} and also the Fourier series expansion
valid in the region {z |Imz<0}.

3E. Show that aa>2 + ba>l eQ(o)l9 o)2) can be an element of a basis for Q(colf co2) if
and only if a and b are co-prime, or a = ± 1 and b = 0, or a = 0 and b = ± 1.

3F. Find the Dirichlet regions for the lattices Z[i] and Z[p] of Exercise 3A.
3G. An automorphism of a lattice Q is a bijection a:Q -> Q such that <x(u + v) =

a(u) + a(y), for all w, ueO. Prove that if co\-+ ka)(coeQ) is an automorphism of
O then

A=±l,±i,i(l±V-3) or i(- l±V-3).

(Hint: Show that A has modulus 1 and, using §3.4, is an eigenvalue of a 2 x 2
integer matrix with determinant ±1.)

3H. Use 3G to obtain the 'crystallographic restriction' (Coxeter [1969], §4.5): the
only possibly finite orders, greater than one, for an automorphism of a lattice
are 2,3,4 or 6. Show that every lattice admits an automorphism of order 2 and
describe the lattices that admit automorphisms of orders 3, 4, or 6.
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31. Verify the claim, made at the end of §3.7, that ££=-oo(z- n)~2 converges
normally (and hence uniformly and absolutely) on all compact subsets of C\Z
and so represents a meromorphic function with period 1.

3J. Let h(z) = n2 cosec2 nz - £n°°= _ Jz - n) ~ 2.
Prove the following:
(i) h(z) has period 1;

(ii) h(z) has a finite limit at z = 0 and hence, by periodicity, at all the integers.
Thus h(z) is continuous and |Ji(z)|^M for all ze[0,1] and hence, by

periodicity, \h(z)\ ̂  M for all real z. Show that

and deduce that M = 0 and hence

n2 cosec2 nz = ]T (z — n) ~ 2.
11= - 00

3K. Use 3J and the ideas of §3.8 to verify that

1 £ ( l * \
- + V + = n cot nz
z n = l\z-n z + njand

z I I I 1 \ = nsmnz.

3L. Give a direct proof (using the ideas of the proof of Theorem 3.9.3) that
defined by the series (3.9.4), is an elliptic function.

3M. If / is an elliptic function of order m > 0 show that / ' is elliptic and that its
order n satisfies m + 1 ^ n < 2m. Give examples to show that both bounds are
attained.

3N. Let / be elliptic with respect to a lattice Q, and suppose that / has order m. Let
A be the set of points ceCu{oo} for which f(u) = c has less than m distinct
solutions. Prove that A is a non-empty finite set. Interpret this result in terms
of the projection map /:C/O-»>Z introduced in §3.15.

3P. Prove that

2a(z -

where co3 = — (ov — co2- (Hint: Compare the zeros and poles of both sides and
also their behaviour near z = 0.)

3Q. If p(zj) = #(z2) show that z^^ ±z2 mod Q.
3R. Let g be elliptic with respect to 0(0^, co2). Suppose that all points of the form

tyjKOi + qoy2) where p and q are integers, p + q odd, are zeros of order one of g,
and that g has no other zeros. Suppose that all points of the form 2(

r(ai + SW2)»
where r and s are integers, r + s even, are poles of order one of g, and that g has
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no other poles. Prove that g(z) is a constant multiple of

3S. Let 6j, b2 be two complex numbers which are not congruent modQ. Write
down a function which is elliptic with respect to Q and has poles at blt b2 with
principal parts

1 2 - 1

z-b, (z-b,)2 z-b2

respectively.
3T. Show in detail how the duplication theorem (3.17.10) follows from (3.17.9).
3U. Prove that

<j(v- u)o(v + u)

o2(u)o2(v)

By taking logarithmic derivatives with respect to u deduce that

Hence show that

and deduce the following 'addition theorem' for <p:

c ( V'(u)- iP'(v)\
( —— —

2du\



Meromorphic continuation and
Riemann surfaces

So far in this book, we have taken a particular surface 5 (usually the
Riemann sphere I or a torus C/Q) and have considered the functions
which are meromorphic on S (in these particular cases, the rational and
elliptic functions). In this chapter we will reverse the process: we take a
function /, and consider what is the most natural surface to take as the
domain of definition of /. Two particular problems arise:

(i) If/is meromorphic (or analytic) on some region D ^ £, can we extend /
to a function which is meromorphic (or analytic) on some larger region
EZDDI

(ii) If/is a so-called 'many-valued function' (such as ^/z or log(z)), can we
represent / by a single-walued function on some suitable domain?

To solve problem (i) we introduce the concepts of meromorphic and
analytic continuation, and we then show how this leads to the construction
of Riemann surfaces, the 'suitable domains' in problem (ii). After examining
in detail some of the surfaces which arise in this way, we then show how
Riemann surfaces may be defined abstractly (as objects in their own right,
independent of many-valued functions), and finally we investigate some
of the topological properties of these surfaces.

4.1 Meromorphic and analytic continuation

Recall that a region is a non-empty open subset of £ which is connected
(or, equivalently, path-connected). We define a function element to be a
pair (£>,/) where D is a region and / : £ - • ! is a (single-valued) mero-
morphic function on D. In some books, where the emphasis is on analytic
functions, one requires that / should be analytic on D; under these
circumstances we shall call (Z), / ) an analytic function element For example,
if / is any rational function then (£, / ) is a function element; if @ denotes
the open unit disc {zeC| \z\ < 1} (a convention we will retain throughout
this chapter), and if f(z) = ^?=oz

n, ^ e n (®>/) ls a n analytic function
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element. In both of these cases, the domain D was chosen to be the largest
on which / is meromorphic or analytic, but this need not always be the
case - it is often convenient to restrict attention to some smaller region,
such as \z\ < % for ^Loz

H f°r instance.

Lemma 4.1.1. Let (Z), / ) and (D, g) be function elements defined on the
same region D. Iff= g on some non-empty open subset U of £>, then f= g
on D.

Proof The function h =f— g is meromorphic on D, and its poles form
an isolated set h~l(co\ so the set D' = D\h~ l(oo) is non-empty, open and
path-connected, that is, D' is a region on which h is analytic. We have
h = 0 on the non-empty open subset U' = Ur\D' of D\ so by choosing a
sequence of points znsV converging to a limit z*eU\ and by applying
Theorem 1.3.1 to h, we see that h = 0 on D'. Each pole of h is a limit of
points in D\ so by continuity (since h is meromorphic) we have /i = Oon
D, and hence / = g on D. •

Thus a function element (Z),/) is determined by the behaviour of /
near any given point aeD, since we can take U to be a neighbourhood
of a in D.

Corollary 4.1.2. / / ( />i , / i ) is a function element and D2 is a region with
DinD2 # 0 , then there is at most one meromorphic function f2 on D2 such
that fx = / 2 on DxnD2 (as illustrated in Fig. 4.1).

Fig. 4.1

Proof. Suppose that f2 and g2 are meromorphic on D2 and are identically
equal to / t on U = DxnD2. Then f2 = g2 on U, and U is open since Dt

and D2 are, so / 2 = g2 on D2 by Lemma 4.1.1. •

When such a function f2 exists, we call the function element (£>2, / i ) a

direc* meromorphic continuation of(Du fx\ or a direct analytic continuation
if /2 is analytic; in either case, we write (Dl9fx) ~(D2if2\ meaning that
DxnD2^0 and fx = / 2 on DXnD2. We then have a function element
(Dyf) where D = D1uD2 and /(z)=//<z) for zeD^ (this is unambiguous
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for zeD1nD2). For example, consider Dx=9 and fi(z) = ^=oz
n; the

function /2(z) = (1 — z)"1 is meromorphic on D2 = S, and satisfies fx = / 2

o n D 1 n D 2 = ^ , s o ( D 1 , / 1 ) ~ (D2, / 2 ) , giving a direct meromorphic conti-
nuation onto Z. By Corollary 4.1.2, this continuation is unique.

The relation ~ between function elements is reflexive and symmetric,
but not transitive. For example, if Dxr\D2 ^0 ^D2nD3, then it does
not follow that DlnD3=£ 0 , and even if DxnD3 ^ 0 then it does not
follow from (Du / t ) - (D2, f2) ~ (D3, f3) that fx =f3 o n ^ n £>3. The most
familiar example of this behaviour involves the logarithm function (which
we will examine in more detail later in this section): if Du D2 and D3 are
regions in C\{0} encircling the origin as illustrated in Fig. 4.2, and if fx

is a single-valued analytic branch of the many-valued function log(z) on
Dl5 then we have direct analytic continuations (D1? fx) ~~ (D2, f2) ~ (Z)3, / 3 )
but we find that / 3 = / t 4- 27ri on DlnD3, so that (D3,f3) is not a direct
analytic continuation of (D^/J.

Fig. 4.2 / , s / 2

Thus one function element (such as (Z)i,/i)) can sometimes give rise to
two distinct functions (here fx and / 3 ) on the same region; this illustrates
how repeated continuation of a sin^/e-valued function element can produce
a so-called many-valued function. Nevertheless, it is often possible to
construct a sequence of direct meromorphic continuations

( D 1 , / 1 ) - ( D 2 , / 3 ) - ( D 3 , / 3 ) - . . . .

in such a way that they give a single-valued meromorphic function on
(JnDn; we call this process meromorphic continuation (or analytic conti-
nuation if each /„ is analytic).

For example, we can construct the gamma-function T(z) in this way.
Consider the improper integral

= P
Jo

= lim I
fl-O+Ja

tz-le-fdt+ lim
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where zeC and the path of integration is along the positive part of the
real line. This integral converges as b-> + oo for all zeC, and it converges
as a -> 0 + provided Re (z) > 0 (by comparison with Jf* "1 dx9 for example,
where x = Re(z)). Thus fx(z) is defined on the region

D1 = {zeC|Re(z)>0}.

One can show that $o{d/dz)(tz~le~t)dt is uniformly convergent with
respect to z, so we may differentiate fx(z) with respect to z under the
integral sign. This shows that fx is analytic on Du so (Du fx) is an analytic
function element.

Integrating by parts, we have

so that fx(z) =fx(z + l)/z for all zeDv Now the function /2(z) =fx(z + l)/z
is meromorphic on the larger region

Z)2 = { z e C | R e ( z ) > - l } ,

since fx(z + 1) and z are analytic on D2. By direct integration, /j( l) = 1,
so f2 has a simple pole at z = 0. We have just seen that f2 = / i on the
region Dx a D2, so f2 is a direct meromorphic continuation of fx onto D2.

We now iterate this process. For each integer n ̂  1, let

and suppose that for some n ̂  1 there is a function element (Dm fn)
satisfying

for all zeDn. (We have seen that this is so for n = 1.) Then the function

is meromorphic onDn + 1 (since /n(z -f 1) and z are), and /„ + x =/„ on the
region DnczDn+u so / n + 1 is a direct meromorphic continuation of fH

onto Z)n+1, satisfying
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for all ze£>n+1 (both sides of this equation being equal to fn(z + l)/z).
We may therefore proceed by induction on n to obtain a sequence of

direct meromorphic continuations (Duf1)~(D2,f2)~-, with each /„
satisfying

for all zeDn. We define the gamma-function

r(z)=/B(z)

for zeDn9 this definition being unambiguous since if zeDmnDn then
fm(z) =/n(z). Thus T{z) is meromorphic on C = (J ®= x Z)w, and satisfies

for all ZGC. Since / x has a simple pole at z = 0, so does F, and hence it
follows from the above functional equation that F has simple poles at
z = - 1, — 2, Since these poles converge to oo, F is not meromorphic
on I .

Having dealt with this fairly straightforward example, we now return
to the logarithm function for a more detailed examination of some of the
difficulties involved in meromorphic continuation.

For each z6C\{0}, the values w of log (z) are the solutions of exp(vv) = z.
Putting z = reie, with r, Be R and r > 0, we see that w = ln(r) -I- id, where

ln(r) •£•
is the real-valued logarithm of r obtained by integration along 1R from 1
to r; there are infinitely many choices for 0, all differing by multiples of
27i, and we must arrange our function elements so that 0 is single-valued
on the chosen regions. The difficulty is that if the region D £ C\{0} encircles
the origin, then we cannot make a single-valued continuous choice of
0 = arg(z) on D. For example, suppose that D contains the unit circle
C = {zeC||z| = 1}, and that 0(z) is a continuous choice of arg(z) on C;
then the function <j>(z) = 0(z) + 0(z) is continuous on C, and since 0(z) =
— 0(z) + 2nn(neZ) we see that 4>(C) £ 2TTZ. NOW 0 is continuous and C is
connected, so </>(C) is a connected subset of 2nZ and is therefore a single
point 2nN, that is, 0 is constant on C. Then

which is clearly false since 0(1)G2TTZ and 0 ( - Y)e2nZ + n.
To avoid this difficulty, we will use a particular class of regions which
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do not encircle 0. Let J be any open interval

where a < /? ^ a + 2rc, let Dj be the region

Dj = {z = reie\r>0 and

and for each such zeDj let

Since J has length at most 2n, each zeDj determines a unique 0 = arg (z)eJ,
so / j is single-valued on Dj. Writing z = x + i>> one easily verifies the
Cauchy-Riemann equations for fy.

d ee d dd
— ln(r) = — and — l n ( r ) = - — .
dx dy dy dx

Thus fj is analytic on Dj9 so we have an analytic function element Lj =
(Dj9fj), representing a branch of log(z) on Dj.

For example, making J as large as possible we could take J = (— n, n)
so that Dj = C \ { z e R | z ^0 } . However, this is inconvenient for our
purposes since there is no direct analytic continuation of L, beyond Dy.
for instance, if (D, / ) is a direct analytic continuation with — 1 eD then
every neighbourhood U of — 1 in D contains elements z', z" with
Im(z/)>0>Im(z"), as shown in Fig.4.3; we have f(z') =fj(z')->in as
z' -• — 1, and f(z") =/J(z//) -> — I'TT as z" -• — 1, so / is not analytic (or even
meromorphic) at — 1. Similar problems arise at all points z < 0. Neverthe-
less, we can continue fj outside Dj by first restricting fj to a smaller
subregion of Dj. Let K be the interval (0, n), so that K c J and hence
DK a Dj and fK =fj on £>*, giving a direct analytic continuation Lj ~ LK.
Since DK is the upper half-plane, there are no points z"eDK close to the
line z < 0 satisfying Im (z") < 0, and there is no difficulty in continuing LK

across the negative real line.

Fig. 43

This suggests that it is wisest to use intervals J of length strictly less than
In. Let DAy DB and Dc be the open half-planes corresponding to the
intervals
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Fig. 4.4 DB

DBnDc

C = \-r,-r- -

DAnDB

DA

DcnDA

as shown in Fig. 4.4, and let LAi LB and Lc be the corresponding branches
of log (z). Now DAr\DB^ 0 , and for z = rei0sDA n DB we have OeA n £ =
(TT/6, 7r/2), SO /^ (Z) = In (r) + i0 =/B(Z) and hence LA~LB. A similar
argument shows that LB~LC. However, although DAnDc^0 we do
not have LA ~ Lc: the elements of DAnDc are of the form z = re19 with
0e(—n/29-n/6)czAf giving /^(z) = In(r) + i0, and also of the form

Z = ei(e + 2K) w i t h 0 + 2716(371/2,1171/6)0:0, so /&) = In (r) + i(0 + 2n) =
fA(z) + 2ni. Thus analytic continuation of L c onto D^ produces the
function element (DA,fA + 2ni) = LiA + 2n), where A + 2n is the interval
{0 + 27r|0e/l} = (37t/2,57r/2). If we iterate this process n times, using the
sequence of intervals

A,B,C>A + 27r,£ + 27i,...,C + 2 ( n - l)n,A + 2nn,

then we obtain the function element L{A + 2nK), giving the value f{A + 2nK)(z) =
/^(z) + 2n7rf; this is done by continuing around the origin n times in the
positive direction, and if we continue n times in the negative direction,
using the sequence of intervals

then we obtain the function element LiA _ lnK), giving the value fiA _ 2n*)(z) =
fA(z) — 2nni. In this way, starting at any z # 0 and continuing around the
origin an appropriate number of times, in the positive or negative direction,
we can return to z and obtain any of the infinitely many values of log(z).

This example illustrates several of the difficulties associated with
meromorphic continuation:

(i) if an unsuitable region D is chosen (such as D = Dj with J = (— TI, TT))
then a function element (D, f) may admit no further direct meromorphic
continuation beyond D;
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(ii) the relation ~ of direct meromorphic continuation is not transitive,
since we have seen that LA~<LB~ Lc does not imply LA ~ Lc, even though

(iii) if meromorphic continuation starts from, and eventually returns to
a particular region D, then the final function defined on D may be quite
different from the original function; for example fA may be continued
meromorphically to give fA + 2nni on D = DAi for any neZ;

(iv) if (£, g) is a meromorphic continuation of (£>, / ) , then the values of
the function g on E may depend on the chosen sequence of direct mero-
morphic continuations from D to E\ for example, taking (D, / ) = LA with
/I = (— 7r/2, 7T/2) as above, and taking £ to be a small disc containing — 1,
then continuation from D to E via DB gives the value fB( — l) = m for
log(— 1), whereas continuation via Dc gives fc(— 1) = — irc, so we obtain
two distinct meromorphic continuations g on £;

(v) if (£>, / ) and (£, #) are function elements and / = g on a non-empty
open subset (7 of D n £, it does not follow that / = g on D n E, so we need
not have (D, / ) ~ (£, #); the point is that DnE, although open, need not
be path-connected and hence need not be a region, so Lemma 4.1.1 does
not apply. For example, take (D,f) = LiAKjB) and (E,g) = Lc as above,
where A u B = ( - TT/2, 77r/6) and C = (5TT/6, 1 1TT/6), SO D n £ is the disjoint
union of the two regions DBnDc and DcnDA shown in Fig. 4.5. On
DBr\Dc we have g=fc=fB=fiAuB)=f, whereas on DcnDA we have
9 =fc =/A + 2™ =/ M u B ) + 2rri = / + 2ni.

Fig. 4.5

DBnDc

DcnDA
D E DnE

We can avoid this last difficulty by using only convex regions, such as
discs (in the above example D is not convex): the intersection of two convex
sets is convex and therefore path-connected. This will be useful in the
next section where the function elements considered will be power series
convergent on open discs.

4.2 Analytic continuation using power series

An effective method of constructing analytic continuations is to use the
fact that a function / is analytic at some point aeC if and only if it is
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represented by a power series Y,*=oan(z — aY n e a r a (w e c a n a ls° deal
with a = oo by considering the behaviour of f°J near 0).

Suppose that (D,/) is an analytic function element with D c C , and
that aeD. Let Dx be the largest open disc centred at a and contained in
D, as shown in Fig. 4.6 (we will regard C as an open disc centred at a, to
allow for the case D = C). Then / is analytic on Du so if we define
an =fin)(a)/n\ for each integer n ^ 0, then by Taylor's theorem the power
series

Uz)= tan(z-a)n

« = o

converges absolutely to f(z) on Du giving a direct analytic continuation
(D, / ) ' - (D 1 , / 1 ) . (It is important that Dx ^D: if we take Dx to be the
largest disc, centred at a, on which Z*=oan(z — a)n converges, then DnD^
need not be a region and we need not have (D, f)~(Du / x ) , as shown by
Fig. 4.7, with / a branch of log(z).)

Now let beD1 and let U be the largest open disc centred at b and
contained in Dl9 as in Fig. 4.8. Since fl is analytic on I/, Taylor's theorem
gives

Fig. 4.6

Fig. 4.7 /.=/

/ ,= /+2TCI

Fig. 4.8
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for all zeU9 where

using absolute convergence to differentiate term by term. Now the largest
region on which this power series Z*=o^n(z~^)n converges is an open
disc D2, centred at b and containing U; on D2 the series represents an
analytic function / 2 , so we have an analytic function element (D2,/2).
Since Dx and D2 are discs, Dtr\D2 is a region, and since fx = / 2 on the
non-empty open set U^DlnD2, Lemma 4.1.1 implies that fx = / 2 on
DlnD2 and hence {Dl,fl)~{D2,f2)- I£ as is often the case, D2 strictly
contains L/, then D2£Dl and so we have a non-trivial analytic conti-
nuation of (D i , / i ) .

We can now iterate this process, expanding /2(z) as a power series
/3(z) = E£=ocn(z-cr convergent on an open disc D3 centred at some
point CED2; since D2nD3 is a region, we have (D2,f2)~(D3if3), and so
on. Since we are using discs, we can (and generally will) take each Dj to
be as large as possible, subject only to f} being analytic on Dj. In this
way, it may eventually be possible to construct an analytic continuation
of / outside D.

For example, let a = 0 and f(z)=fi{z) = J^Loz
n

i
 w^h region of

convergence D = Dx = ®, the open unit disc. If beDu then since am = 1
for all m ̂  0 we have

a

and this converges to (1 -by1'" since \b\ < 1. (This can be seen either
by differentiating the series (1 — b)'1 =Zm=o^m n times with respect to
b, or by applying the binomial theorem directly to (\-b)~l~n and
comparing coefficients.) We therefore have an analytic function

= £ (i-by'-iz-bf
n = 0

on some open disc D2 centred at b. The radius of convergence of this
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power series is

so D2 is {zeC | | z -b | < |1 —b\}> the largest open disc centred at b and
avoiding 1 (where fx has a pole). We therefore have D2^Dl except when
beU and 0 ̂  b < 1, so by avoiding such a choice of b we can continue f1

analytically outside Dx.

4.3 Regular and singular points

In the examples we have considered so far, there have been certain points
ceE at which meromorphic continuation is impossible: for instance c = oo
for F(z) (which cannot be continued to a meromorphic function at oo
since it has a sequence of poles converging to oo), and c = 0 or oo for
log(z) (which has no single-valued meromorphic branch near either of
these points). If (D, / ) is a function element then a point c on the boundary
dD of D is called a regular point for (D, / ) if there is a direct meromorphic
continuation (£,#) ~ (£, /) with ceE; there is no loss of generality in taking
E to be an open disc centred at c, as in Fig. 4.9. If there is no such direct
meromorphic continuation then c is called a singular point for (D, / ) ; thus
singular points represent obstacles to meromorphic continuation. If all
points cedD are singular, then dD is called the natural boundary of (D,/).

Fig. 4.9

(It should be pointed out that in some books, where the emphasis is
on analytic rather than meromorphic functions, c is defined to be a singular
point if there is no direct analytic continuation at c: under this convention,
though not under ours, c = 1 would be a singular point for f(z) = Y,?=oz

n

on the open unit disc ©.)

Lemma 4.3.1. Let (£>,/) be a function element with cedD. If c is regular
for (D,f) then f(z) approaches some limit in 2, as z->c with zeD.

Proof By hypothesis, there is a direct meromorphic continuation (£, g) *»
(D, / ) with ceE, so for zeDn E we have f(z) = g(z) -*g(c)el* as z -• c. •
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The contrapositive is equally useful: if /(z) has no limit as z-+c then c
is singular. A similar proof shows that if there is a direct analytic conti-
nuation at c, then /(z) has a finite limit as z^c. For example, for each
integer fc^l the power series /k(z) = E*=oz*n converges to (1-z*)" 1

on the open unit disc 3% so if c is a fcth root of unity then there is no
direct analytic continuation of (^, fk) at c (though, of course, meromorphic
continuation is possible, so c is regular).

In the above series fk(z\ the 'gap' between successive non-zero coeffi-
cients is equal to k, and the larger this gap is, the more obstacles there are to
analytic continuation. More generally, Hadamard's gap theorem (Rudin
[1974], 16.6) states that if a power series

has radius of convergence 1, and if the gaps between the suffixes n of
successive non-zero coefficients an increase sufficiently rapidly as n->oo,
then every point on the unit circle C is singular, that is, C is the natural
boundary of (®, / ) . (As normally stated, the theorem states that analytic
continuation across C is impossible, but the extension to meromorphic
continuation is trivial.) We shall not investigate this subject in great detail,
since such functions do not often arise naturally; instead, we shall consider
a simple example (see also Exercise 4A).

Theorem 4.3.2. The series f(z) = Xn°°= l z
n! = z + z2 + z6 + z24 + ... has the

unit circle C = {zeC| |z| = 1} as its natural boundary.

Proof. By the root test, E^=1z
n! has radius of convergence 1, so / is

analytic on the open unit disc 2, and we must show that every point c
on the unit circle C = d9) is singular. If c were regular, then there would
be a direct meromorphic continuation (E,g)~{@yf) with ceE; since g is
meromorphic we could take E sufficiently small that g is analytic on
£\{c}, and so for each point d ^ c in CnE we would have f(z) = g(z)-+
g(d)eC as z-+d, ze@. However, we shall show that no matter how small
E is, there exists some d^c in CnE such that /(z)->oo as z-+d along a
radius from 0 to d (see Fig. 4.10).

Fig. 4.10
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We first show that if reR and 0 ^ r < 1, then f(r)-> oo as r-> 1. Given
any M eR, choose a positive integer m> M; since 0 < r < 1 we have

and as r -• 1 we have mrm] -+ m > M, so provided r is sufficiently close to 1 we
have mr"1- ^ M and hence f(r) ^ M, as required.

Now take any point ceC, and put c = e2nis with seR. If £ is any open
neighbourhood of c in £ then we can choose a rational number t^s
sufficiently close to s that the point d = e2nit lies in (Cr\E)\{c}. Since teQ
we have r = p/q with p, geZ and q > 0. Let z = rd where reR, 0 ^ r < 1,
so that ze@ and

n^q then <? divides n!, so zn! = r"1 and hence
q- 1 oo

where P(z) is the polynomial £n=Un!- As r->l we have z->d, so P(z)
and P(r) have finite limits P(d) and P(l), whereas we have seen that /(r) -> oo.
Thus /(z)-> oo, giving the required contradiction. •

At the other extreme, there exist power series with radius of convergence
1 such that every point ceC is regular: Z*=ozfl ^ a s this property, for
example, though there is a point (c = 1) where analytic continuation is
impossible. The following result shows that this is typical.

Theorem 4.33. If a power series /(z) = X*=oan(z~a)n has radius of
convergence p # 0 , oo, then there is at least one point c on the circle
\z — a\ = p at which direct analytic continuation is impossible.

Proof Writing /(z) = X®=op
nallC

n, with ( = (z — a)/p, we may assume
without loss of generality that a = 0 and p = l, so / is analytic on
® = {zeC||z| < 1}, which has as its boundary the unit circle C =
{ZGC||Z| = 1}.

Suppose that for each point csC there is a direct analytic continuation
(£c, gc) ~ (@, f) with ceEc. Putting c = el* with ^eR, we can take the region
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Ec to be of the form

Ec={reie\\-rc<r<l+rc,0-(xc<O<0 + <xc}9

where 0 < rc < 1 and 0 < ac < n9 as pictured in Fig. 4.11. This condition on
ac guarantees that for any c, deC, if EcnEd is non-empty, as in Fig. 4.12,
then it is a region (being path-connected); in this case gc =f= gd on the
non-empty open subset <2)nEcnEdoi EcnEd, so (£c,gc) ~ (£d,gd).

Fig. 4.11

Fig. 4.12

Being compact, C is covered by finitely many such regions £Cl,...,£Ck.
Let

p' = 1 + min rCi,
i<i<fc

so that p' > 1, and let E = {zeC| |z| < p'}, so that

We define a function g on E by

f(z)
GcM) if

This definition is consistent since if ze@nEc. or if zeEc.nECj then /(z) =
gc.(z) or gc.(z) = #Cj(z) respectively. Near any point in £, g is identically
equal to / or gc. for some i, so g is analytic on E. By Taylor's theorem the
series

must converge to g(z) on the largest open disc centred at 0 and contained in
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£, and clearly this disc is E itself. Since g = / near 0, we have

h.—"*•
for all n ̂  0, so we have shown that Z*=oflnz" converges on E and hence
has radius of convergence at least p' > 1, against our assumption. This
contradiction shows that there must be some point ceC at which direct
analytic continuation of (^, / ) is impossible. •

Thus, for a power series with radius of convergence p T^O, OO, the 'best
possible' behaviour is that exhibited by X*=ozll> where there is just one
point (c = 1) where we need meromorphic rather than analytic conti-
nuation.

Finally, a brief warning. It is important to note that whether or not a
point c is regular for (D, / ) depends on D as well as on / : for example,
even though direct analytic or meromorphic continuation may be
impossible at c, we may nevertheless be able to continue / across 3D at
c indirectly, using a sequence of direct continuations, as we saw in §4.1
in connection with log (z). If we take J = ( - TC, n) then the function element
Lj has domain D = Dj = {z = reie\r > 0 and — n < 0 < n}9 with boundary
3D consisting of the negative real line together with its end-points 0 and
oo; as shown in §4.1, each csdD is a singular point for Lj9 but nevertheless
by first restricting to the smaller region DK with K = (0, n) it is possible
to continue log(z) across dD at any point c #0, oo, using a sequence of
two direct continuations. Examples like this suggest that the concept of
the natural boundary of a function (rather than a function element) is
rather hard to define, so we will regard this line of thought as having
reached its natural boundary, and continue it no further!

4.4 Meromorphic continuation along a path

To deal with the problems of non-uniqueness of meromorphic continuation,
such as those we met in §4.1 in connection with log(z), we introduce the
concept of meromorphic continuation along a path. We shall show that
meromorphic continuation along a given path is unique, and then we
shall consider the relationship between meromorphic continuations along
different paths between two given points.

A path y is a continuous function )>:/-•£, where / is the closed unit
interval [0,1] = {seR|0 < s ̂  1}. Since y is continuous and / is compact
and connected, the image y(/) is compact and connected. By abuse of
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language, we often refer to y(7) as 'the path y\ If a = y(0) and b = y(l) then
we say that 7 is a path 'from a to b'; y is a c/osed path if a = fc, and y is
simple if y(s) = y(s') implies either s = s' or else s = 0 and s' = 1 (that is, y
has no self-intersections except possibly where a = b). It if often useful to
regard y(s) as a point moving continuously with respect to time s for

Let (/>,/) be a function element, let aeD and let y be a path in £ from
a to some point fceL. Then a meromorphic continuation of(D,f) along y
is a finite sequence of direct meromorphic continuations (D, / ) ~ (Z)̂  / x ) ~
(D29f2)~...~(DmfJ such that:

(i) each region Dt is an open disc in Z (as defined in §2.8) with aeDx c /);
(ii) there is a subdivision 0 = s0 < s{ <... < sm = 1 of / such that

y([Si-i?s,])cD,. for i= l ,2 , . . . ,m (and hence fceDJ (see Fig. 4.13).

If all the function elements (/)„/,) are analytic, we call this an analytic
continuation along y.

Fig. 4.13 y(5.) r ( j 2 )

The reader may wonder why we require the regions D( to be discs, and
why we allow only finitely many of them. There is no loss of generality
in using discs, since any region in £ is a union of open discs, and indeed,
if we construct the continuations by means of power series as in §4.2, then
we will be forced to use discs. Moreover, it is easily seen that if two open
discs on the sphere S2 have non-empty intersection, then that intersection
is path-connected and is therefore a region; using the homeomorphism
7i:S2-»I we see that discs in I also have this useful property. Since y is
compact, we can reduce any covering of y by regions to a finite subcovering,
so there is no loss of generality in restricting attention to finite sequences
of direct continuations.

As an example of analytic continuation along a path, let y be the unit
circle parametrised by y(s) = e2ni5(sel), so a = b = 1. We can continue log(z)
analytically around y using the sequence of direct analytic continuations
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LA~ LB~ Lc~ L{A + 2n) as defined in §4.1 (recall that according to the
definition given in §2.8, each open half-plane in C, such as DA, DB, Dc, is
an example of an open disc in Z). This is illustrated in Fig. 4.14. In this
example, we can take the subdivision of/ in condition (ii) to be 0 < £ < \ <
| < 1. Thus we start with f^a) = fA{\) = 0 at a = 1, and end with /4(i>) =
/ u + 2*)(1) = 2ni at fr = 1. Similarly, if neZ and we take yn(s) = e2nnis, then
the path yn winds n times around 0, and we continue along yn from fA(\) = 0
to f(A + 2nn)W = innU as we saw in §4.1.

Fig. 4.14

a=b=l

The aim of meromorphic continuation along a path y is to start with
a meromorphic function f=fx at a = y(0) and to allow this function to
vary meromorphically along y until we reach a meromorphic function fm

at b = y(l). The following result shows that the resulting value fjb) depends
only on the initial function / and the path y from a to b9 and not on the
particular choice of discs D( covering y, so we may denote this value by fy(b).

Theorem 4.4.1. Let (DJ)~(DlJ1)~...~{Dm9fm) and (DJ)~
(E^g^)^... ~(En,gn) be meromorphic continuations of(D,f) along a path
yfrom a to fr, and let0 = so<sl<...<sm=l and 0 = to < tl < ... < tn = 1
be the corresponding subdivisions of I. Then {Dhf^^(E^gj) whenever
[>,_!, s j n [tj. i, tj] * 0 , and in particular fm(b) = gn(b).

Proof. Suppose that [st-l9 sj n [t,_ l5 tj] ^ 0 , so that D^Ej # 0 , and
suppose (for an eventual contradiction) that / , # # ; on DtnEj. We may
assume that i and; are chosen so that i +j is minimal with respect to this

Fig. 4.15



140 Meromorphic continuation and Riemann surfaces

property, and (interchanging the two meromorphic continuations if
necessary) that t,-_ t ^ sf_ u as in Fig. 4.15. Since (Du fx) ~ (El9 gt) it follows
that i>\. Since [ s / . u s j meets [tj-utj] we have si-le[tj-l,tj']9 so
yisi-JeEj. Clearly, y(5l_1)GDInDl_1, so Dir\Di-lr\Ej is non-empty.

Now sf_ xe\_Si-2, Si-1]n[r,-_l5 r J, so by the minimality of i +j we have
fi-!=gj on Di-^Ej. Since (D,-1 , / i - 1 )~(D, , / i ) we have / , _ ! s / , on
Di-1nDh and hence / , = #,- on DfODi-i n£,- which is a non-empty open
subset of the region D^Ey Thus / , = ^ on DinEj by Lemma 4.1.1,
contradicting our choice of i and 7.

Thus (DiJ'^iEpgj) whenever [s.'-^sjn[>;_!, f j # 0 , and taking
i = m and; = « (so that l e f o . ^ s j n f y - ! , * , ] ) we have (Dm,fm)~(En9gnl
and hence /w(6) = ŵ(fc) since beDmnDH. •

As a further example of analytic continuation along paths, we consider
the many-valued function z1/q

9 where <? is an integer, q^2. For any
zeC\{0} there are q values of zllq, namely the solutions vv of wq = z; we
can express these as w = exp(q"1log(z)), different values of zllq corres-
ponding to different values of log (z). More precisely, if (£>,/) is a function
element representing a branch of log (z), so that exp(/(z)) = z on D, then
the function g(z) = c\p(q~1f(z)) is analytic and satisfies g(z)q = z on D, so
the function element (D9g) represents a branch of z1/q on D. If y is any
path in C\{0} then we can find the analytic continuation of z1/q along y
by considering the continuation of log(z). For example, if (/>,/) = LA =
(DA, fA) as above, giving the branch gA = exp(g~ 1fA) of z1/q on DA satis-
fying ^ ( l ) = exp(0)= 1, then by continuing from 1 to 1 along the path

9(A+2.0 = exp f - / M + 2n») j s exp f - (/^ + 2nni) j s i

(In?
e = expI -

this gives a branch of z1/q taking the value e" at 1. Since e has order q
under multiplication we have g(A + 2nn) = 9(A + 2mn) if a n ^ only if n =
m mod (g); in particular, giA + 2qn) = gA. Thus the q branches ofzllq on DA are

0,4> ^M + 2n) = ZQA> • • • >^M + 2(«- l)n) = &~ ^9A>

taking the values 1, s9..., eq~ * at 1. Similarly, if we start with a particular
value vv of zllq at any point z e C \ { 0 } , then by continuing around 0
repeatedly we obtain the values vv, ew, ...9e

q~J w of z1/q in succession. This
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shows that we cannot find an analytic (or even meromorphic) continuation
of z1/q at 0: if we had a function element (Dyg) representing a branch of
z1/q on a region D containing 0, then g would be single-valued on £>;
however, by continuing g analytically along a closed path which winds
once around 0 within D, we replace g by eg # g9 giving a contradiction.
A similar argument shows that there is no continuation at oo, so 0 and
oo are singular points for z1/q.

43 The monodromy theorem

If a function element (Z>, / ) can be continued meromorphically along a
path y from a to fc, then by Theorem 4.4.1 the value fy(b) of the resulting
continuation at b is independent of the method of continuation along y.
However, different paths y0 and yx from a to b may give different values
at b, as we saw in §4.4 for log(z); we now consider sufficient conditions for

fyo(t>)=fyM
If y0 and y^are paths from a to b in a topological space X, then a

homotopy from y0 to yx in X is a continuous function F:/2 -+X such that
r(s,0) = yo(4 T(s, 1) = yM HO, r) = a, and F(l, f) = b for all s, teJ. Thus,
for each tel we have a path y, from a to fc in X given by yt(s) = T(s, t); as
r increases from 0 to 1, yt is continuously deformed (within X) from y0

to yl9 keeping the end-points fixed at a and b, as depicted in Fig. 4.16.
We say that y0 and yx are homotopic in X, written y0 — Vi» if there *s a

homotopy from y0 to yx in X; ^ is an equivalence relation, and the
equivalence classes are called homotopy classes.

Fig. 4.16

0 —» 1

For example, if y0 and yx are the paths from 1 to - 1 in C defined by
yo(5) = eKis and y1(s) = e~Kis then F(s,r) = exis - 2tisin(ZTS) gives a
homotopy from y0 to yx in C. However, it is intuitively clear (and we
shall shortly prove) that y0 and yx are not homotopic in C\{0}: some inter-
mediate path yt would have to pass through 0 or oo, impossible since
F(/2) c C\{0} (see Fig. 4.17). As a second example, we shall show in §4.6
that each closed path 5 from 1 to 1 in C\{0} is homotopic to the path
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yn(s) = e2nnis for some unique neZ, called the winding number of S since it
represents the number of times d winds around 0.

Fig. 4.17

The following result shows that homotopic paths give rise to the same
meromorphic continuation.

Theorem 4.5.1 Let I c j , let a, beX, and let T be a homotopy in X
between two paths y0 and y^from atob in X; if(D,f) is a function element
which can be continued meromorphically along each path yt:s h+ V(s, t)(s, tel),
then the meromorphic functions at b, resulting from the continuations along
y0 and yu are identically equal in some neighbourhood ofb, and in particular,

Proof For all t, t'el, we will write t ~ t' if the meromorphic continuations
of (D, f) along yt and yt, produce functions which are identically equal in
some neighbourhood of b; by Theorem 4.4.1, this is independent of the
particular continuations along these paths. Clearly ~ is an equivalence
relation on /, and we have to prove that 0 ~ 1. To do this, it is sufficient
to prove that each equivalence class is open in /, for then each class is
also closed (its complement, being a union of equivalence classes, is open),
so the connectedness of / implies that there is just one equivalence class
and hence 0 ~ 1 as required.

To show that each equivalence class is open, we must show that for

Fig. 4.18
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each tel there exists some <5>0 such that t'~t for all t'sl satisfying
\t' — t\<S. By hypothesis, there is a sequence of direct meromorphic
continuations (D, / ) ~ (Dl9 fx) ~ . . . ~ (Dm, fm) and a subdivision 0 = s0 <
sx < . . . < sm = 1 of / such that yt(It) £ £). for 1 < i ^ m, where /, denotes
the closed subinterval 0,-1,5,] of/. Since T is continuous and each Dt is
open, for every se/ f there exists an open neighbourhood

U(s) = {(s' ,r ')6/ | x / | \ s ' - s \ <S(s),\t'-t\<S(s)}

of (5, t) in /, x /, with S(s) > 0, such that (s', t')eU(s) implies Hs', t')eZ>,, that
is yt,(s')€Di (see Fig. 4.18). Being compact, /, is covered by finitely many
such intervals (5 — d(s\ s + <5(s)), so let 8t be the least of the finitely many
corresponding values of 5(s). Then we have <5f>0, and if t'el then
\t'-t\<Si implies yt(Ii)^Dt. Defining S to be the least <5, for l^i^m,
we have S > 0, and if r 'e / then \t' —1\ < S implies yr(/f) £ Dt for all i = 1,
2 , . . . , m. For such values of t' we therefore have a meromorphic conti-
nuation of (DJ) along yf. given by (DJ)^{Dufl)^...^(DmJm)J with
the same subdivision 0 = s o < s 1 < . . . < s m = l and the same function
elements (/)„/,) as were used for continuation along yr, as in Fig. 4.19.
Thus the continuations along yt and yt. both give rise to the meromorphic
function fm near b, so t' ~ r, as required. D

Fig. 4.19

We can now prove our earlier claim that the paths yo(s) = eKis and
yi(s) = e~Kis from 1 to — 1 cannot be homotopic in C\{0}. If we take
(D,/) to be the function element LA, the branch of log (z) defined in §4.1,
then it is not hard to show that (D, / ) can be continued analytically along
any path from 1 to — 1 in C\{0} (using suitable function elements LJf for
example); since fyo(— 1) = ni and /yi(— 1) = — ni, it follows from Theorem
4.5.1 that y0 and yl are not homotopic in C\{0}. Similarly, if yn is the
closed path yn(s) — e2nnis(neZ), then by continuing log(z) analytically
around y" as in §4.4 we see that ym and y" are homotopic in C\ {0} if and only
if m = n.

In order to apply Theorem 4.5.1, we need a condition on X which
guarantees that any two paths from a to b in X are homotopic. For each
aeX let y(fl) denote the constant path y{a)(s) = a for all sel; then a closed
path y from a to a in X is said to be null-homotopic if it is homotopic in
X to y(fl), and X is said to be simply connected if it is path-connected and
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all closed paths in X are null-homotopic. For example, C is simply
connected since if y is any closed path from a to a in C then there is a
homotopy V:y ~ y{a) given by F(s, t) = y(s) + t(a — y(s)); on the other hand
C\{0} is not simply connected since (as we have just seen) the unit circle
y(s) = e2nis is not null-homotopic in C\{0}.

Theorem 4.5.2. A topological space X is simply connected if and only if
for each pair of points a, bsX there is a single homotopy class of paths from
a to b in X.

Proof. Suppose that for each a, beX there is a single homotopy class
of paths from a to b in X. Then X is path-connected, and taking a = b
we see that any closed path from a to a in X is homotopic to y(a), that is,
X is simply connected.

Conversely, suppose that X is simply connected, so (by definition) X is
path-connected. Let y0 and yx be paths from a to b in X, and let 8 be
the closed path from a to a given by

jy1(2-2s) i ^ s ^ l .

Thus as s increases from 0 to \, 8(s) travels forwards along y0 from a to
by while as s increases from | to 1, 8(s) travels backwards along yi from
b to a. Since X is simply connected there is a homotopy A from 8 to y(fl),
and we shall use A to construct a homotopy F from y0 to yv Before
defining F explicitly, we shall give an informal description of the inter-
mediate paths yt(tel\ as illustrated in Fig. 4.20.

For 0 ^ t ̂  \ we form yt by adjoining to the end of y0 a loop which
travels backwards along yx from b to y^ l — It) and then travels forwards
along yx from yt(l — It) to b. Thus yt is a path in X from a to b, and as

Fig. 4.20

/='/2

/=0
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t increases from 0 to | , 1 - It decreases from 1 to 0, so the loop gradually
stretches outwards from b until (when £ = i) it travels twice along the
entire length of yl9 once in each direction. Thus when t = ,̂ yt follows y0

(forwards), then yx (backwards), and finally yx (forwards), or equivalently,
yt follows 5 and then yx (both forwards). For \ ^ t < 1 we use the homo-
topy A:<5 ~ y{a) to pull S in towards a, leaving the final section of yt along
yx unchanged, until when t = 1 we have yt = yl9 as required.

To be more specific, we divide I2 into five subsets A, B, C, D, E as
shown, and define F(s, t) on these subsets by

T(s,t) =

(A);

7i(4-3s-4r)

7i(3s-2)

j^s^l-j (B);

3c_4f\_A t J

(C);

(D);

1,1(1 -

It is straightforward to check that T(s,0) = yo(s)9 T(s, 1) = yx(s), T(0, f) = a,
and F(l, t) = fc for all s, re/. Continuity of F follows from the continuity
°f 7o» 7i a n d A and the fact that the various definitions of T(s9t) agree
when (s, t) is in the intersection of two or more subsets A, . . . , £ . The only
case which needs any comment is when s = 0 and r = 1: as s ->0 and t -• 1
with O ^ s ^ f ( l - f ) (so that (sj)eD) we have T(s,t) = A(a,T) with
T = 2f — 1 -> 1 but with a = 3s/(4 — 4r) having no limit; however,
limt^1A((j,T) = a for all osl (since A is a homotopy from 5 to y(fl)), so
T(s,t)->a as required. Thus F is a homotopy from y0 to yx in X, so X
has a single homotopy class of paths from a to b. •

The simplest way of seeing that the above definition of F agrees with
the informal description preceding it is to consider the intermediate paths
yf(s) = T(s,t) for various values of re/, in each case considering how the
point yt(s) moves around X as 5 increases from 0 to 1. Five typical paths
yt are illustrated above, corresponding to the cases t = 0,0 < t < j , t = i,
\ < t < 1, and t = 1; the reader is encouraged to check that the illustration
does represent yt accurately in each case.

Combining Theorems 4.5.1 and 4.5.2 we see that continuation of a
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function element onto a simply connected region E is independent of the
path of continuation, so we have a single-valued meromorphic function
on E. The monodromy theorem states this more precisely:

Theorem 4.5.3. Let E be a simply connected region in Z, and let (£>, / )
be a function element with D c= E. If(D9 f) can be continued meromorphically
along all paths in E starting at some point aeD, then there is a direct
meromorphic continuation (£, g) ~ (D, / ) .

Proof. Since E is simply connected, E is path-connected, so for each beE
there is a path y in E from a to b. By hypothesis, we may continue (D, / )
along y; we denote the value of this continuation at b by fy(b). Since E is
simply connected, any two paths in E from a to b are homotopic, by
Theorem 4.5.2, so by Theorem 4.5.1 they induce the same value of fy(b).
Thus fy(b) is independent of the path y from a to b, so we have a single-
valued function g:E-+C given by g(b)=fy(b).

Now suppose that the value g(b) is produced by a meromorphic conti-
nuation (DJ) ~ (DXJX) - . . . - (DmJJ along y, so that g(b) =/m(b); there
is no loss of generality in assuming that the disc Dm is contained in E.
For each ceDm there is a path S in Dm from b to c, and hence there is a
path e in E from a to c, following y and then <5, given by

y(2s) O^s^i

(see Fig. 4.21). Since 8 s Dm, the sequence (D, / ) ~ 0>i, / i ) ~ • • • ~ (A*, /m)
is a meromorphic continuation along e, so g(c)=fe(c)=fm(c). Thus
$ = / m on Dm, so 0 is meromorphic at b, since fm is, and hence (£, g) is a
function element. Since meromorphic continuation of (D, / ) along paths
within D must give g{b) =f(b) for beD, we have (£, #) ~ (D, / ) as required.

D

Fig. 4.21

Thus, as shown in §4.1, we can continue a branch of log(z) from a
neighbourhood D of 1 onto a region E = Dj, where J is an open interval
(a, P) a U with p — a^2n, since such a region is simply connected. Taking
J = ((2n - 1)TC, (2n + 1)TT), with neZ, we 'cut' Z along the negative real
line from 0 to oo, as in Fig. 4.22, and the remaining region E = Dj =
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C\{zeR|z^;O} is simply connected, so we have a branch fj of log(z),
defined on E. This branch, which we shall denote by /„, is determined by
the value /n(l) = 2nni; the cut from 0 to oo prevents any path in E from
winding around 0 (or equivalently, around oo), so analytic continuation
along paths in E is single-valued. When we consider other many-valued
functions we shall use a similar technique, cutting Z along suitable lines
to produce a simply connected region on which we can define a single-
valued meromorphic branch of the function.

Fig. 4.22

4.6 The fundamental group

Using homotopy, we can associate to each path-connected space X a
group nY(X\ the fundamental group of X, an important concept in
algebraic topology (see, for example, Massey [1967]).

If y and d are paths in a topological space X with y{\) = <5(0), then the
product yd of y and 5 is the path

Jy(2s) ° < s < iU
shown in Fig. 4.23. (Intuitively, the point (yS)(s) travels along y and then
along <5, at twice the usual speed in each case in order to complete the
journey in unit time - see the proof of Theorem 4.5.3, where e = yd.) The
inverse path of y is

thus y~1(s) follows the path y in the reverse direction.

Fig. 4.23 ^~-^*s=Vi

The homotopy classes [y] of closed paths y from a given point aeX to
itself form a group n^X.a): the product [y][<5] of two classes is the class
[y<5], the identity element is the class containing the constant path y{a)(s) = a
for all sel, and the inverse of [y] is [y"1] . It is straightforward to verify
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that these definitions of group operations are independent of the choice
of representatives y, 5 of [y], [<5], and that the group axioms are satisfied.

Fig. 4.24

If X is path-connected, then there is a path a from any point aeX to
any point beX, as in Fig. 4.24, and the map M-^Ca^ya] is an
isomorphism nl(X,a)^n1(Xyb); thus as an abstract group, nx(X9a) is
independent of the choice of aeX, so we denote this group by nx(X\ the
fundamental group of X. For example, X is (by definition) simply connected
if and only if nx(X) is the trivial group. For our purposes, the most
important example of a space which is not simply connected is the
punctured plane:

Theorem 4.6.1. 7TI(C\{0}) is an infinite cyclic group, generated by [y],
where y is the unit circle parametrised by y(s) = e2nis, sel.

Proof Since C\{0} is path-connected, it is sufficient to show that every
closed path 5 from 1 to 1 in C\{0} is homotopic to yn(s) = e2nnis for some
unique neZ.

Putting 6(s) = rei0, with r = r(s) > 0 and 0 = 0(s)eR, we see that 0(s) =
arg(<5(s)) = Im(log(<5(s))) is a many-valued function of 5 for sel. If we
continue log (z) analytically along <5, starting with log (z) = 0 at z = S{0) = 1,
we eventually obtain Iog(z) = 2rt7ri at z = (5(l)= 1, where neZ, and the
corresponding values of 0(s) = Im(log(<5(s))) vary continuously with
respect to s from 0(0) = Im (0) = 0 to 0(1) = Im (2nni) = Inn.

If we define

© = 0(S, t) = (1 - t)d(s) 4- 2nnsu
then

is a homotopy within C\{0} from 5 (at t = 0) to y" (at f = 1): the effect of
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R(s, t) is to deform S radially onto the unit circle, while &(s, t) deforms 6
until 0 increases linearly from 0 to 2nn (see Fig. 4.25).

Fig. 4.25

Thus [<5] = [/*] = [y]", so TT^CXJO}) is a cyclic group, generated by [y].
By applying Theorem 4.5.1 to the analytic continuations of log(z) along
ym and y", we see that ym ~ yn if and only if m = n, so S determines n (its
winding number) uniquely, and TT^CXJO}) is an infinite cyclic group. •

More generally, if aeC then iti(C\{a}) is infinite cyclic, generated by
[y + a] where y + a is the closed path (y + a)(s) = e2*" + a. We define the
winding number na(S) of a closed path S around a to be the unique integer
n such that d ~ (y + a)" in C\{a}.

4.7 The Riemann surface of log(z)

We have seen, in connection with log(z) and zilq, how meromorphic con-
tinuation of a function element can give rise to a many-valued function
(or more precisely to many different functions on the same region). This
is unsatisfactory, since it means that we have to use great care in using
such apparently harmless statements as log(afc) = log(a) + log(6) (as we
saw in §3.8). The solution adopted in §3.8 was to restrict attention
to one particular branch of log (z), denoted there by Log(z), but this is not
completely satisfactory, since Log(z) is not continuous when z < 0 , and
we still do not have Log(afc) = Log (a) + Log(b) for all a,b ^ 0 . A better
solution, which applies to many-valued functions in general, is due to
Riemann: instead of restricting the values of the function, we extend its
domain. Specifically, we construct a surface S, a covering map \//:S -> C\{0}

Fig. 4.26

y \
exp
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and a function <t>:S -*C such that for each zeC\{0} the elements of ^ 1(z)
are mapped bijectively by (j> onto the different values of log(z), so that
exp°<£ = ^:S->C\{0} (see Fig. 4.26). Thus each sheet of S (regarded as a
covering-space of C\{0}) corresponds to a particular branch of log(z)
represented by the restriction of <t> to that sheet, and we may regard </> as
composed of all the different branches of log(z).

The surface 5, known as the Riemann surface of log (z), can be constructed
from the sequence of direct analytic continuations

considered in §4.1. The general idea is to regard the underlying
regions of these function elements as being disjoint, and then to glue them
together wherever they carry identically equal values of log (z); the resulting

Fig. 4.27
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surface S is the domain of a single-valued function <f>, which is locally
equal to a branch of log(z).

Let A^ be a horizontal surface, lying above the region DA of the plane
C; each z'eAA lies above a unique zeDA, and we define a function
<t>:AA^C by <t>(z')=fA(z).

Now let AB be a horizontal surface lying above Z)B, at a different level
from A ;̂ we define <f>(z") =fB(z) whenever z"eAB lies above zeDB. If z'e&A

and z"eAB lie above the same point zeDA n£>B, then since LA ~ LB we have
<t>(z')=fA(z)=fB(z) = (l)(z"); we therefore identify all such pairs z\z" of
overlapping points with each other, and we have a well-defined function 4>
on the resulting surface A^uAj,.

We now introduce a third surface Ac lying above Dc and disjoint from
A^uAj,, and we define <f>(z"') =/c(z) whenever z'"eAc lies above zsDc.
Since LB ~ Lc we have <f>(z") = <f>(z'") whenever z" and z'" lie above some
point zeDBnDc, so if we identify z" with zm then <f> is a well-defined
function on A^u ABuAc. This process is illustrated in Fig. 4.27. Notice that
if z'eA^ and z'"eAc lie above some zeDAnDCi then <t>(z'") = fc(z) =
fA{z) + 2TT/ = <f>{z') -h 27ri # </>(z'), so instead of identifying z' with z'" we
allow A^ and Ac to overlap at different levels above C.

We continue this process, following the sequence

... ~ L(C _ 2K) ~ LA ~ LB ~ Lc ~ LiA + 2n) ~ .

in both directions. For example, when we introduce AM + 2)t) lying above
D{A+2*) = DA9 w e identify overlapping points of Ac and AM + 2*) since
^c ^ ^M + 2X)> but we keep A(yl + 2jc) separate from A ,̂ letting them lie one
over the other at different levels, since they carry different branches of
log (z) (see Fig. 4.28). Each point s of the resulting surface S = ... u A(C _ lK) u
Ai 4uABuAcuA( i 4 + 2 *) u - - - lies above a unique point z = \l/{s) in C\{0},
and the function ^:S->C\{0} is easily seen to be a covering map (as
defined in §1.5), each point zeC\{0} being covered by infinitely
many points seS. As illustrated in Fig. 4.29, we can visualise S as a spiral
with infinitely many turns extending upwards and downwards, with ij/
corresponding to projection onto the horizontal surface C\{0}. We have

Fig. 4.28
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a function <j>:S -> C, the value of <t>(s) for each seS being one of the values
of log(^(s)), depending on which sheet of S contains s; conversely, for
each zeC\{0} and for each value vv of log(z) there is a point set// ~ l(z) a S
with <l>(s) = vv.

The comments at the end of §4.5 give us a second, equivalent way
of constructing 5 which can be adapted to apply to other functions. If we
cut X along the line z ^ O from 0 to oo, then the remaining region
E = C\{zeR|z ^ 0} is simply connected and is the domain of branches/„
of log(z) satisfying/n(l) = 2nni, for each neZ. We take disjoint copies En

of £, each the domain of/„; we can think of these surfaces En as lying one
above the other over E a C, like pages of a book, as in Fig. 4.30, or as being
wrapped around the sphere Z like layers of an onion, as in Fig. 4.31.

Fig. 4.29

C\{0}

Fig. 4.30

Fig. 431
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Now let (D,/) be a function element representing a branch of log(z) on
some disc D containing a point aeU, a<0 , see Fig. 4.32. On the region
D+ = {zeZ)|Im(z)>0} we have/=/n for some neZ, and on the region
D_ = {zeD|Im(z)<0} we have/=/mfor some meZ. As z-*a with zeD +
we have

f(z)=fu(z)-+ln(\a\)

while as z-+a with zeD- we have

Since/is analytic at a,f(z) has a unique limit as z-*a, so m = n + 1.

Fifr 4.32 /<^X£

Thus as we cross the cut z ̂  0 at any point a < 0, passing from D + to
D_, analytic continuation takes us from/n on D+ t o / m = / n + 1 on D_.
We therefore join the edge Im(z) > 0 of En to the edge Im(z) < 0 of £„+1

along a line Ln from 0 to oo (but not including 0 or oo); performing this
operation on successive pairs En and £n + 1 is rather like buttoning one's
shirt and jacket together, and then one's jacket and overcoat, etc. We now
define the surface S to be the union of all these sheets En and lines Ln,
for neZ, as illustrated in Fig. 4.33. We define 0:S->C by <£(s) =/„($) if
seEn9 and <p(s) = ln(|a|) + {In 4- \)ni if seLn lies above a < 0. For each SG5,
we define ij/(s) to be the unique element of C\{0} above which s lies, giving
a covering map \// :S -• C\{0}. It is easily seen that S, ^ and 0, as constructed
here, are essentially the same as in the original construction.

Fig. 433

This method of construction shows that S is homeomorphic to C. Since
fH(rei*) = ln(\r\) + i0, where (2n- \)n <0<(2n+ l)rc, <t> maps £n

homeomorphically onto the strip given by (2n — l)n < Im(w) < (In + 1)TC;
similarly, Ln is mapped homeomorphically onto the line Im (w) = (In + 1)TT.
Now these sets <£(£„) and </>(Ln) form a partition of C, so 0 is a bijection
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from S to C, and it is easily seen from our construction that both </> and
<t>~1 are continuous, so that <t>:S -> C is a homeomorphism. We can regard
C, partitioned in this way, as representing the infinite spiral S 'straightened
out' by </>, each parallel strip on C corresponding to a sheet of S (see Fig.
4.34). If we let a point zeC\{0} follow a path winding around 0, then any
point sG\//~i(z) will move continuously in a spiral above z, passing
successively through sheets . . . , £ _ l5 £0, £1 } . . . of S, while the correspond-
ing point </>(s) = log(z) passes through the strips...,(/>(£_!), </>(£0),

,...associated with the various b ranches . . . , / ^ , / 0 , fu... of log(z).

Fig. 4.34

4.8 The Riemann surface of zi/q

In §4.4 we were able to derive the analytic continuation of zl/q from
that of log (z); similarly we can now adapt the method of construction of
the Riemann surface of log(z) to obtain the Riemann surface of zl/q.

As in §4.7, let £ = C\{ze(R|z^0}. This simply connected region
is the domain of branches gn = exp(q~ */„) of z1/q satisfying gn(\) = e", where
e = exp(2ni/q) and neZ; we have gm = gn if and only if m = n mod(g), so
there are q distinct branches go,gu-..,gq-i and we therefore take q
disjoint copies £0, El9..., Eq_ x of £ lying at different levels above £, with
each En the domain of gn. This is illustrated in Fig. 4.35. As we continue
analytically across the line z^O, with Im(z) decreasing, we pass from g0

to gl9 so we join the edge Im(z)>0 of EO to the edge Im(z)<0 of EX

along a line Lo from 0 to oo. Similarly, we join Ex to E2 along Ll9 and
so on until Eq_2 is joined to Eq-X along Lq_2. The process so far, giving
us a spiral-shaped surface with q sheets, is easily visualised, but the next

Fig. 4.35
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step is not: since continuation across z < 0 takes gq_ l to gq = g0, we need
to join the edge Im(z) > 0 of Eq_ x to the edge Im(z) < 0 of Eo along a
line Lq-X. We must do this without forcing the resulting surface T to pass
through itself, and this is impossible in the euclidean space IR3: however,
our only reason for regarding the sheets En as subsets of IR3 is to help
visualisation and illustration, and there is no problem if we regard them
as abstract surfaces. As in Fig. 4.36, our illustrations will show apparent
self-intersections, whereas in reality the surface does not intersect itself.

Fig. 4.36

Fig. 4.37

There is an alternative method for constructing T in (R3, which avoids
self-intersections but has the disadvantage of not effectively illustrating
the projections of the sheets onto E; this uses the fact that E is homeo-
morphic to the region E' shown in Fig. 4.37, formed by cutting the annulus
1 < \z\ < 2 along the negative real line from - 1 to - 2 (such a homeo-
morphism is given by reie\-+(2-e~r)eie). We take q copies E'n of E
(0 ^ n < q — 1), each identified with E'n in the above way, and join each
E'n to E'n + 1 along a line Un homeomorphic to Ln, from — 1 to —2, for
H = 0, l,...,g — 2. With a little twisting and stretching, we can now join
E'q.l to Ef

0 along a line L^_x in IR3, and the resulting surface T is
homeomorphic to T; of course, the required twisting destroys the natural
projections from the sheets. See Fig. 4.38.

Fig. 438

r
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The surface
q-l \ /q-l

vn=O / \ n = 0

is an unbranched covering-surface of C\{0} with q sheets; each point seT
lies over a unique point z = ^(s)eC\{0}, and each zeC\{0} lies beneath
q points seT, one on each sheet. We define a function </>:T-+C\{0} by
putting (f)(s) = gn(s) for all seEn, and then extending <f> to each line Ln by
continuity; thus <j> is locally equal to a branch of z1/<?, and we have <t>(s)q =
i//(s) for all seT (see Fig. 4.39). Each sheet En of T is mapped homeomor-
phically by (j> onto the region (In - \)n/q < arg(w) < (2n + \)n/q of C\{0},
and Ln is mapped homeomorphically onto the line arg(w) = (2n 4- l)7r/g,
so 0 is a homeomorphism between T and C\{0}, as depicted in Fig. 4.40.

Fig. 4.39

Fig. 4.40

There is no analytic (or even meromorphic) continuation of zllq at z = 0:
in any neighbourhood of 0, if we continue along a closed path winding
once around 0 in the positive direction, then any branch of zl/q is multiplied
by e = exp(27u/g), so we cannot choose a single-valued branch of zl/q on
any region containing 0. Nevertheless, for each branch gH of zllq we have
limz_o^ll(z) = 0, so we adjoin a single point so to T, lying above OeC,
and we regard s0 as the origin of each of the cut planes £„; we then extend
the map ^:T->C\{0} by defining 0(so) = OeC, so that ^:Tu{so}-^C
is continuous at s0. Similarly, we can extend <f> by continuity (though not
meromorphically) at oo, adjoining a single point s^ to T, lying above
oo eZ, and putting <£($«,) = oo. We call S=Tu {s0,s^} the Riemann surface
ofzllq; by construction, 0 is a homeomorphism from S to Z. We can extend
the unbranched covering map ^:7->C\{0} to a branched covering map
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^ : S - > I by defining ^(so) = 0 and ^(soo)=oo; near s0 and s^, ^ is a
g-to-one mapping, so s0 and s x are branch-points of order q — 1. (See §§1.5
and 3.15 for branch-points.)

We have seen that S is homeomorphic (under </>) to the sphere I . We
may therefore regard S as a sphere, divided into regions EOiEl,...,Eq-l

by lines L0,Lli...,Lq-l from s0 to s^. The projection ij/'.S-*!, wraps
S g times around X, the region E of X being covered homeomorphically
by each of the regions En. As a point zeX follows a path winding around
0(or around oo), any point se\p~l(z) moves continuously above z, passing
through sheets..., Eo,ElyE2,... of S, corresponding to the way in which
</>(s) passes through the branches...,0o>0i>02>- • of zllq. See Fig. 4.41.

Fig. 4.41

4.9 The Riemann surface of Jp(z\ p a polynomial

Any polynomial p(z)eC[z] is analytic on C, and since we can continue
the function /̂C analytically for C / 0, oo, we can therefore continue the
2-valued function yjp(z) analytically along any path in C which avoids
the set of zeros of p. We shall consider the Riemann surface 5 resulting
from this continuation in various cases, depending on the number and
multiplicities of the zeros of p. By absorbing the leading coefficient into
z, there is no loss of generality in putting this coefficient equal to 1, so
that p is monic.

(i) p{z) = z — a. This is the general case in which p has degree 1, and
we have already considered the special case a = 0 in §4.8 (putting
q = 2). Since the substitution zi->z — a is an automorphism of X we must
expect the general case to resemble the special case.

If, as shown in Fig. 4.42, we cut 2 along a line L from a to oo (say,
along z — a ^ 0), then the resulting region E = Z \L is simply connected



158 Meromorphic continuation and Riemann surfaces

and contains no zeros of p{z) = z — a, so by the monodromy theorem 4.5.3
we have single-valued analytic branches / i , / 2 of y/p on E (satisfying
fx = —/2); we therefore take two copies E1,E2 of £ (regarded as lying
above £), the domains of fl9f2 respectively. If we continue fx analytically
across L(in either direction), then we obtain/2, so we join the two edges
of £ j to the opposite edges of E2 along lines LliL2 lying above L. The
projection of the resulting surface T= EluE2uL1 u L 2 onto the sphere
£ is an unbranched 2-sheeted covering map i//:T->C\{a}. By adding
two branch-points s^s^ to T, lying above a, OOGZ, we have a 2-sheeted
branched covering map ^:S= Tu{sa ,$„}-•£ . We can define 0:T->E
by putting (t>(s)=fn(s) when seEni and then extending this by continuity
to the rest of S. Thus 0:5->E is a homeomorphism, locally representing
a branch of yjp. See Fig. 4.43. This homeomorphism is seen most easily
by opening out the two cut spheres Ex and E2 to form hemispheres which
are then joined together across a common boundary L1uL2. This is
illustrated in Fig. 4.44.

Fig. 4.42

Fig. 4.43

Fig. 4.44
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(ii) p(z) = (z — a)(z — b\a^ b. If we cut Z along a line L from a to b (say
along the Euclidean line segment from a to b in C), then the resulting
region E = Z\Lis simply connected. We can continue y/p meromorphically
along all paths in E: analytic continuation in £ n C is straightforward,
and if ooe£ then each branch of y/p is meromorphic at oo (with a simple
pole) since each branch of Zy/(p(\/z)) = ^/((l — az)(l — bz)) is analytic and
non-zero at 0. As before, we may therefore use the monodromy theorem
to show that there are two single-valued meromorphic branches fx and
fi °l\/p o n £> e a c h having a simple pole at oo. We therefore take two copies
EUE2 of £, with En lying above £, and regard En as the domain of/n. By
crossing L in either direction we pass from one branch to the other, so we
join El and E2 together along lines LX,L2 lying above L, to obtain a 2-
sheeted unbranched covering surface T = £ 1 u £ 2

u L j u L 2 of Z\{a,b}.
Finally, we include branch-points sa,sb lying above a,b to obtain a
2-sheeted branched covering surface S = Tu{sfl,sk} of Z. As in case (i), S
is homeomorphic to a sphere. See Fig. 4.45.

Fig. 4.45

In this case, there is no branch-point on S lying above oo, for if we continue
y/p analytically along a closed path y winding once around oo in I , as in
Fig. 4.46, then provided y is sufficiently close to oo it winds once around
each of a and b (regarding y as a closed path in C), so both factors y/(z — a)
and y/(z - b) of y/p are multiplied by - 1 and hence y/p is invariant. Thus
we do not pass from one branch to another by continuing along y9 so S is not
branched above oo.

Fig. 4.46

(iii) p(z) = (z - a)2. To complete our examination of quadratic poly-
nomials p, we consider the case where p has equal roots. Now there are two
branches/x(z) = z - a and/2(z) = - (z - a) of y/p, both analytic on C and
meromorphic on L. We therefore take the Riemann surface S to consist of
two copies £j , E2 of Z, the domains otfl9f2 respectively. Since we cannot
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pass from one branch to another by meromorphic continuation of yjp, we
do not join Ei and E2, but instead we regard the surface S as a 2-sheeted
unbranched covering surface of £ consisting of two disjoint spheres. (Notice
that although/! and/2 take the same values at a and at oo, they are not
identically equal in neighbourhoods of these points, so there are two sheets
of S lying above each of a and oo.)

(iv) p(z) = (z — a)(z — b)(z — c), a, b, c all distinct. As in the preceding
cases, there are two branches fx and f2 of yjp, so the Riemann surface S
of y/p is a 2-sheeted covering of L. By continuing yjp analytically along
a small closed path around a, b or c we pass from / x to / 2 or vice-versa,
so S has branch-points sa9 sb9 sc lying above a, fc, c. There is also a branch-
point s^ above oo, since continuation around oo multiplies each factor
yj(z-a), yj(z — b) and yj(z — c) by —1, so that yjp is multiplied by

( - 1 ) 3 = - 1 .
If we cut £ along disjoint simple paths L, M from a to b and from c

to oo, then the resulting region £ = I \ (LuM) is not simply connected
(for example, in Fig. 4.47 a closed path winding once around L is not null-
homotopic in £), so we cannot apply the monodromy theorem directly
to E. Nevertheless, we can continue yjp analytically along all paths within
E, and that continuation is independent of the path chosen: for if conti-
nuation of yjp along paths y, S with the same initial and final points
produces different branches of yjp, then yjp is not invariant under conti-
nuation along the closed path y~l6\ however, the winding-numbers of
y~iS satisfy na(y~1$) = nb(y~1d) (=n, say) and nc(y~l5) = Oy so conti-
nuation along y~1S multiplies yjp = yj(z - a)(z — b)(z — c) by (— I)2" = 1,
and yjp is invariant. Hence, by continuing along paths in E we obtain two
single-valued analytic branches fl9 f2 of yjp on E. We therefore take two
copies £ j , E2 of £, the domains of fx and f2 respectively, and we join

Fig. 4.47
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them by lines Ll9 L2 above L and Ml9 M2 above M, similar to the joins
used in cases (ii) and (i).

If we open out the cuts on Ex and E2, then (as illustrated in Fig. 4.48)
we see that Ex and E2 are homeomorphic to the two halves of a torus,
joined across their common boundary components Lx u L 2 and M 1 uM 2 ,
so that S is homeomorphic to a torus.

There is a close connection here with elliptic functions. If Q is a lattice
in C then the Weierstrass function <? corresponding to Q satisfies an
ordinary differential equation

(*')2 = 4 p 3 - 0 2 p - 0 3 ,

where g2 and g3 are constants depending on Q (see §3.10); thus

where p is the cubic polynomial

p(z) = 4z3 - g2z - 03,

which has distinct roots by Theorem 3.10.9. Using this, we can construct
a homeomorphism a from the torus C/Q to the Riemann surface S of

Fig. 4.48
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w = J(p(z)) (consult Fig. 4.49). We recall from §3.15 that p and pf induce
branched coverings p :C/ft-*I and p':C/O->Z; for each teC/Q we
therefore define (x(t) to be the unique point in S which lies above z = P (f)e£
and carries the value w = P'(t) oijpiz), that is, #x(r)) = P(t) and #x(f)) =
P'(f), where ^ is the covering map S->E and 0:S-»E is the single-valued
function induced by analytic continuation of y/p. It is straightforward to
check that a:C/O->S is a homeomorphism, so we may regard S as being
parametrised by a variable feC/O; if we identify S with C/fl then, for
example, i//:S -> £ is identified with the 2-sheeted covering map P :C/Q -• £
which we studied in §3.15. Conversely, we will show in §6.5 that if p(z) is
any cubic polynomial 4z3 — g2z — g3 with distinct roots, then there is a
lattice O such that the associated Weierstrass function P satisfies
(p)1 = p(p), and hence the Riemann surface S of ^/p may be identified
with C/fi in the above way.

Fig. 4.49

(v) p(z) = Y\7=i(z~ajf^ al9...9amall distinct. Having dealt with some
special cases of y/p, we are now ready for the general case. If the multi-
plicities ej of the roots a>} of p are all even, then as in case (iii) there are
two single-valued meromorphic branches fx(z) = J~[(z — a^fil2 and
/2(z) = -/x(z) of y/p, so the Riemann surface S of y/p is a disjoint union
of two spheres, each the domain of a branch /„. Hence we may assume
that some root ai of p has odd multiplicity ey Extracting repeated factors
of p, we therefore have y/p = qy/r where q and r are polynomials, and r
has no repeated roots and is not constant. Since q is single-valued and
meromorphic on Z, the construction of the Riemann surface of y/p is
identical to that for y/r, so by replacing p by r we may assume that p has
distinct roots and is not constant, that is, m ^ 1 and each ^ = 1.

As in previous cases, the Riemann surface 5 of y/p has two sheets Ex

and £2, meeting at branch-points lying over al9..., am. If m = 2k is even,
then these are the only branch-points, but if m = 2k — 1 is odd, then there
is a branch-point lying over a2k = oo, as in case (iv); in either case, we have
an even number of branch-points over au..., a2k, so we cut 2 along simple,
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mutually disjoint paths from ax to a2, a3 to a4,..., a2*-1 to a2k, as shown
in Fig. 4.50. The resulting region E is not simply connected (unless k = 1),
but by the argument used in case (iv), meromorphic continuation of yjp
within E is independent of the path of continuation since any closed path
in E winds around the branch-points an even number of times. We can
therefore form the Riemann surface S by taking two copies Eu E2 of £,
each the domain of a meromorphic branch of y/p, and by joining Ex to
E2 across lines lying above the k cuts in E. This gives a 2-sheeted covering
surface S of I , branched over al9...9a2k, and by opening out the cuts in
Ex and E2, as in case (iv), we see that S is homeomorphic to a sphere
with k— 1 handles attached. This is illustrated in Fig. 4.51. We say that
such a surface S has genus g = k — 1; for example, a sphere and a torus
have genus 0 and 1 respectively. We shall define and investigate the concept
of genus more fully in §4.16.

Fig. 4.50

Fig. 4.51

4.10 Branch-points and the monodromy group

The examples considered so far may have given the impression that at
each branch-point of a Riemann surface, all the sheets come together at
a single point. However, the following example shows that this is not
generally so.
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The many-valued function/(z) = ^/(l + yjz) has four analytic branches
on £ = 2\{0,1, oo}, there being two values for C = V z a n c*e a c^ s u c^ va^ue

determining two values for /(z) = ^/(l -f £)• If we take a to be the positive
value + yj\ of yjj, then we can label the branches / i , . . . , / 4 of / near
z = i so that they take the distinct values + 7 U + a ) > +\A1~~a)'
- y/(l + a), - ^/(l - a) respectively at z = \ (notice that 1 + a > 0, so that
these values are all real).

If we continue fl analytically along a closed path y from j to \ with
ny(0)= 1 and ny(l) = 0 (say y(s) = \elnis\ then 1 + £ is transformed from
1 + a to 1 - a , and /(z) = N/(l + () is transformed from - f ^ ( l + a ) =

/lfi) t o 4- ̂ (1 — a) ==/2(i), as in Fig. 4.52. Thus analytic continuation
around 0 transforms fx to / 2 , and similarly f2 to fu f3 to / 4 , and / 4 to
/ 3 , so these four branches are permuted according to the permutation
n{y) = (12)(34) of their indices. We therefore join the corresponding sheets
£x to £2, and £ 3 to £ 4 at two branch-points above 0, so that as zeZ
rotates once around 0 each point sei)/~1(z) above z moves from Ex to £2,
or £ 2 to El9 etc (see Fig. 4.53). Thus ij/'1^) consists of two points, each
a branch-point of order 1 since it joins two sheets.

Fig. 4.52

Fig. 4.53

If, on the other hand, we continue analytically along a path <5 winding
once around 1 but not around 0, then 1 + £ is transformed from 1 + a to
1 + a along a path which does not wind around 0, so fl and / 3 (the
branches of ^(1 + £)) are transformed to themselves; however, 1 — ( winds
once around 0 from 1 — a back to 1 — a, so f2 and / 4 (the branches of
yj(\ - 0 ) are interchanged. See Fig. 4.54. Thus the permutation of the
branches induced by continuation around 1 is 7r(<5) = (l)(24)(3), so sheets
£ 2 and £ 4 are joined at a branch-point of order 1 over z = 1, while sheets
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£ t and £3, which carry analytic branches at z = 1, are unbranched. In
this case, i/t~l(\) consists of three points: one branch-point where £ 2

and £ 4 meet, and two points on Ex and £ 3 where S is not branched. This
is illustrated in Fig. 4.55.

Finally, suppose that we continue analytically along a closed path e
winding once around 00 in Z; this means that, as a path in C, e winds
once around both 0 and 1 (see Fig. 4.56). Both y and S follow the positive

Fig. 4.54

Fig. 4.55

/(z)=V(l-Q

V(l-a) +V(l+a

Fig. 4.56
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(anti-clockwise) orientation of C, and this induces (by stereographic
projection) orientations of S2 and hence of E. For e to be consistent with
this orientation of Z at oo, we need its projection n~l(e) to be consistent
with the orientation of S2 at N, so e must follow the negative (clockwise)
orientation of C; for example, we could take

~1y~1as in Fig. 4.57, or any other path in E = Z\{0, l,oo} homotopic to<5~1y
It follows that the permutation of the branches, induced by continuation
around oo, is equal to the composition of the two permutations induced
by continuation along S'1 and y ~ \ in that order, so the corres-
ponding permutation of the indices 1,...,4 is n(e) = n(S)~1n(y)~1 =
(24)" x(34)" x(12)"l = (24)(34)(12) = (1234), reading from left to right. (It is
instructive, if a little tedious, to verify this directly by considering the
analytic continuations of 1 + C and 1 — f around oo, as we have done
above around 0 and 1.) Thus, as shown in Fig. 4.58, the four sheets
£ ! , . . . , £ 4 are joined at a single branch-point of order 3 over oo, in the
same way as the four sheets of the Riemann surface of z1/4 are joined at
oo: we must expect this since f(z) = J(\ + Jz) behaves like z1/4 for
large |z|.

Fig. 4.57

Fig. 4.58

It can be proved that every closed path x from \ to \ in £ is homotopic
to a product P(y, 6) of powers of y and & (this is not hard to see: imagine
X as a piece of stretched elastic which is then released, except at its end-
points, so that by contracting within E it winds itself successively around
0 and 1); in algebraic language, we are saying that the classes [y] and [<5]
generate the fundamental group n^E.j). Analytic continuation along
X induces a permutation n(x) of the indices 1, 2, 3, 4 corresponding to the
way the branches / i , . . . , / 4 are permuted, and since / ^P(y ,5 ) we have
n(x) = n(P(y, S)) = P(n(y), n(8)\ the corresponding product of powers of n{y)
and K(8). These permutations n(x) from a group G called the monodromy
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group of the Riemann surface S; we have shown that G is generated by
7i(y) = (12)(34) and n(8) = (24), and that there is a homomorphism from
n^Eij) onto G given by [#] '-• TT(X)- Using the relations n{y)2 = n(8)2 = 1
and (7r(y)7i((5))4 = 7r(6)"4 = 1 we see that G is a dihedral group of order 8
contained in S4 (see §2.13 for dihedral groups).

In the same way, we can define the monodromy group G of the Riemann
surface S of any many-valued function to be the group of permutations
of the sheets induced by meromorphic continuation along closed paths
in Z. There are many interesting connections between algebraic properties
of G and topological properties of S; for example, it is not hard to see
that S is connected if and only if G permutes the sheets transitively.

4.11 Abstract Riemann surfaces

In this chapter we have seen how certain many-valued functions / may
be represented by single-valued functions </>:£-•£ which can be regarded
as being meromorphic on a domain S, the Riemann surface of/. In earlier
chapters we considered the surfaces 5 = Z and C/Q (Q a lattice), together
with the single-valued meromorphic functions defined on them. Our aim
in the rest of this chapter is to present a unified theory of Riemann surfaces
and their meromorphic functions, including the above examples as special
cases; this will enable us to define the most general domain on which a
meromorphic function can be defined.

This theory was developed during the second half of the nineteenth
century. Riemann surfaces were introduced by Riemann in his doctoral
dissertation Foundations for a General Theory of Functions of a Complex
Variable in 1851 as essentially topological aids to our understanding of
many-valued functions. He stated many powerful results, but his proofs,
though illuminating, were not always completely rigorous since the
necessary analytic techniques had not yet been fully developed. This
omission was eventually repaired, mainly by the Weierstrass, and by the
early twentieth century Riemann's theory had been placed on a sound
basis. During this process it became clear that Riemann surfaces could
be regarded as mathematical objects worthy of study in their own right;
this point of view was expressed in F. Klein's book On Riemann's Theory
of Algebraic Functions and their Integrals, and it eventually lead to the
definition of an abstract Riemann surface in H. Weyl's book The Concept
of a Riemann Surface in 1913. In the preface Weyl states

I shared his [Klein's] conviction that Riemann surfaces are not merely a
device for visualizing the many-valuedness of analytic functions, but rather
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an indispensable essential component of the theory; not a supplement,
more or less artificially distilled from the functions, but their native land,
the only soil in which the functions grow and thrive.

We begin with the concept of a surface. A surface S is a Hausdorff
topological space such that every point seS has an open neighbourhood
U homeomorphic to an open subset of C (or equivalently U2); thus S has
the same local topological properties as the plane. (Some authors also
require 5 to be connected, but we will not impose this restriction.) More
generally, an n-manifold is a Hausdorff space in which every point has a
neighbourhood homeomorphic to an open subset of (Rn; thus a surface is
a 2-manifold.

Any surface S is covered by a family of open sets Uh such that for each
Ui there is a homeomorphism O,: 17, -»Wh where Wt is an open subset of
C. We call such a set of pairs s/ = {(l^, <Df)}. an atlas for S; if seUt we
call (Uh O£) a chart at s and zt = O,(s) a local coordinate for s. (Geographic
charts and atlases of the Earth's surface are obvious analogues, and are
helpful for visualising more abstract cases.)

If (Uh Ot) and (Up O,) are charts at seS giving local coordinates z{ and
Zj for s, then zx = (Q>i°Q>]~1)(zj) expresses the change in local coordinates
for s corresponding to the two different charts. This is illustrated in
Fig. 4.59. The functions

<D,o(Dr * :O/C/,.n Uj)-+ 0,(17,0 [/,),

called the coordinate transition functions, are defined whenever Utn U} ^ 0 ;
an atlas $4 on 5 is called analytic if all its coordinate transition functions
are analytic.

Fig. 4.59

In order to define what is meant by an analytic or meromorphic function
on 5, without having to specify a particular atlas, we define analytic atlases
sf = {(l/t,O.)} and^ = {{Vp*¥j)} to be compatible if, whenever (I/,, OJ
and (Vj9 Vj)e<% satisfy Utn Vj * 0 , then
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is analytic; equivalently, the atlas i u J is analytic. Compatibility of
atlases is an equivalence relation (see Exercise 4F), and an equivalence
class of atlases is called a complex structure on S. Finally, a surface with
a complex structure is called a Riemann surface, or sometimes an abstract
Riemann surface to distinguish it from the Riemann surfaces of specific
functions, as constructed in §§4.7-4.10; before showing (in §4.13) that these
surfaces are also abstract Riemann surfaces, we shall first give some rather
simpler examples. In each case it is sufficient to specify one atlas on S,
since this can be taken as a representative for its equivalence class, thus
defining a complex structure on S.

(1) Let S = C and let si = {(C,id:C->C)}, an atlas for C consisting of
a single chart; clearly si is analytic. There are many compatible atlases,
for example & = {(l/^idil/j-* l /J}, where Ut ranges over all open discs
in C of radius 1; every coordinate transition function is the identity and
therefore analytic, so C is a Riemann surface.

(2) Any open subset T of a Riemann surface is itself a Riemann surface.
For if {(l/i,<Dj)} is an analytic atlas on S, and if ¥ , is the restriction of <t>t

to U{;n T (whenever this intersection is non-empty), then {(l^nT, *?,-)} is
an analytic atlas on T. It is easily seen that compatible atlases on S induce
compatible atlases on T, so each complex structure on S induces a unique
complex structure on T.

(3) Let 5 = Z = Cu{oo}, with the topology defined in §1.2, so that S
is homeomorphic to the 2-sphere S2. There is an atlas s/ on S consisting
of two charts (l/,,<D,)(i = 1,2): we take L^ = C with <DX = id:C->C, and
ir2 = I \ {0} with <D2 = J:X\{0}-*C given by J(z)=l/z for zeC and
J(oo) = 0. Clearly lt = Uiul/2, and Ox and <D2 are homeomorphisms (<t>2

is induced by a rotation of S2). We have (O2o<Dj"1)(z)= 1/z, which is
analytic on <Di(l/inl/2) = C\{0}, and similarly (<t1o<D2~

1)(z)= l/z is
analytic on <I>2(C/1 n U2) = C\{0}, so si is an analytic atlas, giving a complex
structure on Z. The resulting Riemann surface is called the Riemann
sphere; we shall see that our definitions of concepts for Riemann surfaces
are consistent with the way in which they were used in Chapters 1 and
2 for X.

(4) In view of its importance, we embody the next example in a theorem:

Theorem 4.11.1. IfQ is a lattice in C then C/fi is a Riemann surface.

(As shown in §3.5, C/Q is homeomorphic to a torus; as part of the following
proof, we shall show that C/Q is a surface as defined above.)

Proof First we show that C/Q is Hausdorff (this was obvious in the
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previous examples). Recall that p:C -• C/Q is the projection map zh-> [z] =
z + Q, and [/ £ C/Q is defined to be open if and only if p~l(U) is open
in C; thus p is open and continuous.

Let 5j = [ z j and s2 = [z2] be distinct points in C/Q. Since £1 is discrete,
there exists

so let Fx and V2 be open discs of radius rj/2, centred at zx and z2 respectively.
We now show that (Vx + w)nV2 = 0 for all coeQ. For if not then there
exist ze Kj and coeil satisfying z + a>€ V2, and hence the triangle inequality
gives

\z2 - (zx + c»)| ̂  \z2 - (z 4- a))| + |(z + c») - (zx + co)\

2 2

contradicting the definition of n. Since p is open, p(Kx) and p(F2) are
disjoint open neighbourhoods of sx and s2 in C/Q, so C/Q is a Hausdorff
space.

We now construct an atlas on C/Q. Since Q is discrete, there exists

S= inf M > 0 .

If if is the set of all open discs in C of diameter at most S/2, then

(i) Vn(V+ co) = 0 for all Kef , O)GQ\{0};

(ii) if K, K ' e f then V has non-empty intersection with at most one of the
translates V + co of K'(o>eQ).

The triangle inequality immediately gives (i), while for (ii), suppose that
z1eKn(K' + a>1) and z2eKn(F' + a>2) with o}l9€o2eQ9 say z1=z/

1-hco1

and z2 = z2 -f w2 with z\,z'2eV'; then the element o)l —a)2 of Q satisfies

\<o1-<o2\ = \(z1-z'l)-(z2-z>2)\
= | ( z 1 - z 2 ) - ( z \ - z 2 ) |

so ĉ ! = o)2 by definition of 5.
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By (i), the restriction pv of p to V is one-to-one; since p is continuous,
so is pv. Moreover, pv is open: if a subset A of V is relatively open in V
then (since K is open) A is open in C, so pv(A) = p(A) is open in C/Q (since
p is open) and hence relatively open in Py(V) = p(V). Thus pv is a
homeomorphism of V onto its image p(V) (= l/K, say), so there is a
homeomorphism <I>K = p ^ 1 : t / K ^ F . The set of all charts {UV9<i>v), with
Ve'V, is therefore an atlas for C/Q, so C/Q is a surface.

To show that this atlas is analytic, suppose that (Uv,<DK) and (UVi<bv.)
are charts with UvnUv.^0\ we must show that the coordinate
transition function

is analytic (see Fig. 4.60). Let ze<t>v(UvnUv.) and let z' =
( • K - O J ^ H Z ) ; then pK,(z') = <I>K J(Z) = /V(Z), so p(z') = p(z) and hence
z = z' + co for some coeQ (possibly depending on z). Since zeV and z'eF'
we have Vn(V 4- co) ̂  0 , and hence w is independent of z by (ii). Thus
z' = z-co for a constant coeQ, so z' is an analytic function of z, as
required. •

Fig. 4.60

C/Q

Although different lattices Q c C give homeomorphic surfaces C/Q, we
shall see in §6.1 that they give rise to infinitely many essentially distinct
complex structures on the torus.

In future, when we refer to C, £ or C/Q (or to any of their subsets) as
Riemann surfaces, then it should be understood that we are using the
complex structures described in the above examples.

The following simple result will be found useful:

Theorem 4.11.2. If $4 = {(1/^,0,)} is an analytic atlas, and if for each
i, {Vij} is a family of open sets covering Uh and T^ is the restriction of<b{

to V^ then & = {(F0-,*F0)} is a compatible analytic atlas.

Proof The underlying surface is covered by the sets Uh and hence by
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the sets Viy The coordinate transition functions for the atlas are
either the identity or the restrictions of the coordinate transition functions
of the analytic atlas jrf, so & is analytic and compatible with s4. •

Using this result, we can always represent a given complex structure by
an atlas in which the open sets are, in some sense, 'arbitrarily small'.

4.12 Analytic, meromorphic and holomorphic functions
on Riemann surfaces

If S is a Riemann surface, then a function f:S -* C is defined to be analytic
if, for every chart (£/, O) on S, the function /°<E>"x :O(L/) -• C is analytic on
0(10 (in the usual sense of being a differentiable function of a complex
variable). See Fig. 4.61. Since O is a homeomorphism, it follows that / is
continuous on S. If (F, *F) is a chart in a compatible atlas on S, with

/ 0 , then <I>o*F~l is analytic (again, in the usual sense), and so

is a composition of analytic functions and hence analytic. Thus the above
definition of an analytic function / :S ->C depends only on the complex
structure on S, and not on the particular atlas of charts giving rise to that
structure. We say tha t / i s analytic at some point seS if it is analytic on
some open neighbourhood of S, this neighbourhood being a Riemann
surface by Example (2) of §4.11.

Fig. 4.61

Examples. (1) Any open subset U c c is a Riemann surface with a single
chart (U, id: U -> I/), and the functions which are analytic on U in the sense
defined above are precisely those which are analytic on U in the traditional
sense; thus there is no ambiguity in referring to analytic functions on
Riemann surfaces contained in C.

(2) The Riemann sphere I has two charts (l/j, «,)(/= 1,2), as defined
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in Example (3) of §4.11. Given /:Z->C, the functions /"Of1 :*,(!/,)-• C
have the form

and

so / is analytic on Z if and only if both /(z) and /(1/z) are analytic on
C. For zeC\{0}, /(l/z) is analytic if and only if /(z) is analytic, so / is
analytic on Z if and only if /(z) is analytic on C and /(l/z) is analytic at
z = 0. This is precisely the condition given in §1.3 for / to be analytic on Z,
so our two definitions agree for S = Z.

Let St and S2 be Riemann surfaces. Then a continuous function
f:Sl-+S2 is defined to be holomorphic if, whenever (l/^Oi) and (U2,<S>2)
are charts on 5X and S2 with l^ nf~1(U2) # 0 , then the function

is analytic. See Fig. 4.62. (Notice that since / is continuous,
* i ( f I n / " l(Ui)) is a n open subset of C.) As in the case of analytic functions
on Riemann surfaces, one can show quite easily that this definition is
independent of the choices of atlases of charts for the complex structures on
Sx and S2. Moreover, if S2 ^ C then f:Sx -> S2 is holomorphic if and only if
it is analytic. Now a word of warning: because of the preceding fact, that
holomorphic functions are a generalisation of analytic functions, some
authors use the word 'analytic' where we have used 'holomorphic', to
describe functions between arbitrary Riemann surfaces rather than merely
those with co-domain S2 £ C; this can lead to confusion when the co-
domain S2 is Z, since a function can then be 'analytic' while having oo as a
value! For example, Weierstrass' elliptic function p induces a holomorphic
function $:C/Q-^Z, with $([0]) = oo; for this reason we have restricted
the term 'analytic' to functions f:Sx -+S2 £ C.

Fig. 4.62
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Theorem 4.12.1. If f:Sl-*S2 and g:S2->S3 are holomorphic functions
between Riemann surfaces, then g°f:Sl ->S3 is holomorphic.

Proof By Theorem 4.11.2 we can choose the atlases si{ on Sf(i = 1,2,3)
so that for each (U1,®1)esf1 there exists (U2,®2)es/2 w i t h / f l ^ c c/2,
and for each (U2,<b2)es/2 there exists (U3i<b3)ej/3 with g(U2) c [/3. Since
<J>2ofo<^-1 and Q>3

og°Q>2
 l are analytic, so is

Now if ( K ¥ ) is any chart on S3 with (g°f)(Ux)nV^09 then

is analytic since both the coordinate transition function T 0 ^ 1 and
Q>3°9°f°Q>i l are analytic. Clearly g°f is continuous, so it is holomorphic.
This proof is illustrated in Fig. 4.63. •

Fig. 4.63

^ — ^ > 2 o f ° ^ 7 ^

Theorem 4.12.2. IfC/Q is the Riemann surface defined in Theorem 4.11.1,
then the projection p:C->C/Q, zi-^[z] = z + Q, is holomorphic.

Proof C has a single chart (C,O), with <D = id:C->C, while the charts
on C/Q have the form (Uv,<&v), where OK°p restricts to the identity
function OK°pK on each FGT^. Thus <!>v°p°<t>~l:V->V is the identity
function, obviously analytic. Since p is continuous, it is holomorphic. •

Just as the holomorphic functions S-+C are called analytic, those into
I are called meromorphic. Now I has two charts (Uh <I\) (i = 1,2) as defined
in Example (3) of §4.11, so if S is any Riemann surface then a function
/ :S ->Z is meromorphic if and only if the functions

and

are both analytic. This is equivalent to the condition that, for each chart



Analytic, meromorphic and holomorphic functions 175

/,O) on S, the function

is meromorphic (in the usual sense). It is clear that when S ̂  Z, this use
of the word 'meromorphic' coincides with that in Chapter 1, so we have:

Example.{X) The meromorphic functions/:Z->Z are the rational func-
tions (see Theorem 1.4.1).

(2) Since C £ Z, every analytic function on a Riemann surface is
meromorphic.

(3) If ft is a lattice in C then the meromorphic functions / :C/f t -+Z
can be identified, in the obvious way, with the elliptic functions with
respect to ft. For if g:€->!. is such an elliptic function, then there is a
well-defined function/=#:C/ft->Z, [z]\-+g(z)\ if (Uv,<!>v) is a chart on
C/ft (as defined in the proof of Theorem 4.11.1), then f°Q>v l = f°P = 9 on
K, and s o / is meromorphic. Conversely, if/: C/ft -• Z is meromorphic then
g =/°p:zh*/([z]) is a meromorphic function C -• Z, elliptic with respect to
ft. See Fig. 4.64.

Fig. 4.64

If/ and g are meromorphic functions on S then for seS we can define

(f±g)(s)=f(s)±g(s\

(f-9)(s)=f(s).g(s\

(f/9)(s)=f(s)/g(s)

if g is not identically zero. These functions f±g, f.g and f/g are
meromorphic on S, so the meromorphic functions on S form a field; as
we have just seen, the elements of this field are the rational functions if
S = Z, and they can be identified with the elliptic functions if S = C/ft.
The analytic functions on S are closed under addition, subtraction and
multiplication, so they form a ring contained within the field of mero-
morphic functions; if S is compact and connected, then this ring consists
of the constant functions S -• C (for S = Z see the proof of Theorem 1.3.3,
for S = C/ft see Theorem 3.6.1, and for the general case see Exercise 4K).
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4.13 The sheaf of germs of meromorphic functions

In §§4.7-4.10 we constructed the Riemann surfaces S of certain many-
valued functions. We now show how this construction may be carried out
in general, so that the resulting surface S is an abstract Riemann surface
as defined in §4.11, and the maps \j/ and 0:S-»E are meromorphic
in the sense of §4.12. Since the technique is rather abstract, we first
outline briefly how the above examples of Riemann surfaces may be given
complex structures.

Let T be the unbranched Riemann surface of any of the many-valued
functions w=f(z) considered in §§4.7-4.10, and let ij/:T->I, be the
projection map. Each se71ying above C has an open neighbourhood U
mapped by \j/ homeomorphically onto an open subset of C, so we take
(U9[I/\U) to be a chart at s; if s lies above oo then we replace ij/ by J°\p.
Whenever two such neighbourhoods intersect, the corresponding co-
ordinate transition function has the form zh*z (z # oo) or zv+ \/z (z #0),
and is therefore analytic. With this atlas of charts, T is an abstract Riemann
surface, and \j/ and $:T->Z are meromorphic. Now the full Riemann
surface S consists of T together with any branch-points, and we cannot
use \j/ to give local coordinates at a branch-point since it is not locally
one-to-one. Instead, near a branch-point sc of order q - 1 above e e l we
can represent the locally g-valued function/(z) by a single-valued function
F(() of C, where ( = (z - c)l/q or z" i /q as ceC or c = oo; we then use ( as
a local coordinate at sc, and since the coordinate transition functions
(between ( and z) are analytic on overlapping neighbourhoods, it follows
that S is an abstract Riemann surface.

We now turn to the general case. Rather than construct the various
Riemann surfaces individually, we shall construct a single abstract
Riemann surface £f which is so large that it has, among its subspaces, the
Riemann surface of every many-valued meromorphic function! One of the
main difficulties, which we now confront, is that of describing the points
in these surfaces, that is, of defining precisely the concept of 'a single-
valued branch of a many-valued function w=f(z) at a point zeX\ It is
insufficient to define this to be a pair (z, W)GI X I satisfying w =/(z) (so that

Fig. 4.65
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the Riemann surface of w =/(z) is identified with the graph of/), since two
branches of / may agree at z but not near z: for example,/(z) = z ^ l + z)
has two branches with the same value at z = 0, so the graph has one
point at z = 0, as in Fig. 4.65, whereas the Riemann surface has two.

Given aeX, let 9a be the set of all functions which are meromorphic
in some open neighbourhood of a. If fge^a then we write f ^ ag if f = g
in some neighbourhood of a; clearly this is an equivalence relation on
« f̂l, and the equivalence class of/, denoted by [/]f l , is called the germ of
f at a. We call this germ analytic i f / is analytic at a, that is, f(a) ^ oo.

We can think of the germs [/L(aeE) as representing single-valued
meromorphic functions defined near a, since by definition we have [/] f l =
W\b ^ a nd o nly if 0 = ft and/ = g near a (in which case, by Lemma 4.1.3,
/ = g on any region on which both/ and g are meromorphic). The set Ji
of all germs [ / ] a , for all aeE, is called the sheaf of germs of meromorphic
functions', we shall show that M is an abstract Riemann surface, and that
the unbranched Riemann surface T of any many-valued function may be
identified with an open subspace of J(, so that by Example (2) of §4.11
T is an abstract Riemann surface.

First we define a topology on Jt, the germs close to [ / ] a being the
germs [ / ] b at points b close to a in S. If aeZ then a disc centred at a is
an open disc D = {zeC||z — a\ <e} (fi>0) if aeC, or an open disc
D = {zeC\\z\ >£}u{oo}(e>0) if a = oo; in either case, the set <&a of all
discs centred at a has the property that if D,£e^f l then either D ^ E or
E £ D. If m = [ / ] a is a germ in ^ , then/is meromorphic on some De@ai

and we write m — [/),/]«; by Lemma 4.1.3, m determines / uniquely on
D. In this case we define the D-neighbourhood D(m) of m in M to be
D(m) = {[f~\b\beD}. A subset A^Jt is defined to be open if for each me A
there is some D-neighbourhood D(m) £ A. Clearly, M is open, as is any
union of open sets, and the empty set is open since it contains no germs
m which can violate the definition; to show that we have a topology on
J( it remains to show that if A and B are open then so is AnB. Any
me A nB has the form m = [ D , / ] a where De$)a and D(m) c A , and similarly
™ = [£>0L where Ee9a and E(m)^B; thus [f]beA for all beD, and
[_g~\heB for all fce£. Now DnE is a disc Fe@a, on which both/and #
are meromorphic; since [/] f l = m = [#]a we have / = g near a and hence
/ = # on F by Lemma 4.1.3. Thus [/]*, = [#Le ,4n£ for all fceF, so Ar\B
contains F(m) and is therefore open.

Given m = [ / ] a e ^ , we define \j/(m) = a. To show that ^ : ^ - > Z is
continuous, take any open set U £ Z and let me\^~ 1(U), so a = \lt(m)eU.
Since 1/ is open, there exists De@a such that m = [D,/] f l and D^U.
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Each element of D(m) has the form [/]fc for some beD, so *A([/]&)= beU.
Thus D(m)^ \lt~l(U\ so ij/'1^) is open and ^ is continuous.

Using i/f we can show that Jt is a Hausdorff space. If m = [ / ] a and
n = Mb are distinct elements of Ji, then either a#fc, or else a = b but
there is no DeQJa on which/ = #. If a^b we can choose disjoint open
neighbourhoods U and K for a and b in Z (which is Hausdorff), and then
\l/~ 1(U) and i/f" 1(V) are disjoint open neighbourhoods of m and w in Ji,
as required. If a = b we can choose some De@a on which both / and g
are meromorphic, so f^g on D; then D(m) and D(H) are open neigh-
bourhoods of m and n in ^ . If these are not disjoint, then [ / ] c = [g~]c for
some ceD, so / = g in some neighbourhood C/ of c in Z), and hence f = g
on D by Lemma 4.1.3. This contradiction shows that D(m)nD(n) is empty,
so M is a Hausdorff space.

It is clear that the restriction ^ D m of ^ to a D-neighbourhood D(m) of
m maps D(m) homeomorphically onto the open set D ̂  Z. If î (m) # oo then
D ^ C and we can use (D(m\\^Dm) as a chart at m. If ^(m)= oo then
^°^D,m'[/]b|-> 1/fe maps D(m) homeomorphically onto an open disc in C
(centred at 0), so we can use (D(m\J°\l/Dm) as a chart. Each coordinate
transition function is either the identity function on a subset of C or else
the restriction of J to a subset of C\{0}; these functions are analytic, so
with this atlas of charts M is an abstract Riemann surface, and it is easily
seen that ^ : ^ - > £ is meromorphic (in the sense defined in §4.12).

Given m = [ / ] f l e^ , the value f(a) is independent of the particular
choice of/, so we have a function $\J(-*?< given by </>(m) =f(a). To show
that <f> is meromorphic we show that <f> maps the various local coordinates
on M meromorphically into Z. First consider a chart on M of the form
(£>(m),^Dm) where m = [ D , / ] a and a = \l/(m)/ oo, so D g C . Since / is
meromorphic on D, the transformation of coordinates </>°^^i,:D-*Z,
z\-+f(z) is meromorphic. See Fig. 4.66. If, on the other hand, we consider
a chart (D{m\J°^fDm) where w = [D, / ] 0 0 , then the transformation of
coordinates is given by 0°(J°^D,m)~1 = </>o^D,m°^:^(^)-^^ zh*/(l/z),
and this is meromorphic on J(D) (since 0£ J(D) and / is meromorphic on
D). Thus 0 : ^ - » E is meromorphic.

Using ^ , we have a simple description of meromorphic continuation

>f(z)

I /
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along paths. Suppose that meJf and 7 is a path in Z starting at ^(m). If
some meromorphic function element in m can be continued along 7, then
at each point y(t\ re/ , this continuation gives a germ 7(f) satisfying
ij/(y(t)) = 7(t), as in Fig. 4.67; by Theorem 4.4.1, y(t) depends only on m, 7
and t, and not on the method of continuation along 7. The function
y\l-+J(, called the meromorphic continuation ofm along 7, is continuous,
so it is a path in M starting at m: if A is an open subset of Jl and
toey~1(A\ say 7(r0) = n = [ / ] a where a = y(t0), then since A is open we
have D(n)^A for some De@a; for all t sufficiently close to t0 we have
y(t)eD (as in Fig. 4.68) and y(t) = [/]y(f)eZ)(n) ^ A, so tey~ 1{A) and hence
7 is continuous. Conversely, if 7 is any path in M starting at m, then there is a
path y = \j/oy in Z starting at \p{m\ and the germs y(t\ re/ , give a
meromorphic continuation of m — y(0) along 7.

Fig. 4.67

Fig. 4.68

This gives us an equivalence relation on M, two germs m and n being
related if n can be obtained by meromorphic continuation of m along
some path 7 in E, or, equivalently, if there is a path 7 in M from m to n.
The equivalence classes partition M into disjoint sets which, being path-
connected, are connected; it is easily seen that these sets are open, and
hence also closed (their complements, being unions of open sets, are open),
so they must be the connected components of J(, each one an abstract
Riemann surface by Example (2) of §4.11. The component Ji(rn)
containing m is called the unbranched Riemann surface of m\ for example,
if m represents a branch of zilq at some point in C\{0}, then Jf(m) can
be identified with the unbranched Riemann surface T of zllq (see §4.8),
since the elements of T correspond to the different branches of z1/q at
points in C\{0}, that is, the germs n which can be obtained by continuation
ofm.

If >4(z, w) is a single-valued function of two variables z and w, then the
unbranched Riemann surface MA of the equation A{z, w) = 0 is defined to
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be the largest open subset of M on which A(ij/(m\ (/>(m)) = 0. Thus Jt A

consists of the germs m = [D,/] f l such that z and w =/(z) satisfy A(z9 w) = 0
for all ZED. (Notice that the condition that Jt A is open requires A(z,w)
to vanish not just at a, but also in some D-neighbourhood of a.) In
§§4.7-4.10 we took A(z9w) = ew-z, wq-z, w2-p(z) or w 4 - 2 w 2 +
1 — z; then JtA can be identified with the unbranched Riemann surface
T of logz, z1/<7, y/p(z) or ^/(l -I- yjz) respectively, as constructed in those
sections. With one exception, in each of those examples JtA was a single
component of Jt since it could be obtained by meromorphic continuation
of a single germ; the exceptional case was y/p(z) where p(z) = (z — a)1, there
being two components, each conformally equivalent under \jj to Z,
corresponding to the two branches ± (z - a) of y/p(z).

In general, suppose that A(z,w) is such that, whenever a function/(z)
is meromorphic at a point aeZ, then the function g(z) = A(z,f(z)) is
meromorphic at a (this is always satisfied if A is a polynomial in z and
w). If m = [ / ] a is in Jt A then # = 0 near a. Now continuation of m along
a path y in Z starting at a induces a continuation of g along y\ since g = 0
near a, the zero function is a continuation of g along y, and this continuation
is unique by Theorem 4.4.1, so A(z,w) = 0 along y; this shows that JtA

contains the entire component Jt(m\ so JtA is a union of components of
M. This argument, known as the principle of permanence of identical
relations, does not apply directly to the function A(z, w) = e™ — z, since g will
not be meromorphic at poles of/; however, as we saw in §4.1, any germ of
log z may be continued analytically throughout C\ {0}, so the problem does
not arise.

For later applications we need a condition on a set ^ of germs which
ensures that any germ in ̂  can be continued meromorphically along all
paths in some region £, using only germs in #. For any region E £ Z, we
define a subset ^ £ J( to be sufficient for continuation within E if, for each
aeE,

(i) the set &a — ^nij/' 1(a) of germs in ̂  at a is non-empty;
(ii) the germs in &a all have the form [Da, /] f l for some common

D.e9.,DacE;
(iii) {JbeDa^b = Ume*flA,(™)> that is, the germs in &b (for fceDJ are precisely

the germs [ / ] b induced at fc by the germs [Dfl,/]fl in #fl.

(For examples, see the proofs of Theorems 4.14.3, 14.18.1 and 6.6.4.)

Lemma 4.13.1. If^ is sufficient for continuation within E> then each germ in
<$ can be continued along any path y in £, and the resulting germ y(t) at each
point y{t) is in (S.
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Proof Let me#y(0), and let tt be the supremum of all tel such that m
can be continued along y as far as y(f), using germs in <3. Clearly tx > 0
since some initial segment of y must lie in the domain Dy{0) of m. If we
put a = y(f i), then by condition (ii) the germs in <&a have a common domain
Dae@a, Da^E (consult Fig. 4.69). By continuity of y we can choose t2 < tx

sufficiently close to tx that y([t2,ti~\)^Da. Since t2<tx there is a
continuation of m along y, using germs in #, as far as ft = y(t2). In parti-
cular, the resulting germ y(t2) = [Pb*9\b *s *n ^» s o by condition (iii) it
has the form [ / ] b for some germ [Dfl,/]fle^fl. Then / = # near ft, so f = g
on the region DanDh and hence we can use the function element (Da,f)
to extend the continuation of m further along y. If tx < 1 then this continues
m to points y(t)eDfl with t > tl9 contradicting the definition of tx. Hence
t x = 1 and we have continued m as far as y(l). •

Fig. 4.69

Corollary 4.13.2. If in addition, E is simply connected, then each
extends to a single-valued meromorphic function f on £, with [ / ]„€# /or all
aeE.

Proof. This follows immediately from Lemma 4.13.1 and the monodromy
theorem 4.5.3. •

It remains for us to describe how to adjoin branch-points to J(. It is
helpful to recall how we did this in §4.8 to the Riemann surface of zllq

at z = 0; we shall translate this process (typical of all branch-points) into
the language of abstract Riemann surfaces. Once one has grasped the
basic idea (the choice of local coordinates) there are no great difficulties;
however, it is a lengthy process to verify rigorously all the details (such
as the fact that the extended space is Hausdorff) so we will merely give
a brief outline, in the hope that the reader can Till in the gaps. (For a
more complete account, see Springer [1957].)

For convenience, we first consider branch-points at 0. Let D be a disc
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| z |<e , and let aeE = D\{0}. Suppose that a germ m0 = [ / 0 ] a can be
continued analytically along all paths in E. If 7 is a closed path from a
to a in £, with winding number no(y) = 1 about 0 (see §4.6), then
by continuing m0 analytically n times around y (neZ) we obtain a sequence
of germs mn = [/J f l at a (see Fig. 4.70). Suppose that mn = m0 for some
n > 0 (this happens if m0 represents a branch of zllq, but not in the case
of log(z)); if q is the least positive integer n satisfying mn = m0, then it is
easily seen that the sequence of germs has the form...,m0, w1,...,m,_1,
mo,m!,...,repeating itself with period g, with the germs mO9...9mq-l all
distinct. Now £ is homeomorphic to C\{0}, and it follows easily from
Theorem 4.6.1 that the fundamental group n^E) is generated by the
homotopy class [7]; thus each closed path 6 from a to itself in E is
homotopic to a power of y, so m 0 , . . . ,m q _ l are the only germs at.a which
can be obtained by continuation within E. Continuation along a path
from a to some point zeE must transform distinct germs at a into distinct
germs at z (otherwise continuation along the reverse path is not unique),
so we obtain at least q germs at z from m0 in this way. Interchanging the
roles of a and z we see that there are exactly q germs [ g f o L ' - ' C ^ - i L
at z, so we have a ^-valued analytic function/(z) on £, the branches at z
being 0o>--->0«-i-

Fig. 4.70

We now represent/(z) as a si/ig/e-valued analytic function F(() of £ = z1/<J

near C = 0. Let £ = {CeC|0< |{«| <e}, define 0 : £ - £ by 6(0 = £q, and
choose any flefl""1^). The function Fo(O = (fo°0)(Q=fo(C

q) is analytic
near a, giving an analytic germ rh0 = [F0] f i at a. We can continue m0 an-
alytically along all paths in £, giving an analytic function F(() = (/°0)(() =
f(Cq) on £(see Fig. 4.71). To show that F is single-valued it is sufficient to
consider a closed path y from a to itself in £, with winding number no(y) = 1.
As C follows y once around 0 in £, z = 0(0 = (* travels g times around 0 in £,

Fig. 4.71
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so / ( z ) passes successively through the germs m o ,m 1 , . . .a t a, starting with
m0 and finishing with mq = m0. Thus m0 is unchanged by continuation
around y, and since [y] generates n^E), F is single-valued on E.

Being single-valued and analytic on the punctured disc E, F has a
Laurent expansion F(Q = Y,?=-aocrCr on £, so putting C = z1/<? we have
a Puiseux series (V. Puiseux, 1820-83)

/ (z)= £ crz"«

on £, different values of z1 lq giving the different branches of/(z). Suppose
that there exists N with cN^0 and cr = 0 for all r<N; then F is mero-
morphic at 0, with F(0) = c0 or oo as N ^ 0 or N < 0. If q = 1 then/= F
is single-valued and meromorphic at 0, so M contains a germ [ / ] 0 and
there is no branch-point to be adjoined; we therefore assume that q > 1,
in which case we adjoin a point [ / ] 0 to M, called a branch-point of order
q—\ at 0. Similarly we can adjoin branch-points to M at other points
eel:, we put £q = z — c if c€<C, and Cq = l/z if c = oo; in each case, ( is
called a local uniformising parameter (for example in §4.10 we put (2 = z
near the two branch-points of order 1 for ^/(l + ^/z) at 0). We define Sf to
be the union of Jt and all branch-points which can be adjoined to M in
this way, and we extend ^ and 0 to functions $f -*• 1 by defining i//( [/]c) = c
for a branch-point [ / ] c at ceE, and 4>([/]c) = ^(0) where F(0 is as defined
above. If De@c we define the D-neighbourhood D([/]c) to consist of [ / ] c

together with the q germs m0,..., m4_ x representing branches of/ at each
ae£>\{0} (this is consistent with our definition of D-neighbourhoods on
M, putting q = 1), and we define a subset A ^ <f to be open if it contains
a D-neighbourhood of each of its points. It is straightforward, if a little
tedious, to show that Sf is a Hausdorff space, ^ is imbedded as an open
subspace, and the set ^\J( of branch-points is discrete.

We make Sf into an abstract Riemann surface by using ( for local
coordinates near branch-points [ / ] c . If c = 0 we assign the coordinate
( e £ to the unique germ \_gj\z at z = (* satisfying g^O = F near (, while
[ / ] c itself is given the coordinate ( = 0. Thus the q roots ( of (* = z
correspond to the q germs lg^2 at z, and it is not hard to show that the
map [0;]Z»-*C gives a homeomorphism between D([/] c) and the open disc
5 = £u{0} . The only charts overlapped by this chart are those on J(,
so the coordinate transition functions have the form £i-+z = (* and
z\-*^ = zllq, analytic since z # 0. Similarly we can use ( = (z — c)llq or z"1/<?

for local coordinates at c # 0, so Sf is an abstract Riemann surface, and
one easily shows that \j/ and 0 : y - > Z are meromorphic.
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Each branch-point [ / ] c is attached to a unique connected component
Ji(m) of Ji, where weD([/]c); thus the connected components of y7 each
consist of a single component of M, together with any adjoined branch-
points, so we have a bijection between components if{m) of if and
components Ji(m) of Ji, with Ji{m) ^ if{m). We call if(rn) the complete
global continuation, or branched Riemann surface of m. Similarly, the
(branched) Riemann surface ifA of A{z,w) = 0 is the largest open subset
of if on which /4(^,0) = O; we have Ji A = Jic\ifA, so ifA consists of the
unbranched Riemann surface Ji A together with any attached
branch-points.

4.14 The Riemann surface of an algebraic function

We say that w is an algebraic function of z (possibly many-valued) if the
relationship between w and z has the form A(z, w) = 0 for some polynomial
A(z, w); we have already met examples of algebraic functions in §§4.8-4.10,
for instance A(z, w) = w* - 2w2 + 1 - z in §4.10 corresponds to the many-
valued function w = yj(l + yjz). We shall prove that the Riemann surface
ifA of an algebraic function is always compact.

We can factorise A uniquely as a product of powers of finitely many
distinct irreducible polynomials Ai(z,w) (1 ^ i ^ r ) . Since A( = 0 implies
A = 0, the unbranched Riemann surface MA contains each JiAi.
Conversely, if some germ m = [D,f~\aeJi lies in JiA, then >4(z,/(z)) = 0
on D, so each zeD satisfies At(z,f(z)) = 0 for some i depending on z; if
we choose a sequence of points in D with limit a, then there is a subsequence
zn —• a with Ai{zn9f(zn)) = 0 for all n and for some fixed i, so it follows from
Theorem 1.3.1 (suitably adapted for meromorphic functions) that
y4,(z,/(z)) = 0 on D and hence meJtAi. Thus J(A = \Jri=\^A^ a n d w e

can show that this union is disjoint: if i ^j then since A{ and Aj are
co-prime, they have a common zero (z,w) for only finitely many zeC (see
Theorem A. 14), and it follows that no germ m = [D,/] f l can lie in MA.c\
MA. since we cannot have y4i(z,/(z)) = 0 = v4,(z,/(z)) on D. Each JtA. is
a union of connected components of M, and adding any branch-points
we see that if A is the disjoint union of the surfaces if Ai(\ < i ^ r); in fact
we shall see later that each if A. (resp. MAi) is connected, and is therefore
a connected component of if (resp. Ji). Now ifA will be compact provided
each if A. is compact; we therefore assume from now on that A is irreducible.

Collecting powers of w, we can write

A(ziw) = a0(z)wn + al(z)wn-1 + ... + an(z), (4.14.1)

where each a((z) is a polynomial in z, and ao{z) ^ 0; we call n the degree
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of A (in w). In general, for fixed zeE the equation A(z, w) = 0 is a polynomial
equation with n distinct roots w; we call such values of z regular points
for A. The exceptional values of z form the set CA of critical points,
satisfying one or more of the conditions:

(i) z = oo;
(ii) ao(z) = 0;

(iii) A(z9 w) = 0 has a repeated root w.

Clearly, there are only finitely many zeE satisfying (i) or (ii). Since A is
irreducible and dA/dw has degree n— 1, A and dA/dw are co-prime; it
follows from Theorem A. 14 that they have a common root w for only
finitely many zeC, so CA is finite. We shall show that the branch-points
of £fA all lie above critical points, so they are finite in number.

At a regular point aeEXC^, the equation A(a, w) = 0 has distinct simple
roots w = wu..., wn; the next result shows that for z near a, the roots of
A(z, w) = 0 remain simple and distinct, and vary analytically with respect
to z.

Lemma 4.14.2. Ifaelt\CA then there exist De@a and analytic function
elements (D, / f) (1 ^ i < n) satisfying:

(ii) for each zeD the solutions of A(z, w) = 0 are w =/f(z) (i = 1,..., n), a//
simple and distinct.

Proof We can choose small circular paths yt in C (i= l , . . . ,n ) , each yt

winding once around wt but not passing through or winding around any
other root Wj(j ^ 0- For each i, the integral

exists at z = a (since y4(a, w) is analytic and non-zero on yt), and since we
can differentiate under the integral sign It{z) is an analytic and hence
continuous function of z in some neighbourhood Nt of a. By the calculus
of residues (as used in the proof of Theorem 3.6.4 for example), /f(z) is the
number of zeros of A(z, w) enclosed by yt minus the number of poles
(counting multiplicities); since A(z, w) is a polynomial, there are no poles,
so It{z) is the number of zeros. Thus It{z) is integer-valued, and therefore,
being continuous, it must be constant on Nt. By construction, y, encloses
a single, simple root w = wt of A(a, w) = 0, so I£a) = 1 and hence 7,(z) = 1
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for all zeN(; thus within y, there is a unique simple root of A(z, w) = 0,
which we shall denote by w =/,(z). By uniqueness of the solution of
A(a,w) = 0 enclosed by y,-, we have fi(a) = wi. If we choose DeQ)a such
that D ^ OiNi, then for any zeD the polynomial equation A{z, w) = 0 has
at most n roots w; we have produced roots w =/,(z)(l ^ i ^ n), mutually
distinct since they lie within the disjoint interiors of the circles yi9 so (ii)
is proved. Finally, the calculus of residues (as used in the proof of
Theorem 3.6.7, for instance) gives

dA
()

showing that f((z) is analytic on N( and hence on D. D

Thus, at each aeL\CA we have n distinct analytic germs representing the
solutions of A(z, w) = 0 for z near a; these germs are the elements of JtA

projected onto a by ij/. The set (S of all such germs (for atL\CA) is easily
seen to be sufficient for continuation within Y\CA (in the sense of §4.13), so
Corollary 4.13.2 immediately gives:

Theorem 4.14.3. If E is any simply connected region in Z\CA then there
are single-valued analytic functions /^(z),.. .,/n(z) on E such that for any
zeE the solutions of A(z, w) = 0 are w =/.(z)(l ^ i ^ n), all simple and
distinct. •

This justifies our earlier use of cuts in I to produce a simply connected
region on which a many-valued function has single-valued branches.

We now show that above critical points ceCA9 the worst that can happen
is that there are branch-points or poles. In the following discussion it may
be helpful to bear in mind the example A(z, w) = w4 — 2w2 + (1 — z)
corresponding to w = v/(l + Jz) in §4.10; by considering the common
roots w of A and of dA/dw = 4w(w— l)(w + 1), it is easily seen that
CA = {oo,0,1} in this case.

First we assume that c ^ oo, so either ao(c) = 0 or else A(c, w) = 0 has
a repeated root. Since CA is finite, we can choose e > 0 so that the disc
D = {zeC||z — c\ <e} contains no other critical points. If aeE = D\{c}
then we have germs m, = [/,]fl (1 ^ i ^ n) at a, representing the branches
of A(z, w) = 0 near a, and these may be continued analytically, within JiA,
along any path y in E. If y is a closed path from a to itself, winding once
around c, then continuation of any mi along y must produce a germ
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m}eJtA at a = y(l), distinct germs mt giving distinct germs m} (by unique-
ness of continuation along y"1). Since there are only finitely many germs
m1,...,mn in MA at a, the function n(y)'.mi\-^mj is a permutation of
{m1,...,mn} (see §4.11 for examples), each germ mi being contained in a
cycle of length q ^ n. We can arrange the labelling so that mx is in a cycle
(m1,m2,...,mfl), and then it follows from §4.13 that the corresponding
branches f 1 , . . . Jq of the algebraic function w =/(z) are represented by a
Puiseux series

on £, different branches corresponding to different choices of ( = (z — c)1/q.
U q<n then there are similar series for fq+i,...,fn, one series for each
remaining cycle of n(y).

If ao(c) / 0 then the solutions w of A(z, w) = 0 are bounded as z -• c in E:
the rational functions ai(z)/ao(z) (1 ^ i ^ n) are bounded for z near c, and
if |w |> 1 then (4.14.1) gives

w =
0 1

0 O

0 0

+ -

+

«2

ow

0^

0o

+ .. .+-
a

+ ... +

0 ,

(4.14.4)

so \w\ ^max(l,X"=ilai/«ol) n e a r c- Putting w =/(z) we see that F(() is
bounded as £ -> 0, so cr = 0 for all r < 0. Thus F is meromorphic (in fact,
analytic) at ( = 0, so if q > 1 then ,9P

A has a branch-point of order g — 1
at c (if q = 1 then [/x]c = [ / ] c e^ ,4 and there is no need to add a branch-
point). Similarly, any remaining cycles of n(y) give branch-points or
elements of MA at c.

If, on the other hand, c is a root of multiplicity k ^ 1 of ao(z\ then
limz^c«o(z)(z — c)~k^0, so the rational functions (z — c)kai{z)/a0(z)
(1 < i: ^ n) are bounded near c. Multiplying (4.14.4) through by |(z — c)*|,
we see by a similar argument that for any solution w of A(z, w) = 0,
|(z — c)*w| is bounded as z-+c. Thus, putting w=/(z) = F(C) we see that
Ck<?F(C) is bounded as ( -• 0, so F is meromorphic at ( = 0, and hence 9*A

has a branch-point of order q — 1 at c (if g > 1) or else we have [ /Dce^^
(if q = 1). Again, any remaining cycles of 7i(y) behave similarly.

Finally we consider c = coeCA. Arguments similar to those for c / oo
give a Puiseux series
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for branches fu... Jq of / near oo, where C = z~1/q. For sufficiently large
fcef^ the rational functions ai(z)/zkaQ(z) are all bounded for z near oo, so
by dividing (4.14.4) through by \zk\ we see that for any solution w of
4(z, w) = 0, |z~kw| is bounded as z-> oo. Thus Ck*F(() is bounded as £-•(),
so F is meromorphic at ( = 0 and as before there is a branch-point or an
element of JiA corresponding to each cycle of n(y).

We are now able to prove our main results on algebraic functions.

Theorem 4.14.5. If A(z, w) is an irreducible polynomial then £fA is
connected.

Proof By the remarks at the end of §4.13, it is sufficient to prove that
the unbranched Riemann surface M A is connected. To do this, it is sufficient
to prove that for some aeI,\CA, the n germs m, = \_fJa^^A a t a a r e a^
in the same component of M\ for given any germ m = [g]heJ(A there is
a path y in I from b to a, avoiding critical points, and continuation of m
along y must give some m, at a (1 ^ i ̂  n), so m is in the component Jt(m) of
J( containing m{.

Given aeI.\CA, we can label ml5...,mn so that M{m^) contains
mum2,...,mk but not mk+ x,...,mn, where we assume for a contradiction
that k<n. Now the symmetric functions of f u . . . , / k are the coefficients
* I = £?= i L • • • > <*k = fl?= i / « i n

f l ( w ~ / i ( z ) ) = w k - ( T 1 ( z ) w k - 1 + . . . + ( - l)k(Tk(z); (4.14.6)

being polynomials in / i , . . , / k » ^ e y c a n >̂e continued analytically along
all paths in 2\CA. By hypothesis, / i , . . , / k are permuted amongst them-
selves by continuation along closed paths, so ax,...,ok are single-valued
and analytic on 1\CA. We have seen that as z approaches a critical point,
each \fi(z)\ grows no faster than a power of the local uniformising para-
meter (• The functions a^z) therefore have the same property, so they are
meromorphic at the critical points and hence meromorphic on Z; by
Theorem 1.4.1 they are rational functions of z, so if b(z) is the least common
multiple of their denominators then (4.14.6) implies that the function

is a polynomial in z and w, of degree k in w. Now A is irreducible and of
degree n, while B has degree k < n, so A and B are co-prime and hence
there are only finitely many ZEC for which A and B have a common root
w (see Theorem A. 14). However, for all z sufficiently near a, the values z
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and w =fi(z) are common zeros of A and B, so this contradiction gives
k = n as required. •

Combining this with the argument at the beginning of this section, we
immediately have:

Corollary 4.14.7. If A(z,w) is a polynomial then £fA consists of finitely
many connected components £fAi, one for each distinct irreducible factor At

of A. •

The following result is even more important:

Theorem 4.14.8. If A{z,w) is a polynomial then 6fA is compact.

Proof We have seen that for each aeE, yAn{j/~1(a) consists of between
one and n points [/]„ (possibly including branch-points if aeCA), and that
for some De@a the D-neighbourhoods of these points are the connected
components o{ £/?

Ac\\jj~l(D), each homeomorphic (under the appropriate
chart) to an open disc in C. (Fig. 4.72 shows a cross-section of I and
5^ , where il/~l(a) consists of a branch-point of order 1 and a regular
point.) If Do is a strictly smaller disc in Q)a, then the closure Do of Do

in I is contained in D, and so yAn^~l(D0) has finitely many components,
each homeomorphic to a closed disc in C; by the Heine-Borel theorem
(see § 1.2), these components are compact. Now Z, being compact, is covered
by just finitely many such discs Do (for various aeZ), so SfA, being a union of
finitely many compact subsets (the components of the corresponding sets
^An\l/~l(D0))9 is compact. •

Fig. 4.72

Conversely, we have the following major result:

Theorem 4.14.9. Any compact abstract Riemann surface can be identified
with the Riemann surface SfA of some algebraic function A{z, w) = 0. •

(The proof is quite difficult, requiring potential theory and harmonic
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functions; see Springer [1957] or Cohn [1967]. By 'can be identified with'
we mean is conformally equivalent to', a concept we shall define in §4.17.)

These equivalences between topological and algebraic concepts
(compactness corresponding to polynomials, connected components to
irreducible factors) are typical of Riemann surface theory, and help to
explain its central role in the development of mathematics. For example,
there is a connection with Galois theory: continuation around each critical
point of an algebraic function A(z, w) = 0 induces a permutation of the
single-valued branches w =/,(z); these permutations generate the mono-
dromy group of A (see §4.10) which we can imbed in the Galois group of A
by regarding A as a polynomial in w with roots /,(z). Then the orbits of this
group of permutations correspond to the components of SfA and to the
irreducible factors of A.

Finally we mention without proof a result which can be regarded as a
generalisation of Theorems 1.4.1, 3.11.1 and 3.11.2 (which refer to the
Riemann surfaces Z and C/Q). By Theorem 4.14.9 and Corollary 4.14.7
we can identify any compact connected Riemann surface S with £fA for
some irreducible polynomial A(z, w); then the meromorphic functions on
S form a field F containing \jj and </>:S -> Z, and a more precise description
of F is given by:

Theorem 4.14.10. (i) The meromorphic functions on S are the rational
functions of if/ and </>, that is, F = C(^, <£); (ii) if f and g are meromorphic
on S then there is a non-zero irreducible polynomial O(x, y), with complex
coefficients, such that O(/, g) is identically zero on S. •

4.15 Orientable and non-orientable surfaces

Surfaces can be divided into two classes, orientable and non-orientable.
Roughly speaking, a surface is orientable if it is possible to choose a
consistent sense of orientation (clockwise or anti-clockwise) at every point
P on the surface. This means that if we take any closed path y based at
P, and cover y by a finite number of discs (as in analytic continuation),
then each disc induces an orientation on the next disc, and by following

Fig. 4.73
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the orientation around y we return to the original orientation at P (see
Fig. 4.73). If, on the other hand, by following the orientation around some
path y we return to a different orientation at P, then the surface is non-
orientable. (We will give more precise definitions shortly.)

The simplest example of a non-orientable surface is the Mobius band,
constructed by taking a long strip of paper, twisting one end through an
angle n, and then gluing the two ends together, as shown in Fig. 4.74. We
need to delete the boundary to obtain a surface (if we do not, then we
have a 'surface with boundary', a concept we have not discussed). This
surface is non-compact; the simplest example of a compact non-orientable
surface is the projective plane, defined in §3.5.

Fig. 4.74

Our aim in this section is to show that all Riemann surfaces are orient-
able. There are many rigorous definitions of orientability of a surface, and
we choose one which, although not applicable to all surfaces, is very
convenient for Riemann surfaces. We now define the class of surfaces to
which this definition applies, namely the smooth surfaces.

By identifying each z = x + iyeC with (x,y)eU2, we can regard the local
coordinates of any surface as lying in IR2; we say that an atlas of charts
is smooth (or C00) if all its coordinate transition functions / are smooth
(in the sense that the partial derivatives dnf/dxkdyin~k) all exist). As with
analytic atlases, two smooth atlases s/ and & are called compatible if
the atlas S4KJ& is smooth. Compatibility between smooth atlases is an
equivalence relation, and an equivalence class of smooth atlases is called
a smooth structure. Finally a smooth surface is a surface with a smooth
structure, that is, a surface on which the atlas is smooth.

Since every analytic function is smooth, it is clear that every Riemann
surface is a smooth surface.

If U and V are open subsets of U2 and /:(x, y) h+ (w, v) is a smooth function
U -+ F, then the Jacobian of / is

du dv dudv M K n
Jf = ^-j~-TT-' (4.15.1)

3 dx dy dy dx
If / has a smooth inverse function g =/~1:K-» U (as is always the case
for the coordinate transition functions of a smooth surface), then the chain
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rule

JgJf = J{gof) = J( id ) = 1

implies that Jf ^ 0 at all points of U (Apostol [1963], §7.2); if Jf > 0 at all
points of U then / is said to be orientation-preserving. For example,
/ (x , y) = (x, - y) (or f(z) = z in complex coordinates) does not preserve
orientation, since Jf = — 1 on R2; in fact, being a reflection, / maps any
positively oriented circle in R2 to a circle with negative orientation.
Rotations and translations of R2, on the other hand, have Jf = 1, so they
preserve orientation.

A smooth atlas is said to be orientable if all its coordinate transition
functions preserve orientation; a smooth surface is orientable if its smooth
structure contains an orientable atlas, that is, its atlas of charts is
compatible with an orientable atlas. (It is possible to define these concepts
of orientability purely topologically, using winding numbers, without
making any assumptions about differentiability; in this way one can define
orientability for arbitrary surfaces.)

Theorem 4.15.2. Every analytic atlas is orientable.

Proof. It is sufficient to show that every analytic function / , with an
analytic inverse, is orientation-preserving. If

/ (x, y) = (u, v)

in real coordinates, then being analytic, / satisfies the Cauchy-Riemann
equations

du dv du dv

dx dy' dy dx'

and so (4.15.1) gives

Since / l is analytic, Jf # 0 as remarked above, so Jf > 0 as required. •

Corollary 4.15.3. Every Riemann surface is orientable. •

As with smooth and analytic atlases, we define two orientable atlases
s4 and & to be compatible if the atlas s/yj&is orientable. Compatibility
of orientable atlases is an equivalence relation, and an equivalence class



The genus of a compact Riemann surface 193

of orientable atlases is called an orientation. It can be shown that every
orientable surface S has just two orientations, described as follows. If
srf = {UhOJ is an orientable atlas for S, we define J / = {(Uh O,)} where
$,(s) = (x, — y) whenever Of(s) = (x, y)eU2; in complex coordinates, this
is just complex conjugation. Then sJ is easily seen to be an orientable
atlas for S which is not compatible with $4. The equivalence classes con-
taining stf and j^give the two orientations for S.

4.16 The genus of a compact Riemann surface

If A(z, w) = 0 is an irreducible algebraic equation, then by Theorems 4.14.5
and 4.14.8 and Corollary 4.15.3 its Riemann surface S = ¥A is a compact,
connected, orientable surface. Such surfaces are classified topologically
by the following result (see Massey [1967]):

Theorem 4.16.1. Each compact, connected, orientable surface is homeo-
morphic to a surface Sg formed by attaching g handles to a sphere, for some
unique integer g^O. •

We call g the genus of the surface; in this section we give a method for
calculating g, using polygonal subdivisions. A polygonal subdivision M
of a surface S consists of a finite set of points of S, called vertices, and a finite
set of simple (that is, non-self-intersecting) paths on S, called edges, such
that

(i) every edge has two end-points, these points being vertices;
(ii) edges can intersect only at their end-points;

(iii) the union of the edges (which we also denote by Af) is connected;
(iv) the components of the complement S\M are homeomorphic to open

discs.

In (iv), the components are called faces; since each edge is incident with at
most two faces, there are only finitely many faces.

Examples

(1) If we project the vertices and edges of a tetrahedron onto a sphere S
enclosing the tetrahedron, then we have a polygonal subdivision of S
with four vertices, six edges, and four faces, each face being three-sided.

(2) By identifying opposite sides of a square, as illustrated in Fig. 4.75, we
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obtain a polygonal subdivision of a torus with five vertices (the four
corners forming a single vertex), ten edges, and five faces A, B, C, Z), £,
each face being four-sided.

Fig. 4.75
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It can be shown that every compact, connected surface has a polygonal
subdivision. This was first proved (for Riemann surfaces) by T. Rado in
192-5; we omit the proof (which can be found in Springer [1957]) since
we will calculate the genus of a Riemann surface by explicitly constructing
a subdivision.

We define the Euler characteristic of a compact, connected surface S to be

where M is a polygonal subdivision of 5 with V vertices, E edges, and F
faces. It is clear that homeomorphic surfaces will have the same Euler
characteristic, provided we can show that x(S) is well defined, that is,
independent of the choice of M. This, like Theorem 4.16.1, is a standard
topological result, to be found in Massey [1967] or Springer [1957], for
example, so we will merely sketch a proof.

We can construct new polygonal subdivisions M' from M by any of the
following steps, illustrated in Fig. 4.76:

(a) place a new vertex on an existing edge, dividing that edge into two new
edges;

Fig. 4.76
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(b) place a new vertex in an existing face, and join it by a new edge to an
existing vertex incident with that face;

(c) join two existing vertices, both incident with the same face, by a new
edge across that face, dividing the face into two new faces.

In each case, E and either V or F are increased by 1 while the remaining
parameter is unchanged, so that x(M') = x(M).

Given any two polygonal subdivisions Mx and M 2 of S, suppose that
there exists a subdivision M3 which can be obtained both from Mx and
from M2 by finite sequences of steps (a), (b) and (c); since these steps leave
X invariant, we have x(Mx) = *(M3) = *(M2), so x(Mx) = x(M2) as required.
In order to construct Af3, we first take the union of Ml and Af2, with the
vertices defined to be those of Mx and those of M2, together with all
points where Mx meets M2 (there is a slight technical difficulty in that an
edge of M x may meet an edge of M2 infinitely many times, rather as the
graph of x sin x ~ * meets the x-axis, but this can be resolved by replacing
Mx and M2 by subdivisions with slightly 'straightened' edges, and with
the same Euler characteristics, as shown in Fig. 4.77). If necessary we now
add finitely many edges to Mx u M 2 in order that the resulting subdivision
M 3 should satisfy conditions (i) to (iv) (for example, MxuM2 need not
be connected). It is now easy to see that M3 can be obtained from each
of Mx and M2 by finitely many steps (a), (b) and (c), so that #(S) is
independent of the subdivision M of S.

Fig. 4.77

-Af2

We can now calculate the Euler characteristic x(Sg) of a compact,
connected, orientable surface Sg of genus g. We do this by using a polygonal
subdivision of Sg based on the construction of the Riemann surface S in
§4.9 (v) as the union of two cut spheres EY and £2.

Fig. 4.78
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We take g + l cuts PiQi,.-.<,Pg+iQg+i on each of the two spheres,
with edges labelled ccl,pi,...,(xg+1,Pg+lm each case; we connect the cuts
by edges G i ^ V ^ G ^ + i labelled yl9...,y9 on Ex and Su...,Sg on E2,
and then join Ex and E2 along the edges a, and ft to give a surface Sff of
genus g. This is illustrated in Fig. 4.78. The vertices PuQx,...,Pg+l,Qg+l

and the edges a1 , . . . ,a ,+ 1, Pl9..-9P9+l9 Vi,...,y^ 5 l f . . . , a , form a poly-
gonal subdivision of Ŝ  with two faces (JÊ  and £2

 w ^ h ^eir edges removed),
so K= 2# 4- 2, £ = Ag + 2, and F = 2, giving x(S,) = F - £ + F = 2 - 2#.
Thus we have proved:

Theorem 4.16.2. The Euler characteristic of a compact, connected,
orientable surface Sg of genus g is given by x(Sg)= 2 — 2g. •

The simplest case g = 0 is Euler's theorem that V— £ + F = 2fora sphere;
a torus has x = 0 and # = 1 (see Example (2)).

We are now ready to prove the following result, known as the Riemann-
Hurwitz formula, or simply the Hurwitz formula.

Theorem 4.16.3. IfS is the Riemann surface SfA of an irreducible algebraic
equation A(z, w) = 0 of degree n in w, and if the branch-points have orders
«!,. . . , nr, then the genus gofS is given by

1 '
g=l-n + - X nt.

Proof Let i/f:5-*Z be the projection map onto the Riemann sphere, as
defined in §4.13. By §4.14, S is an n-sheeted branched covering space of
Z, that is, if zeZ then l^" 1 ^) ! = n unless ^/~l(z) contains branch-points.
Since n{ + 1 sheets come together at a branch-point of order nh it follows
that if \j/~1(z) contains branch-points of orders nu...,nk then the per-
mutation n2 of the n sheets (induced by meromorphic continuation around
z) has cycles of lengths n1 + l , . . . , n k + l , together with fixed-points corres-
ponding to the remaining (unbranched) points in \l/~1(z). If there are t
fixed-points, then summing cycle-lengths gives

n = (nx + 1) + ... + (nk + 1) + t,

and since the elements of ^ ~ l(z) are in one-to-one correspondence with the
cycles of nz, it follows that
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(We can think of n, sheets as being 'missing' at each branch-point of order
n(; in Fig. 4.72 we see an example where n = 3, fc = 1, t = 1 and nl = 1,
80 1^-^)1 = 2.)

Now let P!, . . . ,Pr be the branch-points on 5 (there are only finitely
many by compactness of 5, or alternatively by the argument in §4.14),
and let each P, have order nt. It is easily seen by induction on r that there
is a polygonal subdivision M of I with the points Qt = ^(P£) (i = 1,..., r)
included among the vertices, and it now follows that M = {j/~1(M) is a
polygonal subdivision of S, the vertices and edges of M being the points
and paths of S lying above the vertices and edges of M. (We leave the
detailed verification of conditions (i)-(iv) as an exercise for the reader; the
important points are that \// is open and continuous, and every branch-
point is a vertex, from which it follows that the edges and faces of M are
mapped homeomorphically onto edges and faces of M.) If M has V vertices,
E edges and F faces, then V- E + F = 2 since Z has genus 0. Now each
edge or face of M lifts to n edges or faces of M (one on each sheet), so
M has nE edges and nF faces. By the arguments above, M has nV—
(nl + ... 4- nr) vertices {nt being lost' at each PJ, so that

- £ nt

= In - £ i|,

giving
1 r

g=l-n+Yni. Q

Corollary 4.16.4. Zi = iwi *5 a n £^w integer, greater than or equal to
n-1. •

This corollary is often useful in checking that the orders of the branch-
points have been calculated correctly; EJ=iw. *s called the total order
of branching.

Examples. We now verify that the Riemann-Hurwitz formula gives the
correct value for the genus when applied to some of the surfaces considered
earlier.
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(1) A{z, w) = wq — z, as in §4.8. Here n — q and there are two branch-
points of order q — 1 at 0, oo; thus the total order of branching is 2q — 2 so

confirming our earlier claim that S is homeomorphic to a sphere.
(2) A(z, w) = w2 — (z — ax).. .(z — am) with au...,am distinct, as in §4.9(v).

Here n = 2 and there are branch-points of order 1 at au...,am; if m is
even then these are the only branch-points, so the total order of branching
is m, while if m is odd then there is an additional branch-point of order 1
at oo, so the total order of branching is now m + 1. We thus have

_ m m — 2 .̂
1 — 2 H— = if m is even,

1 — 2 + = if m is odd.
2 2

In particular, if p(z) is the polynomial 4z3 — 02z — 03, with distinct roots,
arising in the theory of elliptic functions (§3.10) then m = 3 gives 0 = 1 ,
so that S is homeomorphic to a torus; we will return to this important
example later.

(3) A{z, w) = w* — 2vv2 + 1 — z, or equivalently w = ^/(l + yjz), as in
§4.10. Here n = 4, and as shown in §4.10 there are two branch-points of
order 1 at z = 0, one branch-point of order 1 at z = 1, and one branch-
point of order 3 at z = oo. Thus the total order of branching is 2 + 1 + 3 = 6,
so 0 = 1 — 4 + § = 0 and S is homeomorphic to a sphere (a fact not at
all apparent visually!).

4.17 Conformal equivalence and automorphisms of Riemann surfaces

If U and V are open subsets of C, and if a homeomorphism g:U-+ V is
analytic on U, then since g is one-to-one on U it is locally one-to-one
and therefore satisfies g'(z)^0 for all ze U, by Theorem A. 10, Lemma 1;
it follows that the homeomorphism g~1:V-+U is analytic on V, with
(0"1)' = 1/0', and that both g and g~l are conformal. Now if f:S1 ->S2 is
a holomorphic homeomorphism between Riemann surfaces, then by
applying the above argument to the induced maps between local coordi-
nates, we see that f~1:S2-+Sl is also a holomorphic homeomorphism,
and that local coordinates are transformed conformally by / and f~l.
We say that / is a conformal equivalence (or conformal homeomorphism),
and that 5X and S2 are conformally equivalent, written 5X = 5 2 . Clearly
conformal equivalence is an equivalence relation: it is, in fact, the
isomorphism' of Riemann surface theory in the sense that two conformally
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equivalent surfaces share the same analytic properties and are therefore
indistinguishable in terms of their complex structures. (Some authors
actually refer to conformal equivalence as 'isomorphism', but this can lead
to confusion when the surfaces also have algebraic structures - for instance,
any two tori C/Clx and C/Q2

 a r^ isomorphic as groups, but not necessarily
as Riemann surfaces.)

Examples. (1) We shall show that the disc 2 = {zeC||z| < 1} and the
upper half-plane °U = {zeC|Im(z)>0} are conformally equivalent. We
define T:^->C by

since TePGL(2, C) and — \$°U, T defines a holomorphic homeomorphism
of ^ onto T{?U\ For all ze<% we have

|T(z)|2 = ^ " l U ^ A

_ | z | 2 - 2 I m ( z ) + l
" | z | 2 + 2Im(z)-hl

so T maps ^ into 0; similarly, putting Im (z) = 0 we see that T maps the
boundary IRu{oo} of % to the unit circle, which bounds ®, so T(^),
which is a disc by Theorem 2.4.1, must coincide with ®, as required. (Alter-
natively, we could take T to be the rotation of Z by an angle n/2 about
the axis through + 1, mapping % onto ^.)

(2) Although they are homeomorphic, C and 3 are not conformally
equivalent: if f:C->3 is holomorphic (that is, analytic), then being
bounded / is constant by Liouville's theorem, so / cannot be a homeo-
morphism.

In this context, we have the following important result, the Riemann
mapping theorem, which classifies all simply connected open subsets of C
up to conformal equivalence. The proof, which we shall omit, can be found
in many textbooks on complex analysis, e.g. Ahlfors [1966] and Rudin
[1974].

Theorem 4.17.1. If S is a simply connected open subset o/C, then either
S = C or else S^9.

The following related result is sometimes called the Uniformisation
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Theorem (due to F. Klein, H. Poincare and P. Koebe), since it allows us
to uniformise (that is, parametrise) compact Riemann surfaces by means
of single-valued functions. For a proof, see Beardon [1984], and for further
comments on uniformisation, see §5.12.

Theorem 4.17.2. Every simply connected Riemann surface is conformally
equivalent to just one of:

(i) the Riemann sphere Z;
(ii) the complex plane C;

(MI) the open unit disc S> (or equivalently °U, by Example (1)). •

As shown in (2) above, C ̂  2; moreover Z, being compact, cannot be con-
formally equivalent (or even homeomorphic) to C or 3>. Thus Theorem
4.17.2 implies that a Riemann surface homeomorphic to £ must be con-
formally equivalent to Z; in other words, each topological sphere has just
one complex structure (when we pass from genus 0 to genus 1, the corres-
ponding situation is much more complicated, as we shall see in §4.18).

A conformal homeomorphism f:S-+S is called an automorphism of
S. (There is no conflict with the definition of an automorphism of Z given
in §2.1, since the meromorphic bijections / : £ - • £ are precisely the
conformal homeomorphisms with respect to the analytic atlas introduced
in §4.11.) It follows from Theorem 4.12.1 and the remarks at the beginning
of this section that the set Aut S of automorphisms of S is a group under
composition. As we shall see in §4.19, it is important to determine the
automorphism groups of the three simply connected Riemann surfaces:

Theorem 4.17.3.

(0 AutZ = PSL(2,C);
(ii) AutC = {zH>az + b\

(Hi) Aut^r = PSL(2,R).

Proof, (i) This was proved in Theorem 2.1.3.
(ii) If / :C->C is an automorphism then / is analytic on C, so

f(z) = ao + alz + a2z
2 + ...

for all zeC, this power series having infinite radius of convergence by
Theorem 4.3.3 since / has no singular points in C. Hence the function
g =foj has an expansion

a2z~2
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for all z ^ 0. There are now two possibilities: either / is a polynomial
(that is, an = 0 for all sufficiently large n\ or else g has an essential singularity
at z = 0. We shall show that the latter is impossible. If g has an essential
singularity at 0, then by Weierstrass' theorem (Theorem A.9) in any neigh-
bourhood of 0 the values of g{z) come arbitrarily close to any given complex
number. Thus if 9 is the open unit disc then g(@\{0}) is dense in C.
However, if V is any non-empty open subset of C\®, then since g is a non-
constant analytic function, g(V) is open and hence has non-empty inter-
section with the dense set g(@\{0}); this contradicts the fact that g is one-
to-one (since / and J are), so / must be a polynomial. Since / is one-to-one
on C, the fundamental theorem of algebra implies that / has degree 1, so
that f(z) = az + b with a ^ 0. Conversely, it is obvious that any trans-
formation of this form is an analytic homeomorphism C -> C, and is there-
fore an automorphism.

(iii) We shall first consider the automorphisms of S9 and then use
Example (1) to pass from 3f to °U.

First, we show that every automorphism / of 2 which fixes 0 has the
form z\-> eiez(0eU\ and is therefore a Mobius transformation (this result, of
wider importance for complex function theory, is often referred to as
Schwarz's Lemma, after H. A. Schwarz, 1843-1921). Since/is analytic on
0and/(O) = O, we have

and so/(z)/z is analytic on 3>. If C is any circle, centred at 0, of radius p < 1,
then since C £ Q and |/(z)| < 1 on 9 we have \f(z)/z\ < 1/p on C, and hence
|/(z)/z | < 1/p inside C by the maximum-modulus principle (Theorem A. 11).
As p can be made arbitrarily close to 1 it follows that \f(z)\ < \z\ for all ze3).
Now/ " l is also an automorphism of 2 fixing 0, so the same argument gives
l/'^zJI^Izl for all ze@. Replacing z by /(z) we then have
\f~Hf(z))\ < 1/001 and so |/(z)| ^ \z\ for all ze®. Thus |/(z)/z| = 1 and so
/(z) = ewz for some real 6, possibly depending on z. Now f(z)/z, being
analytic on the region 2, is either an open mapping or else constant; since
the image of 3) is not open (being a subset of the unit circle), f(z)/z is
constant and hence 9 can be chosen to be constant. Thus / is a Mobius
transformation R0:z\-+ei0z (in the notation of §2.3).

By Example (1) the Mobius transformation

is a conformal homeomorphism from °U to 9\ since T(i) = 0, it follows that
every automorphism of ̂  fixing i has the form g=T~1fT=T~1R0T, and
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is therefore a Mobius transformation. Now if JieAut^ maps i to a + bi
{a,beU) then k:z\->a + bz is both a Mobius transformation and an
automorphism of % mapping i to a + W, so # = /c"* h is an automorphism of
% fixing i; as we have seen, g must be a Mobius transformation and hence so
is h = kg. Thus Aut % c PSL(2, C) and now Theorem 2.8.1(ii) gives

). •

Notice that in each of the three cases in Theorem 4.17.3, the automorphism
group consists entirely of Mobius transformations, so we can make use of
the information established in Chapter 2.

4.18 Conformal equivalence of tori

In this section we consider the following problem: if Q and Q' are lattices in
C, then when are the tori C/Q and C/Q' conformally equivalent? In §5.7 we
shall see that every compact Riemann surface of genus 1 is conformally
equivalent to C/Q for some lattice Q, so that by answering this question we
shall have a classification of such surfaces.

If Q is a lattice and aeC, then we define aQ to be {aco\a>eQ]; this is a
lattice if and only if a # 0. Lattices Q and Q' are similar (in the sense of
Euclidean geometry) if Q' = aCl for some a # 0; this is an equivalence
relation. If Q and Q' are lattices, then we will denote the elements of C/Q
and C/Q' by [z] and [z]' respectively.

Theorem 4.18.1. The holomorphic functions / :C/Q-> C/Q' are the trans-
formations fab\[z] »-• \az + b]', where a, beC and ail ^ O!\fab is a conformal
homeomorphism if and only if aQ = Q', so C/Q and C/Q' are conformally
equivalent if and only ifCl and Q' are similar.

(In §6.1 we will give necessary and sufficient conditions, in terms of their
bases, for Q and Q' to be similar.)

Proof. The main step in the proof is to show that if/: C/Q -•C/Q' is
a holomorphic function, then there is an automorphism/of C such that

Fig. 4.79
C

i
c/n
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/ °p = p'°/, where p and p' are the natural projections C->C/Q and
C-C/Q ' (see Fig. 4.79).

If/([XD = CZT ^en as in the proof of Theorem 4.11.1 there exist open
discs V and V in C, centred at z and z', mapped homeomorphically by
p and p' onto neighbourhoods U and 17' of [z] and [z']\ The inverse
homeomorphisms q: U -• Fand q':U' -> V are the charts described in §4.11,
and since / is holomorphic the map

(representing the change of local coordinates induced by / ) is analytic
(consult Fig. 4.80). Notice that F is not uniquely determined by z: we could
replace V by any of its translates V + a/(a/efl'), and this has the effect of
replacing F by F + cof. Thus at each zeCwe have a set of analytic germs
[F + co']2, and it is easily seen that as z ranges over C the set # of all such
germs is sufficient for continuation in C; then Corollary 4.13.2 implies that,
since C is simply connected, any one of these germs extends to a single-
valued analytic function /:C-»C satisfying / o p = p'°/(since each local
branch F of/ satisfies /°p = p'°Fon its domain). We call/a lift of/ (its
existence follows in more general situations from covering space theory: see
§4.19 and Massey [1967], Theorem 5.1).

Fig. 4.80
F-q'of°p

•fir

Since/°p = p'°/we have/([z]) = [/(z)]' for all zeC, and so for any fixed
we have/(z + a>) =/(z) + w'z where dz is an element of Q' possibly

depending on z. Now the function

is continuous (since/ is analytic), and it maps a connected space C into a
discrete space O', so it must be constant. Thus co'z depends only on co, and
not on z, so dropping the suffix z we have
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for all zeC, where a/eQ' depends on coeCl. Differentiating with respect to z,
we see that dj/dz is elliptic with respect to Q; it is also analytic, since/is, so it
must be constant by Theorem 3.6.1. Thus

for constants a,fteC, so

and/=/fl,b. For each coeQ,/([z + co]) =/( [z]) and hence [a(z + w) + ft]' =
[az + ft]'; thus awed' and so aQ ^ Q'. Conversely, it is easily seen that if
aCl^Q' then this transformation fatb:C/Cl-+C/Q,' is holomorphic.

If / = / a h is a conformal homeomorphism, then its holomorphic inverse
must have the form [z]' h-> [(z - ft)/a] where a ~ *O' ̂  Q, so that ft' £ aft and
hence ft' = aQ; conversely, if ft' = aft then this defines a holomorphic
inverse, so / is a conformal homeomorphism. •

It is easily seen that there are infinitely many similarity classes of lattices
in C, and hence infinitely many conformal equivalence classes of tori; in
other words, a compact orien table surface of genus 1 admits infinitely many
distinct complex structures. We will return to this topic in §6.1.

The above proof of Theorem 4.18.1 depends heavily on the compactness
of C/ft (needed to prove Theorem 3.6.1, which shows that dj/dz is
constant). We now give an alternative argument, independent of compact-
ness, which determines the conformal equivalences between tori and which
we will generalise in Theorem 5.9.3 to apply to other Riemann surfaces, not
necessarily compact.

As in the above proof, we can lift any conformal equivalence /:C/ft->
C/ft' to an analytic map /:C -• C, and similarly we can lift g = / " * :C/fi' -•
C/Q to <7:C->C, again analytic (see Fig. 4.81). Then pog°J=gof°p = p,
so that (g°J){z) = z + o)z(a)2eQ) for all zeC. As before, the function C ->Q,
zh+ ojz = (0°/)(z) - z is continuous and hence constant, so (g°J)(z) = z + o
for all zeC and for some fixed coed. This immediately implies that / is
one-to-one, and a similar argument involving J°g shows that / is onto;
thus / is an automorphism of C, so it has the form z h+ az + ft by Theorem
4.17.3(ii). Finally, we argue as before to show that aQ, = O' and that every
such map / induces a conformal equivalence.

Fig. 4.81 c / ) C ^ L _ ^ C

'I '1 I'
c /n — » c/Q'— > c /Q

/ o J
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Putting Q' = Q in Theorem 4.18.1 we have

Theorem 4.18.2. The automorphisms of the Riemann surface C/Q are the
transformations /flfb:[z] h* [az + b] such that a, beC and ad = Q. •

It is straightforward to verify that the group G = Aut (C/Q) has a normal
subgroup N9 isomorphic (as a group!) to C/Q, consisting of the trans-
formations flb, and that G/N is a cyclic group of order 2, 4 or 6 (see
Exercise 4Q). Notice that G acts transitively on C/Q, so all points of C/Q
have the same analytic properties (as is the case with Z).

Finally, we show that for any lattice Q, C/Q is conformally equivalent
to the Riemann surface S of y/p(z), where p is the cubic polynomial
appearing in the differential equation ^>' = yJp(^)) satisfied by the
Weierstrass function P associated with Q (see §3.10); for a form of converse,
see Theorem 6.5.11.

Theorem 4.18.3. Let p(z) = 4z3 — g2z — g3, where g2 = 60E'cy " 4 and
03 = l40E'co " 6 (summations over all non-zero coeQ), and let S be the Riemann
surface ofjp(z)\ then S s C/Q.

Proof. As shown in §4.9(iv) there is a homeomorphism a:C/Q-*S,
mapping each reC/Q to the germ [ / ] c eS where c = P(t) and / is the
local branch of Jp near c satisfying/(c) = P'(t); putting t = |V]eC/Q(aeC)
we have c = P(a) and f(c) = ^\a).

It is sufficient to show that a induces a conformal transformation of
local coordinates from C/Q to S. The charts on C/Q at t have the form
(C/K, <!>y) described in the proof of Theorem 4.11.1, where V is a small disc
in C containing a, and <DK is the inverse of the projection pv of V onto
its image Uv a C/Q; on S, provided c is not one of the four branch-points,
we use the projection ^:5 -+ Z, [ / ] r i-> z, to give local coordinates near c, as
in §4.13. It follows that away from the branch-points, a induces the trans-
formation \l/°0L°<byl = \l/°oiopv = P°pK of local coordinates, and this is
just the restriction of P to K Now the branch-points on S, lying above
oo and the roots el9e2 and e3 of p, correspond under a to the points [0],
[ jco j , [ia>2] and Qco3] of C/Q; since P has non-zero derivative on
C\^Q (by Theorem 3.10.7), a transforms the local coordinates conformally
away from the branch-points. Each branch-point has order 1, so (as in
§4.13) we use the local coordinates ( = z~1/2 (near oo) or ( = (z —^) 1 / 2

(near et)\ by Corollary 3.10.8 P takes the values oo and e{ with multiplicity
2, so the functions P" 1 / 2 and (P - e,)1/2, representing the transformations
of local coordinates at the branch-points, are conformal. •
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4.19 Covering surfaces of Riemann surfaces

Now that we have precise definitions of surfaces and of Riemann surfaces,
we can return a little more rigorously to the concept of a covering surface,
which we introduced rather briefly in §1.5. A covering surface of a surface
S is a pair (5, p) where S is a surface and p is a continuous function from
5 onto S with the following property: each seS has an open neighbourhood
U, homeomorphic to the open disc Q), such that each connected component
V of p~l(U) is mapped homeomorphically by p onto U. We will refer to
U and V as elementary neighbourhoods (it is standard to apply this to U,
but not V; however, it is convenient and should cause no confusion, to
apply it also to V). When p (called a covering map) is understood, we will
simply refer to S as a covering surface of 5; the phrase 'a covering of S
by 3' is also used. We call p~1(s)(seS) the fibre above s; since |p - 1(s)n
V\ = 1 for all V, \p~x(s)\ is the number (possibly infinite) of connected
components of p~l(U)9 so \p~1(s)\ = \p-1(s')\ for all s'eU. Thus \p-\s)\
is locally constant on S, so if S is connected then Ip"1^)! is a constant,
called the number of sheets of the covering.

We will pay particular attention to coverings of Riemann surfaces, but
it should be noted that this is part of a more general topological theory
of covering spaces, and that many of our results can be generalised to
manifolds of arbitrary dimension; see, for example Massey [1967].

Examples. (1) If Q is a lattice in C then the projection p:C-+C/O is a
covering map with infinitely many sheets. To see this, we cover C by open
discs V satisfying Vn(V+a)) = 0 for all coeQ\{0}, as in the proof of
Theorem 4.11.1; then these, and their images Uv = p(V\ form the required
elementary neighbourhoods in C and C/Q, since the components V+ a>
of p~1(Uv) are mapped homeomorphically by p onto Uv. Each fibre is a
coset of Q, and hence infinite.

(2) We saw in §1.5 that if / : £ - • £ is a non-constant rational function
and B its set of branch-points, then / restricts to a covering map
Z X / 'H / WHEX /X JJ ) . the number of sheets being the degree of / .
(To obtain a covering map from / , it is not sufficient simply to remove
all branch-points and their images; as shown in Example (2) of §1.5, when-
ever f~1(s) contains a branch-point then all of f~i(s) must be removed,
together with s. Similar considerations apply to the next two examples.)

(3) By analogy with (2), it follows from §3.15 that non-constant elliptic
functions induce coverings of a punctured sphere by a punctured torus,
the number of sheets being the order of the function; for instance, the
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Weierstrass function P:C->E induces a 2-sheeted covering map

p:C/Q\{[0], [ i c o j , | > 2 ] , O 3 ] } - S \ { o o , ^ , e2, e2}.

(4) It follows from §4.14 (and in particular Lemma 4.14.2) that the
unbranched Riemann surface Jt A of an algebraic function A is a covering
surface of a punctured sphere, the punctures being the finitely many
images in Z of the branch-points; the number of sheets is equal to the
degree of A. For specific examples, see §§4.8-4.10.

(5) Similarly, §4.7 shows that the Riemann surface of log (z) is a covering
surface of E\{0, oo}, with infinitely many sheets. It should, however, be
pointed out that transcendental functions do not always give rise to
covering surfaces in this way: for instance, a point seZ might be on the
natural boundary for one branch of the function, but not for a second
branch, so that s would not have a suitable elementary neighbourhood.

Although we will not pursue this idea very far, we briefly mention here
how to extend our definition of a covering surface to include branch-
points. The basic idea is that a typical branch-point of order n — 1 is given
by the behaviour, at the origin, of the function nn\@ -+@9 z\-+zn, so all we
need do is transfer this model to a more general setting. We say that a
continuous surjection p:S-+S is a branched (or ramified) covering map if
each seS has an open neighbourhood U and a homeomorphism <t>:U -• <3>
such that for each connected component V of p~l(U) there is a homeo-
morphism y-.V^tft satisfying <&°p = nn

oX¥ for some integer n^\ (see
Fig. 4.82). We have n = l if and only if p( = <&~lonn°

x¥) is a homeo-
morphism V-+ U9 as happens for (unbranched) covering maps; if n > 1 for
some V then we say that the unique element s of Vnp~1(s) is a branch-
point of order n — 1 since p is (like 7rn) locally n-to-one near s. For instance,
if we include the branch-points in Examples (2), (3) and (4) above then we
have a branched covering in each case.

Fig. 4.82 V
V > 0

1 I-p

u <D

For the remainder of this section we will assume that (<?, p) is a covering
surface of a surface S (with no branch-points).

A covering transformation of (S,p) is a homeomorphism g:3->S such
that p°g = p, see Fig. 4.83 (equivalently, g maps each fibre p~1(s) to itself);
these form a group under composition. For instance in Example (1) above,
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the covering transformations are the translations of C by elements of ft,
forming a group isomorphic to Q. In Example (4), if we take S to be the
unbranched Riemann surface of zllq (see §4.8), and S = I \{0 , oo}, so that
p = \f/;5->S maps each germ lf]ae5 to aeS, then the covering transform-
ations are [/] f l H> [er/L for r = 0,1, . . . ,<?- 1, where £ = exp(27u/g); these
form a cyclic group of order q.

Fig. 4.83

Lemma 4.19.1. The set Fg of fixed-points of a covering transformation g is
both open and closed.

Proof Let seFgt so that g(s) = s, and let V be an elementary neighbour-
hood of s in S. Since g is a homeomorphism, g~ 1(V) is a neighbourhood of s,
and hence so is V —Vr\g~l(V). If veV then since p = p°g we have
p(y) = p(g(v))\ but t? and #(i?) both lie in V, on which p is one-to-one, so
v — g(v). Thus K' £ F ,̂ so F^ is open.

Now let seS\Fg, so that g(s) ^ s. Since S is a Hausdorff space, there exist
disjoint neighbourhoods A and B of s and g(s) respectively. Let V be an
elementary neighbourhood of 5, and let V = VnAng~1(B\ a neighbour-
hood of s. Then V'^A while 0(K')c£, so V'ng(V') = 0 and hence

,̂ showing that Fg is closed. •

Thus Fg is a union of connected components of S. For example, let S be
connected, and S a disjoint union of any number of copies of S, each
mapped homeomorphically onto 5 by p (see §4.9(iii)). Then the covering
transformations are the permutations of the copies of S (that is, the
components of 3), and Fg is just the union of those copies mapped to
themselves by g.

In fact, the proof of Lemma 4.19.1 gives a little more than we have stated.
If G is a group of homeomorphisms of a topological space X onto itself, then
G acts discontinuously on X if every xeX has a neighbourhood V such that
^n^(^) = 0 f°r all non-identity gsG. For instance, a lattice Q acts
discontinuously on C as a group of translations, by Example (1) above. The
next result generalises this:

Theorem 4.19.2. IfS is connected, then the group G of covering transform-
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ations of p:S->S acts discontinuously on S; in particular, a non-identity
element of G can have no fixed-points on S.

Proof Let V be an elementary neighbourhood of some seS, and suppose
that Vr\g(V) # 0 for some geG, so that there exists ve V with g{v)e V\ then
since p — p°g and p is one-to-one on V, we have v = g(v\ so Fg is non-empty.
Since S is connected, we must have Fg = £, so that g is the identity. •

We say that (£,p) is a regular covering space of 5 if, for each SGS, the group G
of covering transformations acts transitively on the fibre p~*(s); thus any
two elements of p~ 1(s) look alike'. Examples include p:C -+C/SI (with G = fi)
and the covering of S = Z\{0, 00} by the unbranched Riemann surface
of z1/q, as shown above. For an example of a non-regular covering, take the
function w =N/(l+«N/z) considered in §4.10: this has branch-points at
z = 0,1 and oo, so we take S = I \{0 , l,oo} and S=$~l{S), a 4-sheeted
unbranched covering of 5. We now divide,? into four sheets Ex,..., E4 as in
§4.10, take seS close to 1, and let s, be the unique element of \jt~ l(s) in £,.
At z = 1, Ex and E3 are unbranched, while E2 and £ 4 meet at a branch-point
of order 1; it follows that if 6 is a closed path from s to itself, winding once
around 1 (and not around 0 or oo) then i//~1(S) consists of two closed paths
(from sx and s3 to themselves, on Ex and £ 3 respectively) and two paths
which are not closed (from s2 to s4 and vice versa). Now the covering
transformations must permute these four paths amongst themselves,
mapping closed paths to closed paths, so they cannot, for example, map sx

to s2.
The following result illustrates the importance of regular coverings.

Theorem 4.193. If(5,p) is a regular covering surface of S, and ifG is the
group of covering transformations, then there is a homeomorphism q:S-*S/G
given by q(s) = [s]G where seS and sep~1(s).

Proof Let n:S^S/G be the natural projection, sending each seS to its
orbit [s]G, so that q is defined by q(s) = 7r(s), where p(s) = s, as shown in Fig.
4.84. To show that this depends only on s, and not on s, let 5l9s2€p~l(s)l

Fig. 4.84

S + 5/G
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since S is a regular covering surface, there exists geG with gis^ = s2, and
hence 71^) = n(g(sl)) = TC(S2), as required. Thus we have a well-defined
function q:S-+S/G, which is clearly onto. If S1,S2ES satisfy q(si) = q(s2),
then any siep~1(sl) and s2ep~1(s2) satisfy n(sx) = 7i(s2), so s2 = 0(si) for
some geG\ then s t = p(si) = (p°0)(si) = p(s2) = s2, so g is one-to-one and
hence a bijection.

It follows easily from the definitions of a covering map and of the
quotient topology on S/G that p and n are both open and continuous; then q
also has both these properties and is therefore a homeomorphism. •

The above result gives us a natural way of identifying S with S/G, and p
with n. We now quote one of the most important results on covering
surfaces; a proof can be found in most topology textbooks, for example in
Massey [1967].

Theorem 4.19.4. Every connected surface S has a covering surface (£,p)
such that S is simply connected. •

For instance, if S = C/Q then we can take S = C as in Example (1) above;
if S = C\{0} we can take S = C and p = exp:C->C\{0}; if S is simply
connected we can take S = S and p = id:£->S.

We call (S, p) (or simply S) a universal covering surface for S; it can be
shown to be unique in the sense that if (S, q) is any other simply connected
covering surface of S then there is a homeomorphism f.S^S with p = q°f
(see Fig. 4.85). More generally, if (S9 q) is any connected covering surface of S
then there is a covering map f.S^S with p = q°f, so that S covers all
connected covering surfaces of 5.

Fig. 4.85

Our aim is to show that $ is always a regular covering surface of 5; while
this can be proved for arbitrary surfaces, we shall find it most convenient to
restrict our attention to Riemann surfaces, so that we can apply the
principle of meromorphic continuation. First we show that if S has a
complex structure, then this induces a complex structure on each covering
surface S of S.
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Theorem 4.19.5. IfS is a Riemann surface with covering surface S then there
is a unique complex structure on S such that p:S-+S is holomorphic.

Proof. Using Theorem 4.11.2 to give a suitable atlas on S, we can choose
the elementary neighbourhoods V on S sufficiently small that each is
mapped by p homeomorphically onto some U ^ 5, where (U,Q>) is a chart
on S (see Fig. 4.86). We then define an atlas on S to consist of all charts of the
form (K O°p); this atlas is analytic, since if (Vh Of°p) and (Vp O,°p) are charts
with V( n Vj T* 0 , then the coordinate transition function is

(OjOpHOVp)-1 =O,°Ofx,

which is a coordinate transition function on 5 and is therefore analytic. A
similar argument shows that compatible atlases on S induce compatible
atlases on 5, so the complex structure on S is well defined.

Fig. 4.86

W c C

The transformation of local coordinates induced by p has the form
Oop°(<I>°p)~\ which is the identity and hence analytic, so p is holomorphic.
It is straightforward to check that any other analytic atlas on S, with respect
to which p is holomorphic, must be compatible with that defined above, so
the complex structure on S is unique. •

Corollary 4.19.6. If S and S are as in Theorem 4.19.5, then each covering
transformation of (£, p) is an automorphism of 8.

Proof. If g is a covering transformation, and (K^^op) and (Vj,Q>j°p) are
charts at s and at g(s), where seS, then g induces the transformation of local
coordinates

which is analytic. Thus g is holomorphic, and the same applies to g ~ \ so g is
an automorphism of 5. •

By Theorem 4.19.5, if S is any connected Riemann surface, then its
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universal covering surface S has a unique complex structure with respect to
which the covering map p:S-+S is holomorphic. Thus § is a simply
connected Riemann surface, so by Theorem 4.17.2 it is conformally
equivalent to S, C or ̂ ; without loss of generality we can take S to be one of
these three surfaces, so that in all cases we have S £ Z. By Corollary 4.19.6
the covering transformations are automorphisms of $> and these are
completely described in Theorem 4.17.3. It only remains to show that Sis a
regular covering surface of S, so that we can apply Theorem 4.19.3 to
identify S with S/G for some G < Aut S.

Theorem 4.19.7. If S is a connected Riemann surface then the universal
covering surface ($, p) is a regular covering surface of S.

Proof. We must show that whenever §t and §2 lie in the same fibre p~ l(s)
(seS) then there is a covering transformation / : £ - • £ with/(S^ = s2. Our
method (similar to that used in Theorem 4.18.1) is first to construct /locally
near §l9 and then use meromorphic continuation to extend to a global
transformation.

We can choose elementary neighbourhoods Vt (i = 1,2) of it such that the
restriction p, of p to V{ maps Vt homeomorphically onto an elementary
neighbourhood U of s. Then the function F = pll°pl\Vl -> V2 is holo-
morphic (since each pt is), satisfies p° F = p on its domain Vx, and maps sx to
§2- If (as above) we identify § with a subset of I , then as s ranges over S and
§x, S2 over p" 1(s), the corresponding function elements (Vl9F) give a set # of
meromorphic germs. It is clear that ^ is sufficient for meromorphic
continuation within § (in the sense of §4.13), so because S is simply
connected, Corollary 4.13.2 implies that any one of these germs extends to a
single-valued meromorphic function/on §; moreover, / maps £into itself
and satisfies p°f=p, since each function element (V1,F) has this property
locally. If we choose F to map a particular §1ep~l{s) to S2> then / will also
have this property since it is a meromorphic continuation of the germ [F]§i.

Applying a similar argument to F"1 =pi"lop2:F2-^K1 we have a
meromorphic function g:§->§, equal to F"1 near $2, satisfying p°g = p.
Then g°f:§->§ is meromorphic, and near $x it coincides with F~loF =
id: Vl -> Vl9 so g°f is the identity on § by the uniqueness of meromorphic
continuation; similarly/o# is the identity, so / :£->£ is a homeomorphism
and hence a covering transformation of §. •

The above proof appears to need the uniformisation theorem (4.17.2) which,
by identifying S with a subset of Z, enables us to apply meromorphic
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continuation to F. In fact, we can avoid this deep result: it is not difficult to
check that the arguments leading up to Corollary 4.13.2 can be applied to
any simply connected Riemann surface (such as S\ and not just to subsets
£ c i a s stated.

Theorem 4.19.8. If S is a connected Riemann surface not conformally
equivalent to the sphere Z, the plane C, the punctured plane C\{0}, or a torus
C/Q, then S has universal covering space S=<%, the upper half-plane, and S is
conformally equivalent to °UIG for some subgroup G of PSL(2, U) acting
discontinuously on (JU.

Proof. By Theorems 4.19.3 and 4.19.7 there is a homeomorphism q:S->
S/G, where S = Z, C or <% by Theorem 4.17.2, and G < Aut S by Corollary
4.19.6. Using q, we can carry the complex structure on S over to S/G: we
define the charts on S/G to have the form (q( W\ <b°q~l) where (W, O) ranges
over the charts on 5. Then q:S^S/G is a conformal equivalence, and the
projection n:S-+S/G is holomorphic.

By Theorem 4.19.2 G acts discontinuously on S, the non-identity
elements having no fixed-points; we shall see that when J = S o r C , this
restricts the possibilities for G and hence for S.

If S = Z then Aut S = PSL(2, C) by Theorem 4.17.3(i); by Theorem 2.9.1
every non-identity element of PSL(2, C) has at least one fixed-point, so G is
the trivial group and S £ Z/G = Z.

If £ = C then Aut£ consists of the transformations zt-+az + b
(a, fceC, a / 0) by Theorem 4.17.3(ii); if a ^ 1 then b/(l - a) is a fixed-point,
so G must consist of translations zi-^z-l-6. Now such a group G acts
discontinuously on C if and only if the corresponding elements b form a
discrete subgroup of C, so by Theorem 3.1.3 G is the trivial group, an infinite
cyclic group, or a lattice. In the first case S s C/G = C, and in the third case
C/G is a torus. In the second case, if a; is a generator for G then the
function z\->exp(2niz/co), C->C\{0}, induces a conformal equivalence
C/G-+C\{0}, so S s C\{0} (see §3.3 for an example of this in connection
with simply periodic functions).

If we exclude the above four possibilities for S, then S = <% and S s */G
where G is a discontinuous subgroup of Aut S = PSL(2, R), by Theorem

•

This theorem shows that every connected Riemann surface S may be
obtained from one of the three simply connected Riemann surfaces S = Z, C
or <% by factoring out a discontinuous subgroup G of Aut § (itself a known
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group); moreover, in all except four simple cases, the universal covering
space § is ^, rather than I or C. This leads naturally to the subject of the
next chapter, the upper half-plane <% and the action on % of various
subgroups of its automorphism group PSL{2, U).

In this section we have deliberately confined ourselves to a rather
abbreviated account of covering surfaces, partly through lack of space and
partly because the extra structure of a Riemann surface enables us to take
certain short-cuts not available in the general theory. One particular topic
we have ignored is the important connection between covering surfaces and
fundamental groups; for example, if S is the universal covering space of a
connected surface S, then the group G of covering transformations can be
identified (in a natural way) with n^S), and each connected covering
surface of S can be obtained from S by factoring out a subgroup of nl(S).
For details, see Massey [1967].

EXERCISES

4A. Prove that the series J^L l z
2" has the unit circle as its natural boundary.

4B. Prove that the point z = 1 is a singular point for the power series £*= j (z"/w2).
4C. Construct the Riemann surface of sin ~1 z.
4D. Find the position and order of the branch-points of the following many-valued

functions. In each case construct a cut plane in which it is possible to define a
branch of the function:

(a) V((z - l)(z - 2)(z - 3)(z - 4)(z - 5));
(b) (1 - zn)l/m (m, n positive integers);
(c) log sin z.

4E. Compute the monodromy groups for the Riemann surfaces of the following
many-valued functions:

(a) z1/n (n a positive integer);
(b) y/(Z + y/z*

(c) z1

4F. Show that compatibility of atlases is an equivalence relation.
4G. Let S be a Riemann surface, p a point of S and let f:S -• S be a meromorphic

function. If (Uh <D.) is a chart at p then /o<Df ^ C - * ! is a meromorphic
function on <D,<t/,) and so can be expanded in a power series about the point

/o<Di-
l(z)
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Prove that the integer N is independent of the chart (Uit <!>,) at p. (The integer N
is called the order of / at p.) How would you define the order of a zero or a
pole of a meromorphic function on a Riemann surface?

4H. Let St be a connected Riemann surface and f:S1->S2, g'-Sl-^S2 be two
holomorphic functions which coincide on some sequence of points with a
limit point in Sj. Prove that /= g. (Hint: let X = {qeSx | /and # coincide in a
neighbourhood of q]. X is open by definition; show that X is non-empty and
closed.)

41. Let Sx be a connected Riemann surface and f:Sl-+S2 be a non-constant
holomorphic function. Prove that / is an open mapping. (Use the correspond-
ing result in the complex plane, Theorem A. 10.)

4J. Let S be a connected Riemann surface and / : S -> C be a non-constant analytic
function. Prove that | / | has no relative maximum in S. (Use the maximum
modulus principle in C, Theorem A. 11.)

4K. Show that if S is a compact connected Riemann surface the only analytic
functions/:S->C are the constant functions.

4L. Use the Riemann-Hurwitz formula to find the genus of the Riemann surfaces
of the many-valued functions given in (b) and (c) of Exercise 4E.

4M. Find the genus of the Riemann surfaces of the following algebraic functions:

(a) w8 + z8 - 1 = 0;
(b) w2-z4(z-l) = 0;
(c) w3 — w + z = 0.

4N. Let B be a finite subset of the sphere 1 consisting of r ̂  2 points and let n ̂  1
be an integer. Show that there exists a compact orientable surface S and a
branched covering p:S-*I. with branch points of order (n — 1) at each of the
points of B if and only if either

(i) r is even; or
(ii) r and n are both odd.

(Hint: to construct such a covering consider an equation of the form w" =/(z)
where / is a suitable rational function.)

4P. Prove that the projective plane contains a subset homeomorphic to the
Mobius band and deduce that the projective plane is non-orientable.

4Q. Prove the statement made after Theorem 4.18.2 that if Q is a lattice then
G = Aut(C/Q) has a normal subgroup N isomorphic to C/fl and that G/N
is a cyclic group of order 2,4 or 6. (Use Exercise 3H.) Describe the lattices O for
which G/N has order 4 or 6.

4R. (a) Let Tx denote the cyclic group of automorphism of the plane generated by
zi-^z + /(/.eC\{0}). Define an analytic atlas on C/TX such that the
natural projection p:C»-»C/TA is holomorphic.

(b) Show that C/Tx is conformally equivalent to
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(c) Give an example of a non-constant analytic function

/ : C / T A - C .

4S. Prove that the sphere is a two-sheeted covering surface of the projective plane.
Describe the covering transformations.

4T. Let 5 t be a compact surface on which there is a polygonal subdivision M. Let
52 be another compact surface and suppose that piSj-^Sx is an n-sheeted
covering map. Use the method of proof of Theorem 4.16.3 to show that

and deduce that a finite-sheeted covering surface of a compact orientable
surface of genus 1 is itself of genus 1.

4U. Prove that if G is a discontinuous group of homeomorphisms of a surface S,
then S is a covering surface of S/G.



5
PSL{2, U) and its discrete subgroups

At the end of the previous chapter we noted how important the group
PSL(29 R) and its subgroups are to Riemann surface theory. In this chapter
we give an introduction to this topic. The plan of the chapter is as follows.

In §§5.1 and 5.2 we discuss basic algebraic properties of PSL(2, R). Much
of this is similar to some of the work in Chapter 2 on the group PSL(2, C). In
§§5.3 and 5.4 we discuss the hyperbolic metric on the upper half-plane tfl.
With this metric <% becomes a model of the hyperbolic plane and PSL(2, R)
now acts as a group of isometries. In §§5.6 and 5.7 we introduce Fuchsian
groups; these are discrete subgroups of PSL(2, R) and all subgroups of
PSL(2, R) which act discontinuously on °U come into this class. Thus the
groups G of Theorem 4.19.8 are all Fuchsian groups. As these groups are
discontinuous groups of hyperbolic isometries they are comparable with
lattices which are discontinuous groups of Euclidean isometries. As with
lattices, the discontinuity implies the existence of a fundamental region and
this is studied in §5.8. As before, we can use Dirichlet regions but now these
are hyperbolic polygons and not Euclidean polygons as they were in §2.4. In
§5.9, the quotient-spaces of the upper half-plane by Fuchsian groups are
proved to be Riemann surfaces. In §5.10, the hyperbolic area of a
fundamental region is shown to be an important invariant and it is used in
§5.11 to give results about automorphism groups of compact Riemann
surfaces of genus g > 1. These are necessarily finite groups, unlike the cases
g = 0,1 treated in earlier chapters, where infinite groups may occur.

5.1 The transformations of PSL(2, R)

Let

^ ± i ! (5.1.1)
cz + d

then dividing the numerator and denominator by ^/A we obtain
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and as (a/y/A){d/y/A) - (b/y/A)(c/y/A) = 1, this shows that TePSL(2, R) (see
§2.1). In particular PSL(2, R) contains all transformations of the form

and hence all transformations of the form z h+ az, (a > 0). Another important
transformation of PSL(2, R) is

If T(z) is the transformation in (5.1.1) then

(az + fc)(cz -f J) (flczf + bd) + (adz + bcz)

so that if z = x -I- iy, and T(z) = M + ip, then

(5.1.2)

and as ad — bc>0 this confirms that T is an automorphism of °U. In
Theorem 4.17.3, the stronger result that A u t ^ = PSL(2, R) is proved.

On the other hand, if ad — bc<0 then T maps °U conformally and
bijectively onto the lower half-plane.

5.2 Transitivity, conjugacy and centralisers

Theorem 5.2.1.

(i) PSL(2, R) is transitive on <JU.

(H) PSL(2, R) is doubly transitive on Ru{oo}.

Proof, (i) Let ai + beQl, so that a > 0. Then if 7(z) = az + fc, TePSL(29 R)
and T(i) = ai + 6. Thus the orbit of i under the action of P5L(2, R) is °U and
so P5L(2, R) is transitive on °U.

(ii) If a, beR, a > b then if 5(z) = (z - a)/(z - b), SeP5L(2, R) maps the
ordered pair (a,b) to (0,oo). Also zi-> — 1/z maps (0, oo) to (oo,0) and
zh-^z + b maps (0, oo) to (b, oo). It follows that the orbit of (0, oo) under the
action of P5L(2, R) consists of all ordered pairs (a, b), (a, be R u {oo}, a ^ b),
so that PSL(2, R) is doubly transitive on Ru{oo}. •

We now discuss the conjugacy classes in PSL(2, R). In §§2.9 and 2.10 we
obtained the conjugacy classes in PSL(2, C). The treatment here is similar
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but a little care is needed in that it does not necessarily follow that if two
transformations of PSL(2, U) are conjugate in PSL(2, C) then they need be
conjugate in PSL(2, R). We can still classify the elements as parabolic,
hyperbolic, elliptic and loxodromic according to the trace as we did in §2.10.
Also, the fixed-points of the transformations still play an important role.
The fixed-points are found by solving

z = -, a9b,c,deU, ad-bc=\,
cz + d

and as a, fc, c, d are real we see that this transformation has either two fixed-
points in !Ru{oo}, one fixed point in IRu{oo}, or a pair of complex
conjugate fixed-points.

Parabolic elements (\a + d\ = 2). Let T be a parabolic element with the
single fixed-point a E (R u {oo}. By Theorem 5.2.1 (ii) there exists S E PSL(2, IR)
such that S(a) = oo. Hence STS'1 is parabolic with fixed-point oo and
therefore

t (tElR\{0}).

Let V(z) = (1 /111 )z. Then V W V ~1: z h+ z ± 1, the sign depending on whether
t > 0 or t < 0. A simple calculation shows that zh+ z + 1 is not conjugate to
z\-+z — 1 in PSL(2, R) so that there are two conjugacy classes of parabolic
elements in PSL(2, R).

Hyperbolic elements (\a 4- d\ > 2). Let T be hyperbolic with fixed-points
<X,/?EIRU{OO}. By Theorem 5.2.1 (ii), there exists SEPSL(2,IR) such that S
maps a to 0 and j? to oo. Thus

in the notation of §2.9. If B(z)= - 1/z then BUkB~l = Ux-\ so that Ux is
conjugate to Ux-i in PSU2, IR). However, by Theorem 2.9.3, Ux is not
conjugate to UK if K ̂  A or A~ *. Thus every hyperbolic element of PSL(2, IR)
is conjugate to a unique element of the form UX9(X > 1).

Elliptic elements (\a + d | < 2\ Let T be an elliptic element with fixed-point
. By Theorem 5.2.1 (i) there exists S E P 5 L ( 2 , IR) such that S(f) = i. Then
= F= — i so that W= STS'1 is an elliptic element with fixed-points i

and — i. Therefore

W(z) + i
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As W maps Ru{oo} to itself we can find OLEU such that W(OL)SU. Hence

= 1,
W(a)-i
W(x) + i

OL — i

a + i

and so X == eie (0 < 6 < 2n). Therefore T is conjugate to W, where

We cannot get a simpler form in PSL(2, (R), but it is worth noting that if

z + i ' W(z) + i

then z', w'e®, the unit disc, and

W = ei0z'.

Thus, inside PSL(2y C), Tis conjugate to a rotation of the unit disc through
8. We note that, as in PSL(2, C), all elements of finite order are elliptic.

Loxodromic elements (a + d not real). As all elements of P5L(2, IR) have
real trace there are no loxodromic elements in PSL(2, IR).

If G is any group and geG, then the centraliser of g in G is defined by

CG(g) = {heG\hg = gh}.

CG(g) is a subgroup of G and if keG then

so that to calculate the structure of the centralisers of elements of PSL(2, R)
we need only look at the centralisers of the representatives of the conjugacy
classes found above. The calculations are made easier by the following
lemma which is true in any group of transformations.

Lemma 5.2.3. IfST=TS then S maps the fixed-point set of T to itself.

Proof Suppose that T fixes p. Then

S(p) = ST(p) = TS(p) = T(S(p)\

so that S(p) is fixed by T. •

Now suppose that T(z) = z + 1. Then if SeCPSLi2tR)(T) then S fixes oo. Thus
S(z) = az + b and ST= TS gives a = 1. Hence
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with the same result for the centraliser of z\-+z — 1.
In a similar way we show that the centraliser of zv+ kz (k > 0,k # l) in

PSL(2, R) consists of all transformations of the form z »-• \iz {\i > 0) and the
centraliser of the elliptic element (5.2.2) consists of all transformations

W(z) + i

From these calculations we deduce the following two results.

Theorem 5.2.4. Two non-identity elements of PSL{2, R) commute if and
only if they have the same fixed-point set. •

Theorem 5.2.5. The centraliser in PSL(2, IR) of a hyperbolic (resp. parabolic,
elliptic) element of PSL(2, R) consists of all hyperbolic (resp. parabolic,
elliptic) elements with the same fixed-point set, together with the identity
element. •

53. The hyperbolic metric

The connection between the group PSL(2, R) and hyperbolic geometry was
discovered by Henri Poincare (1854-1912) and published in 1882. (Poin-
care used this discovery to illustrate the sometimes spontaneous nature of
mathematical creativity. He relates how, when boarding a bus, the idea
suddenly came to him that the transformations he had used to define
Fuchsian functions were identical with those of non-Euclidean geometry.
For a more detailed account see the chapter on Poincare in Bell [1953].)

The transformations used to define Fuchsian functions are real Mobius
transformations and the non-Euclidean geometry referred to is the
hyperbolic geometry of Bolyai and Lobatchewsky. In this geometry,
Euclid's parallel postulate is replaced by the postulate that given a line L
and a point P not on L, then through P there are an infinite number of lines
not meeting L. In this section we shall show that with line' defined
appropriately, the upper half-plane gives a model of hyperbolic geometry.

We start by defining the hyperbolic length of a piecewise differentiable
path y. First, recall how we define the Euclidean length of a piecewise
differentiable path /? in R2. Suppose that /? : / - • R2, where / = [0,1], is given
by P(t) = (x(f), y{t)) where x and y are piecewise differentiate functions. The
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Euclidean length e(f$) is defined by means of the formula

ds2 = dx2 + dy2,

or, more precisely,

where, of course, the positive square root is to be taken.
(If we change the parametrisation by letting t = a(s), where a:[0,1] -*

[0,1] is a mono tonic function then (x(t),y(f)) = (x1(s),>'1(s)), where xx =
=y°oii and we get the same value for the length on replacing x,y by

We define the hyperbolic length in % by means of the formula

2 dx2 + dy2 \dz\2

ds2 p — = - 5 - (z = x + iy).

More precisely, if y:I-+<% is a piecewise differentiate path with y(f) =
x(r) + i.y(0 = z(t) then its hyperbolic length h(y) is given by

Theorem 5.3.1. If TePSL(2, R) then h(T(y)) = fc(y). Tftws hyperbolic length
is invariant under transformations of PSL(2, R).

Proo/. Let

Then

az + fc
cz + d

,c,deU,ad — bc= 1).

dT a(cz + d) — c(az + b) 1
dz (cz + d)2 {cz + d)2"

Also, if z = x + i>, T(z) = u + to, then by (5.1.2)

and hence

v
y

(5.3.2)
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Thus

-rdt
h(T(y)) =

o y
= h(y). •

We now wish to show that between any two points in fy there is a unique
path of shortest hyperbolic length and to determine this path. Such paths
will be called hyperbolic line segments or H-line segments and from Theorem
5.3.1 it follows that elements of PSL(2, R) map H-line segments to H-line
segments. (The prefix H always denotes hyperbolic.)

We first show that the H-line segment joining two points ia, ib (b > a) on
the imaginary axis is the segment of the imaginary axis joining them. Let
K:I^>% denote this segment so that K(t) = (0, y(t)) where dy/dt > 0, y(0) = a,

b. Hence

h(K) =
dt

y(t) Jo At)

If k:I^>% is any other piecewise differentiable path joining ia to ib,
with k(t) = (x(f), y(0), then

" dy

Equality holds if and only if dx/dt = 0 and dy/dt ^ 0, where they exist.
As k is piecewise differentiable, it follows that k is the Euclidean line
segment joining ia and ib.

Exactly the same calculation shows that if zx and z2 have the same real
part, then the unique H-line segment joining them is the unique Euclidean
line segment joining them.

Fig. 5.1
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Now suppose that zx and z2 do not have the same real part. Then the
perpendicular bisector of the Euclidean line segment joining them cuts the
real axis in a point r which is the centre of the unique Euclidean circle Q
through zx and z2 orthogonal to R, as illustrated in Fig. 5.1.

Suppose that Q intersects IR at z\,z\. By Theorem 5.2.1 (ii), there exists
TePSUl, R) such that T(zX) = 0, T{zf) = oo, and by Theorems 2.4.1,2.11.3
it follows that T(Q) is the imaginary axis so that the H-line segment joining
T(zx) and T(z2) is the segment of the imaginary axis joining them. Hence, by
Theorem 5.3.1, there is a unique H-line segment joining zx and z2, namely
the arc of Q in tft which joins zx and z2. We have now determined all the H-
line segments.

Theorem 5.3.3. The H-line segments in <% are arcs of semi-circles with
centre on the real axis or segments of Euclidean lines perpendicular to the real
axis. •

We call circles whose centres lie on the real axis or Euclidean lines
perpendicular to the real axis hyperbolic lines or H-lines. We regard vertical
H-lines as having one end-point at oo, so that every H-line has two end-
points in lRu{oo}. H-lines are illustrated in Fig. 5.2.

Fig. 5.2

Theorem 5.3.4. PSL(2, R) acts transitively on the set of all H-lines.

Proof. Let Q9Q' be two H-lines. If Q has end-points s,fe!Ru{oo} and
Q has end-points s',t'elRu{oo} then by Theorem 5.2.1 (ii) there exists
TePSLfa R) such that T(s) = s', T(t) = t'. Clearly, the end-points of an H-
line determine it uniquely, so that T(Q) = Q'. •

We define the hyperbolic distance p between two points z, w of Ql to be the
H-length of the H-line segment joining them. This clearly defines ^ as a
metric space, the triangle inequality following from the result that an
H-line segment is the unique shortest path between two points. The upper
half-plane with the p-metric is a model of the hyperbolic plane; if we define
two H-lines to be parallel if they do not intersect then given any H-line
Q and a point p not on Q then there are infinitely many H-lines through
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p not intersecting Q. (For a more detailed account of the axiomatic
approach to hyperbolic geometry in this context the reader is referred to
Magnus [1974].)

We note the following important result which follows immediately from
the work in this section.

Theorem 5.3.5. p(T(z),T(w)) = p(z9w) for all TePSL(2,U) and all
z,we<%. •

5.4 Computation of p(z9 w)
(The work in this section is based on Alan Beardon's treatment

in Harvey [1977]. Also see Beardon [1983].)

If ia, ib (b > a) are two points on the imaginary axis then in the previous
section we showed that p(ib, id) = ln(b/a). If z, w are any two points in ̂  then
it is usually more difficult to compute p(z, w) directly so in this section we
derive some simple formulae for the hyperbolic distance.

Lemma 5.4.1. Let z, wetft (z ^ w) and let the H-line Q joining z and w have
end-points z*, w* in U u {oo}, chosen in such a way that z lies between z* and
w. Then there exists a unique element TePSL{29 U) such that T(z*) = 0,
7(w*) =oo and T(z) = i. Also T(w) = ri (r > 1) and p(z, w) = In r.

Proof. Assume that neither z* nor w* is oo. We may suppose that
z* > w*, otherwise we just relabel.

If we let

then SePSm, R), S(z*) = 0, S(w*) = oo, so that S maps Q to the imaginary
axis. If S(z) = ki then

is the required transformation (recall that Ux(z) = Xz). It is unique by
Theorem 2.5.1, and as z lies between z* and w, T(z) = i lies between T(z*) = 0
and T(w), so that T(w) = ri, r > 1. By Theorem 5.3.5, p(z,w) = p(T(z\ T(w))
= p(i, ri) = In r. •

We define an H-invariant to be a function g(zu...9zj (z,e^r) for which
g{T(zx\..., T(zn)) = g{zx,...,zn) for all TePSL(29 R). For example, p(z, w)
is an H-invariant by Theorem 5.3.5
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Lemma 5.4.2.

(i) Ifz^w.z*^* are as defined in Lemma 5.4.1 then the cross-ratio

rj(z, w) = (w, z*; z, w*)

is an H-invariant,
(ii) For all z^we^,

T(Z, W) =
z — w

is an H-invariant.

Proof.
(i) As PSL(2, IR) preserves H-lines, the H-line joining T(z) and T(w) has end-

points T(z*) and T(w*) and so the result follows from the invariance of the
cross-ratio under Mobius transformations (Theorem 2.5.5).
(ii) This follows from the formula

| T(z) - T(w)\ = \z - w|| T'{z)T'(w)\l'\

which is easily proved by direct computation. •

Hence if z,w,r are as defined in Lemma 5.4.1, then

*rtz,w) = (ri,0;i,ao) = r,

and therefore

p(z,w) = In ^(z,w).

Also
r _ i ep^M _ i

T(z,w) = T(i,rO = — = ? ^ T T , (5.4.3)

and therefore

which is an explicit formula for the hyperbolic distance.
We can obtain an attractive and useful formula from (5.4.3) by using the

identities
eu - 1

and

2 w _ tanh2(w/2)
2~l-tanh2(M/2)*
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We obtain

T(Z,W)2 | Z - W | 2

Now

\z — w\2 — \z — w\2 = (z — w)(z — w) — (z — w)(z — w)= — (z — z)(w — vv)

= 4Im(z)Im(w).

Thus

sinh2ip(z,w) = 'V™ 1 , v (5.4.4)
4Im(z)Im(w)

For example, suppose we wish to find the hyperbolic circle with centre i
and radius 5. This is

= { z | | z - i | 2 = 4ysinh 2 ^} (where z = x + ry)

= {z|x2 + y2 + 1 = 2><2sinh2i<5 + 1) = 2ycosh(5}

which is a Euclidean circle with centre (0, cosh 6) and radius sinh 3, as
pictured in Fig. 5.3.

Fig. 53

Now by Theorem 2.4.1, PSL(2,R) maps Euclidean circles in °U to
Euclidean circles in ^ , and clearly maps H-circles to H-circles. By Theorem
5.2. l(i), we see that every H-circle is a Euclidean circle. Also, every
Euclidean circle is an H-circle. As the family of all open Euclidean discs
coincides with the family of open hyperbolic discs we obtain the following
result.

Theorem 5.4.5. The topology induced by the hyperbolic metric is the same
as the topology induced by the Euclidean metric. •
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5.5 Hyperbolic area and the Gauss-Bonnet formula

If E ^ <% we define /*(£), the hyperbolic area (H-area) of E by

dxdy-m
if this integral exists.

Theorem 5.5.1. fi(T(E)) = /*(£) for all TePSW, U). Thus the H-area is
invariant under all transformations of PSL(2, R).

Proof. Let z = x + iy,

az + b
'cz + d'

, ad-bc= 1,

and w = T(z) = u 4- w. Then using the Cauchy-Riemann equations we
calculate the Jacobian

d(u, v) du dv du dv
d(x, y) dx dy dy dx

fdu\2 fdv\2

dx dz

Thus

dudv iu,v)dxdy

-\i 1 \cz + d\*
dxdy = fi(E)

using (5.3.2). D
A hyperbolic n-sided polygon is a closed set in the closure of °U in I

bounded by n hyperbolic line segments. If two line segments intersect then

Fig. 5.4

<?•

(a) (b) (c) (d)
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the point of intersection is called a vertex of the polygon. We allow vertices
on R u {oo} although no segment of the real axis can belong to a hyperbolic
polygon. For example, in Fig. 5.4 we illustrate the four types of hyperbolic
triangle, depending on whether 0,1,2 or 3 vertices of the triangle belong
to Ru{oo}.

The Gauss-Bonnet formula shows that the H-area of an H-triangle
depends only on its angles. It bears a remarkable resemblance to the
formula for the area of a spherical triangle in Theorem 2.14.1. The angle
between two H-lines in °U is defined to be the angle between their tangents at
their point of intersection; two H-lines intersect at a point of Ru {oo} with
angle zero.

Theorem 5.5.2. (Gauss-Bonnet). Let A be a hyperbolic triangle with angles
a,0,y. Then

Proof.
Case 1. We first consider the case where two sides of A are vertical H-lines.
The base of A is then a segment of a Euclidean semi-circle. By applying
transformations of the form zv+z + K (KGR), ZV+ kz (A > 0) we can assume
that the semi-circle has centre 0 and radius 1; these transformations will not
change the H-area by Theorem 5.5.1, and as vertical sides remain vertical
will preserve the zero angles, the other angles being preserved by
conformality.

We can thus assume that A is the triangle depicted in Fig. 5.5 (where
the semi-circle has radius 1).

Fig. 5.5

C aO bD

(By simple geometry the angles AOC, BOD are a, /? respectively.) Assume
that the vertical H-lines through A and B are x = a and x = b respectively.
We now calculate
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Make the substitution x = cos 9 (0 < 6 < 7t); then

" ( A ) =

Case 2. We assume that A has a vertex on the real line as in (b) of Fig. 5.4.
By applying a transformation of PSL(2, R) we can map this vertex to oo
without altering the H-area or the angles. Thus if the non-zero angles of A
are a and /? then /*(A) = n — cc — p by Case 1.

Case 3. A has no vertices in IRu{oo}. Suppose that A has vertices /4,B,C
and that (the H-line segment) AB produced cuts R at D. (We can apply a
transformation of PSL(2, R) to make sure that no sides of ABC are vertical
H-lines.) Then we have the situation of Fig. 5.6. Here, A = AX\A2 where Ax

is the H-triangle with vertices A, C, D and A2 is the H-triangle with vertices
B, C,D.

Fig. 5.6

D

Then

MA) ^ ( A J - M A a )

= n - a - (y + 9) - |> - 0 - (n - j?)]

= 7r-a-/?-y. •

We can extend the Gauss-Bonnet formula to certain types of hyperbolic
polygons.

Definition. A subset C of ^ is hyperbolically starlike if there is a point
O in the interior of C such that for all PeC, the H-line segment joining
0 and P lies in C.

The most important examples of hyperbolically starlike sets are hyper-
bolically convex sets; C is hyperbolically convex if for any two points
P,QeC, the H-line segment joining P and Q belongs to C.

Corollary 5.5.6. Let U be an n-sided hyperbolically starlike polygon with
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angles a l 9a2 , . . . ,a l l . Then

= (n-2)n-(xl-<x2 ccn

Proof. Let the vertices of II be Al9...,AH and let 0 be a point in the
interior of II such that the H-line segments OAt,..., OAn all lie in n . The
result follows by adding the H-areas of the triangles OAlA2,
OA2A3i...iOAnAl. •

5.6 Fuchsian groups

PSU2, R), besides being a group, is also a topological space in that the
transformation z\-*(az + b)/(cz + d) can be identified with the point
(a,fc,c,rf)eR4. More precisely, as a topological space, SL(2, R) can be
identified with the subset of R4,

X = {(a9bicid)eU+\ad-bc=l},

and if we define 8{a,b,c9d) = (-a> -i>, — c, -d) then 8.X-+X is a
homeomorphism and S together with the identity forms a cyclic group of
order 2 acting on X. PSL(2, R) can be topologised as the quotient-space. (In
the exercises it is shown that PSL(2, R) is homeomorphic to R2 x Sl so that
it is a 3-dimensional manifold. It is also shown that the group multiplication
and taking of inverses are continuous with this topology so that PSL(2, IR) is
a topological group.)

Definition. A Fuchsian group is a discrete subgroup of PSL(2, R).
Fuchsian groups were first studied systematically by Poincare in 1880,

although some particular examples such as the modular group and triangle
groups had been investigated before that. Poincare was led to Fuchsian
groups after reading a paper by L. Fuchs on differential equations.

In many respects, Fuchsian groups are related to the lattices of Chapter 3.
Lattices are discrete groups of Euclidean isometries and their quotients are
compact Riemann surfaces homeomorphic to the torus. Fuchsian groups
are discrete groups of hyperbolic isometries and their quotient-spaces are
also Riemann surfaces (see Theorem 5.9.1). Functions which are invariant
under lattices, namely the elliptic functions, form an important family of
functions; similarly there are important functions, the automorphic functions,
which are invariant under Fuchsian groups. Some examples of automor-
phic functions will be studied in the next chapter. There is, however, an
important difference between lattices and Fuchsian groups. Even though
there are an infinite number of distinct lattices, they are all topologically
similar in that their quotient-spaces are all tori. On the other hand, it
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follows from Theorem 4.19.8 that all orientable surfaces other than the
sphere, torus, plane or punctured plane are quotients of Fuchsian groups
acting on % without fixed-points. For this reason, the geometric and
algebraic structures of Fuchsian groups can vary widely and for the rest of
this chapter we can only begin to describe their theory.

Even though a wide variety of Fuchsian groups exists there are only a
few examples which can be explicitely written down. First of all there are
the cyclic groups. Hyperbolic cyclic groups are generated by a hyperbolic
element, for example zh*Az (A> 1) clearly generates a Fuchsian group
consisting of hyperbolic elements together with the identity. Parabolic
cyclic groups are generated by a parabolic element, for example zv+z + 1
generates such a group. Elliptic cyclic groups, those generated by an elliptic
element, are Fuchsian if and only if they are finite (see §5.7).

An example of a Fuchsian group with a more complicated structure is the
modular group PSL(2, Z). This consists of all transformations

•zh+ (a,b,c9deZ,ad — be = 1).
cz + d

This is clearly discrete and hence a Fuchsian group. It will be studied in
more detail later in this and in the next chapter.

Lattices have the important property that their action on C is discon-
tinuous in the sense that every point of C has a neighbourhood which is
carried outside itself by all elements of the lattice except for the identity (see
§4.19). In general, Fuchsian groups do not have such a discontinuous
behaviour for if elliptic elements are present then they fix points and these
fixed-points cannot have such a neighbourhood. However, Fuchsian
groups turn out to be discontinuous in the following slightly weaker sense.

Definition. Let G be a group of homeomorphisms of a topological space Y.
Then G acts properly discontinuously on Y if each point yeY has a
neighbourhood Ksuch that if g(V)n V ¥= 0 for #eG, then g(y) = y . (In some
books it is further required that the stabiliser of every point is finite. This
condition holds for all Fuchsian groups - see Theorem 5.7.3.)

Every discontinuous group acts properly discontinuously; the finite
group of homeomorphisms of C generated by z\->e2ni/nz (n = 2,3, . . . ) acts
properly discontinuously but not discontinuously. Thus, despite its name
proper discontinuity is a weaker condition than discontinuity. However,
the term 'proper discontinuity' is now widely used in the literature.

In order to prove that Fuchsian groups act properly discontinuously on
% we need the following lemma which will also be useful in proving other
results.
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Lemma 5.6.1. Let wetft be given and let Kbea compact subset of^U. Then
the set

E = {TePSU2,U)\T(w)eK}

is compact.

Proof. PSL(2, R) is topologised as a quotient-space of SL(2, R). Thus we
have a continuous map q:SL(2, R)->PSL(2, R) defined by

q\ ) = T, where T(z) = "Z +

d/ c z •

If we show that

is compact then it follows that E = q(£i) is compact. We prove that Ex is
compact by showing it is closed and bounded when regarded as a subset of

R4 (identifying ( , ) with (a,b,c,d)). We have a continuous map
\c d)

p.SL&R)-*® defined by p(A) = q(A)(w), and as Ex =p'l(K) it follows
that Ex is closed being the inverse image of the closed set K.

We now show that Ex is bounded. As K is bounded there exists Af ^ R
such that

aw
cw-hd

for all £ >)e£l.
Also, as JC is compact in * , there exists M2 > 0 such that

As ad — be = 1, (5.1.2) implies that the left-hand side of this inequality is
Im(w)/|cw + d|2 so that

(w)

and thus

and we deduce that a, b, c, d are bounded. •
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Corollary 5.6.2. Let w e t and let K be a compact subset of%. If V is a
Fuchsian group then

{TET\T(W)GK}

is finite.

Proof. By Lemma 5.6.1 this set is compact. However, being a subset of a
Fuchsian group it is also discrete. Hence by Theorem 3.2.2 it is finite. •

Theorem 5.6.3.

(i) Let Tbea subgroup ofPSL(2, R). Then F is a Fuchsian group if and only if
F acts properly discontihuously on °U.

(ii) Let F be a Fuchsian group and let pe^l be fixed by some element ofT.
Then there is a neighbourhood Wofp such that no other point of W is fixed
by an element of F other than the identity.

Proof We first show that a Fuchsian group acts properly discontinuously
on fy. Let zQetfl and let Be(z0) be a closed hyperbolic disc, centre z0, radius
e > 0. As the topology induced by the hyperbolic metric coincides with
the Euclidean topology by Theorem 5.4.5, BE(z0) is compact. Hence the set

{Ter\T(zo)eBJLzo)}

is finite by Corollary 5.6.2. Thus there exists 0 < <5 < e such that Bd(z0)
contains no other point in the F-orbit of z0. Put K= Bd/2(z0). Then if
VnS(V)^0 for some SeT there exists zeV such that S(z)eV. Hence
p(z, z0) < (5/2, p(S(z\ z0) < 5/2 and so

p(zo,S(zo)) < p(z0, S(z)) + p(S(z), S(z0))

and by the definition of 8 we must have S(zo) = zo. Therefore, F acts
properly discontinuously on JU.

Before we consider the converse we prove part (ii). Suppose that p is fixed
by S T* /. Then, by what we have just proved, there is a neighbourhood Wof
p such that WnS{W) * 0 implies that S{p) = p. If qeW is fixed by 7 V /
then T(W)nW^0 and hence T(p) = p; as an element of PSL(2yU)
other than the identity can fix at most one point of <#, q = p.

We now prove the converse of part (i), that is we show that a subgroup of
PSL(2, R) which acts properly discontinuously on ^ must be discrete.
Suppose not, and choose some point se<% not fixed by any non-identity
element of F: such points do exist by part (ii). As we are supposing that F is
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not discrete, there exists a sequence (Tk) of distinct elements of F such that
Tk -> / as k -» oo. Hence Tk(s) -> s as k -• oo and as s is not fixed by any non-
identity element of F, (Tk(s)) is a sequence of distinct points. Hence every
neighbourhood of s contains other points in the F-orbit of s and so F does
not act properly discontinuously. •

Corollary 5.6.4. Let Y be a subgroup of PSL(2, R). Then F is a Fuchsian
group if and only if for all ze%9 Fz, the Y-orbit ofz, is a discrete subset oftft.

Proof Suppose that Yz is a discrete subset of °U. Then there exists e > 0
such that the open hyperbolic disc Bt(z\ centre z, radius e, contains no
other point of Yz.

Hence if Kg Btjl(z\ then by the same argument that we used to prove
part (i) of the previous theorem, we can show that Vn S(V) ^ 0 implies that
S(z) = z. Thus, by that theorem, F is a Fuchsian group. Conversely, if F is
Fuchsian group, then it acts properly discontinuously on % and hence
every orbit Yz (ze<%) is discrete in ^ . •

Thus if ze°U and (Tn) is a sequence of distinct elements in F, then if (Tn(z))
has a limit point aeCu{oo} then aeRu{oo}. The set of all possible limit
points is called the limit set of F and denoted by L(Y). Thus, for all Fuchsian
groups F,L(F)c|Ru{oo}.

Examples.

(i) If F is the modular group then L(F) = R u {oo}.
(ii) If F is the cyclic group generated by zi-»2z, then L(F) = {0, oo}.

In general, whether a discrete group acts discontinuously or not depends
very much on the space on which the group acts. For example, the modular
group does not act properly discontinuously on R u {oo} as the orbit of 0 is
the set Qu{oo} (Q is the set of rationals) which is dense in Ru{oo}.
Similarly, consider the subgroup PSL(2,Z[i]) of PSL(2, C). This consists of
transformations

z»-> -, a,fc,
cz -\- d

where Z[fj = {m + ni\m,neZ) is the ring of Gaussian integers. PSL(2,Z[Q)
is a discrete subgroup of PSL(2, C) but its action on the Riemann sphere is
not discontinuous for the orbit of 0 is the dense set {r+ s/|r,seQ}u{oo}.
The group PSL(2, Z[i]) is called the Picard modular group and it does have a
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properly discontinuous action on hyperbolic 3-space. (See Appendix 4.)
A common method of constructing Fuchsian groups is to use geometric

techniques to construct groups which act properly discontinuously on the
upper half-plane. This is described in §5.10; for now we indicate how this
method is used to construct triangle groups. From the Gauss-Bonnet
theorem we know that the sum of the angles of a hyperbolic triangle is less
than 7c. We show that, subject to this condition, hyperbolic triangles exist
with prescribed angles.

Lemma 5.6.5. Let a, j8, y be non-negative real numbers such that a + ^ +
y < 7i. Then there exists a hyperbolic triangle with angles a, /?, y.

Proof. It is easy to construct hyperbolic triangles with some zero angles as
in Fig. 5.4 so assume no angles are zero. As the sum of the angles is less than
7t, we can assume that 0 < a < TC/2. We will choose one vertex of the
triangle to be at i and one edge of the triangle to be a segment of the
imaginary axis lying above i. Let M be that segment of the H-line lying to
the right of the imaginary axis and intersecting it at an angle a. For each
point PxsM consider the hyperbolic triangle with vertices at Pl9 i and oo.
The angle at Px in this triangle varies continuously from n - a to 0 as Px

moves along M from i to the real axis (see Fig. 5.7). Hence for some point Q
this angle is ft < n — a. For each point P between i and Q consider the H-line
intersecting M at P at an angle /?. This H-line also intersects the imaginary
axis, at a point above i, for otherwise we would have a hyperbolic triangle
whose angle sum is not less than n. Suppose this //-line intersects the
imaginary axis at R(P) at an angle y(P). Then y(P) -> 0 as P -* Q and as P -> i
the H-area of the hyperbolic triangle with vertices i, P, R(P) tends to 0 and
so by the Gauss-Bonnet theorem the angle y(P) -* n — a - /?. Hence for
some point P, y(P) = y and so we have constructed a hyperbolic triangle
with angles a, /?, y. •

Fig. 5.7
R(P)
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Definition. Let Q be an H-line. Then an H-reflection in Q is an H-isometry
of <#, other than the identity, which fixes every point of Q.

If Qo is the imaginary axis then equation (5.4.4) shows that the map
R0:z-> - z , that is Euclidean reflection in Qo, is an H-reflection. If Q is
another H-line, then by Theorem 5.3.4, there exists TePSL(2, R) such that
T(Q) = Q0.AsTis an H-isometry, T~ ^QT is the H-reflection fixing Q. As
Ro has order 2, every H-reflection has order 2.

By Lemma 2.7.2 it is easy to prove the following result.

Theorem 5.6.6. An H-reflection in Q is the restriction of a Euclidean
inversion in Q to the upper half-plane. •

Every H-reflection is an anti-conformal homeomorphism of ^ ; that is, it
preserves angles but reverses orientation. If B is an anti-conformal
homeomorphism of °U then R0B = Tis a conformal homeomorphism of %,
and thus an element of PSL(2, R). Hence B = R0 T and it follows that every
anti-conformal homeomorphism of °U, and, in particular every H-
reflection, has the form

az + b , . m J L i
Z K -, a,D,c,aelR, ad — bc=— 1.

cz + d
(See Exercise 5C.)

Let T be an H-triangle with vertices vx, v2, v3, angles n/ml, n/m2in/m3 at
these vertices and sides Mx, M2,M3 opposite these vertices, as illustrated in
Fig. 5.8. (Here, ml9m2,m3 are positive integers.)

Fig. 5.8

Let R( be the H-reflection in the H-line containing Mh (i = 1,2,3), and let
T* be the group generated by the reflections RUR29R3. As R^PSUl, R),
F* is not a Fuchsian group. However, consider F = F* n P5L(2, R); F* is
the union of two F-cosets, for example F* = TKJYRU for if SeF*\F then
SRX is the composition of two anti-conformal homeomorphisms, so it is
conformal and thus 5R1GP5L(2,IR). Also, SRxeY* so that S/^eF, and

The image oft under the H-reflection Rx is the hyperbolic triangle Rx(x)
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with sides Rl(Ml) = Ml9Rl(M2)fRl(M3). As R ^ ^ 1 fixes RX(M2)
point wise, it is the H-reflection in /?1(M2). By this reflection Rx(x) is
transformed to RlR2Ri1(Rl(x)) = R1R2(x\ as shown in Fig. 5.9.

Fig. 5.9 M *

/?,/?2(T)

Continuing, we see that the hyperbolic triangles surrounding the vertex
i>3 are T , / * ^ ) , R.R^T), RlR2Rl(x\...9(R1R2y

ti'lRl(T). (Ki*2> being a
product of two H-reflections fixing t?3, can be considered as a hyperbolic
rotation about v3 through an angle 2n/m3 and so (R1R2)

mi = /.)
It can be shown that { T ( T ) | T G F * } forms a tessellation of <%, that is,

no two F*-images of T overlap and every point of fy belongs to some F*-
image of T. For a discussion of a proof of this statement, the reader is
referred to Magnus [1974], p. 81.

Now let p be any point of T. Then the F*-images of p are the
corresponding points of the other triangles of the tessellation and hence
they form a discrete set. Thus the F-orbit of each point of ^ is a discrete set,
and so by Corollary 5.6.4 F is a Fuchsian group. A Fuchsian group
constructed in this way is called a triangle group.

By the arguments of the previous paragraph it can be seen that every
triangle of the tessellation is of the form T(x) where T is a 'word' in
Rx, R2,R3. (That is, T can be written as a finite product of the Rhi = 1,2,3.)
Clearly we have the relations

RJ = Rl = Rl = (R,R2r = (/^a)"11 = {RiRJ*2 = /,
and it can be shown that all other relations in the group can be deduced
from these. (See Magnus [1974].) It is then easy to deduce that F is
generated by X = RxR2i Y= R2R3, that

and that all relations in F can be deduced from these. In group theory
terminology we say that

is a presentation of F (see Appendix 2).

As we are working in the hyperbolic plane, \lmx + \/m2 + l/m3 < 1. In a
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similar way triangular tessellations of the sphere aftd plane give spherical or
Euclidean triangle groups for which l/m1 + l/m2 + l/m3 > 1 or = 1
respectively. The spherical triangle groups are finite and were discussed in
§2.13.

5.7 Elementary algebraic properties of Fuchsian groups

Lemma 5.7.1.

(i) A non-trivial discrete subgroup o/R, the additive group of real numbers, is
infinite cyclic.

(ii) A discrete subgroup ofS1, the multiplicative group of complex numbers of
modulus 1, is finite cyclic.

Proof. These statements follow from Theorem 3.1.3 and the proof of
Lemma 2.13.3 respectively. •

Theorem 5.7.2. Let A be Fuchsian group, all of whose non-identity
elements have the same fixed-point set. Then A is cyclic.

Proof Suppose that SeA is hyperbolic. Then by choosing a conjugate
group if necessary, we may assume that S fixes 0 and oo (see §5.2). Hence all
transformations of A are hyperbolic and fix 0 and oo. Thus A is a discrete
subgroup of H = {zh+/z|A>0}. Now H is isomorphic as a topological
group to R*, the multiplicative group of positive real numbers; R* is
isomorphic as a topological group to R, via the isomorphism xh+lnx.
Hence by Lemma 5.7. l(i), A is infinite cyclic.

Similarly, if A contains a parabolic element then A is an infinite cyclic
group containing only parabolic elements. If A contains an elliptic element
then as all transformations of the form (5.2.2) form a group isomorphic to
S1, Lemma 5.7.1 (ii) implies that A is finite cyclic. •

The last sentence of this proof implies

Theorem 5.7.3. An elliptic element of a Fuchsian group has finite
order. •

Theorem 5.7.4. Every abelian Fuchsian group is cyclic.

Proof. This follows immediately from Theorems 5.2.5 and 5.7.2. •
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Note. In particular, there is no Fuchsian group isomorphic to Z x Z. In
§4.19 we showed that every Riemann surface X is conformally equivalent to
£/G, where G, the group of covering transformations, is a discontinuous
group of automorphisms of ^ , the universal covering space of X. It is
known (see Massey [1967], Chapter 5, Corollary 7.5) that n^X) is
isomorphic to G. As the fundamental group of a torus is isomorphic to
Z x Z it follows that no Riemann surface of genus 1 has its universal
covering space conformally equivalent to (JU. As no subgroup of Aut Z acts
without fixed-points it follows that the universal covering space of every
Riemann surface of genus 1 is conformally equivalent to C so that every
such surface is conformally equivalent to C/fi for some lattice Cl. Another
proof of this will be given in §5.10.

If G is a group and H is a subgroup of G then the normaliser NG(H) of H in
G is

NG(H) is the largest subgroup of G in which H is normal.

Theorem 5.7.5. Let Fbe a non-cyclic Fuchsian group. Then the normaliser
of F in PSL{29 U) is a Fuchsian group.

Proof. Suppose that the normaliser of F in PSL(2, (R) is not Fuchsian.
Then it contains an infinite sequence (Tt) of distinct elements such that
Tf->/ as i->oo. Thus if SeT(S * I\ then TiSTrl-^S as i-+oo. As F is
discrete there exists an integer m such that T(STfl = S for all i > m, and so,
for these values of i, Theorem 5.2.4 implies that Tt has the same fixed-point
set as 5. Now, as F is not cyclic it is not abelian by the previous theorem and
so Theorem 5.2.4 implies that there exists S'eT with a different fixed-point
set from that of S. However, by the same argument Tt has the same fixed-
point set as S' for sufficiently large i and hence S" has the same fixed-point set
as 5, a contradiction. •

5.8 Fundamental regions

We define a fundamental region for a Fuchsian group F in the same way
as we defined a fundamental region for a lattice Q in Chapter 3. That is,
F is a fundamental region for F if F is a closed set such that

(i) [J

(ii) fnT(f) = 0 for all TeF\{/} , where P is the interior of F.
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(For technical reasons we shall not require that F be connected, though this
will usually be the case.)

Example. Let F be a triangle group obtained from a hyperbolic triangle T
as described in §5.6. Then T U #I(T) is easily seen to be a fundamental region
for F.

The Dirichlet region. Let F be an arbitrary Fuchsian group and let
be not fixed by any element of F \ { / } . Such points exist by Theorem
5.6.3(ii). Define the Dirichlet region for F centred at p to be the set

DP(T) = {ze<W\p(z9p) <p(z9 T{p)) for all TeF}. (5.8.1)

By the in variance of the hyperbolic metric under PSL{29 R) this region can
also be defined as

{zeW\p(z9p) ^p(T(z)9p) for all TeT}. (5.8.2)

For each fixed T^F, p(z9p) < p(z9 Tx(p)) describes the points z which are
closer in the hyperbolic metric to p than to 7\(p). Clearly, peDp(T) and
as the F-orbit of p is discrete, DP(T) contains a neighbourhood of p.

The hyperbolic perpendicular bisector of the segment of the H-line
joining p to Tx(p) determines a hyperbolic half-plane containing p. Thus
DP(T) is an intersection of hyperbolic half-planes and is thus a hyper-
bolically convex region. If, as is often the case, DP(V) is the intersection of
finitely many hyperbolic half-planes then DP(T) is a convex hyperbolic
polygon.

In §3.4 we considered Dirichlet regions for lattices. These are centred
at 0 and the metric is Euclidean. As p lies in a neighbourhood containing
no other points of the F-orbit of p, by Corollary 5.6.4, the proof of Theorem
3.4.5 goes through unchanged if we replace O by p and the Euclidean
metric by the hyperbolic metric.

Theorem 5.8.3. If p is not fixed by any element of F \ { / } , then Dp(F) is
a connected fundamental region for F. •

We now show how the Dirichlet region can be defined using the Euclidean
metric. As sinh2 a is a monotonically increasing function of a, for a > 0,
equation (5.4.4) and (5.8.2) imply that

| z - p | 2 \T(z)-p\2

for all 7eF
Im(z) ImT(z)

If T(z) = (az + b)/(cz + d), a,b9c9deU9 ad-bc=\, then Im T(z) =
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lm(z)/\cz + d\2 so that

T(z)-p

z-p

1

\cz + d\
for all (5.8.4)

Example. T = the modular group. It is easily verified that ki (k> 1) is
not fixed by any non-identity element of the modular group so choose
p = ki, where k> 1. Put T(z) = z + 1 or T(z) = z - 1 in (5.8.4). Then c = 0,
rf = 1 so that \z±\ —ki\^\z — ki\ which shows that z is closer (in the
Euclidean metric) to ki than to ki±\. Thus Dkl{T) lies in the strip

Now let T(z) = - \/z = (Oz - l)/(lz + 0), so that c = 1, d = 0. Then for
all zeDki(T) we have

1

and so
\l+kiz\2^\z-ki\2.

After writing 11 + kiz\2 = (1 + /ciz)(l — /ciz), etc., a simple calculation shows
that \z\ ^ 1. Thus Dkl(r) lies outside the interior of the unit circle. We
have shown that DfcI(r) c F where

(illustrated in Fig. 5.10). We wish to show that Dki(T) = F. In order to prove
this we need two lemmas.

Fig. 5.10

-Vi Vi

Lemma 1. Dkl{T) is symmetric with respect to the imaginary axis, that is,
if A(z) = — z, the reflection in the imaginary axis, then zeDkl{T) implies that
A(z)eDkl{V).

Proof A is an H-reflection fixing all points of the imaginary axis. As A
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is an H-isometry and as A~lTAeT for all TET, we have

p(A(z), ki) = p(z, ki) ^ p(z, A ~l TA(ki)) = p{A(z\ TA(ki))

= p(A(z)9T(ki)%

and thus A{z)eDki(T). D

Lemma 2. Let zeF, S e r \ { / } and w = S{z)eF. Then z9wedF9 and either
z — worz and w are symmetric with respect to the imaginary axis.

Proof. Let

r, a,j?,y,^eZ, a5- j?y=l .
yz-

Then

|yz + <5|2 = (yz + S)(yz + S) = y 2 | z | 2 + 2y<$ Re(z) + ^2

(The last inequality is obvious if y<5 ^ 0. If yd > 0, write y2 - y^ + S2 =

(? — $)2 + y5 > 1.) Hence
Im(z)

By interchanging the roles of z and w (using S~x instead of S), we obtain
Im (z) < Im (w). Hence Im (z) = Im (w) and |yz + S\2 = 1, and therefore each
of the above inequalities is an equality. Therefore

(y-d)2 + y6=l (i)
and

y 2 ( | z | 2 - l ) + y<5(2Re(z)+l) = 0. (ii)

We have three possibilities.

(a) y = 0, 3 = ± 1 in which case S(z) = z + 1 and so z, w lie on the vertical
boundary of F (like zlywx in the diagram).

(b) y = ± l , (5 = 0 so equation (ii) implies that |z| = l. In this case
S(z) = (uz+ l ) / ± z = ± a - ( l / z ) = ± a - z . As S(z)eF9 a = 0, - 1 or
+ 1. If a = 0 then S(z) = - (1/z) and z, S(z) are like z2, w2 in the diagram
(possibly z2 = w2 = i). If a = ± 1 then z = (± 1 + i\/3)/2(z = z3 or w3 in
the diagram) and S(z) — z.

(c) y = S= ±\ and equation (ii) implies that |z| = 1, Re(z) = — j so that z
= z3. As S(Z 3 )GF and S(z3) has the same imaginary part as z3, either
S(z3) = z3 or 5(z3) = w3.
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In all cases, S(z) = z or S(z) and z are symmetric with respect to the
imaginary axis. •

Now suppose that zoeF. Then as Dkl{T) is a fundamental region there
exists TET such that T(zo)eDki(T)^F. By Lemma 2, zo = T(zo) or z0

and T(z0) are symmetric with respect to the imaginary axis and so by
Lemma 1, zoeDki{T). Thus F = Dki(T).

We have thus proved

Theorem 5.8.4. F = {ze<%\\z\^\ and |Re(z) |<i} is a fundamental
region for the modular group. •

In the Euclidean case treated in §3.4, the Dirichlet region was a polygon
with four or six sides. For Fuchsian groups, Dirichlet regions can be quite
complicated. They are bounded by H-lines and possibly by sections of
the real axis. If two such H-lines intersect in 9/ then their point of intersection
is called a vertex of the Dirichlet region. It can be shown that the vertices
are isolated (see Exercise 5P) so that the boundary of a Dirichlet region
consists of a union of (possibly infinitely many) H-lines and possibly
sections of the real axis. (Later on we shall define some other vertices
which are not points of intersection of distinct bounding H-lines.)

We shall be interested in the tessellation of ^ formed by a fundamental
region and all its images. If this fundamental region is a Dirichlet region
then this is referred to as a Dirichlet tessellation. (See Fig. 6.6 for a Dirichlet
tessellation for the modular group.) Even though a Dirichlet region can
be quite complicated, the next theorem shows that the Dirichlet tessellation
has nice local properties. We first need a new concept.

Definition A fundamental region F for a Fuchsian group T is called
locally finite if every point aeF has a neighbourhood V{a) such that
V(a)n T(F) * 0 for only finitely many TeT.

Theorem 5.8.5. A Dirichlet region is locally finite.

Proof. Let F = Dp(T) where p is not fixed by any element of F\{/}. Let
aeF and let K be a compact neighbourhood of a. Suppose that
K n Ti(F) # 0 for some infinite sequence Tx, T2,... of distinct elements of
F. Let c = sup26jc p(p,z). Then a < p(p,a) + p(a, z) for all zsK, and as K is
bounded, a is finite. Let WjeKn Tj(F). Then vv, = Tj(zj) for ZJEF and hence
by the triangle inequality,
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P(P> wj) + p(vv,., p) (as

Thus the infinite set of points Tx(p\ T2{p\... belongs to the compact H-
ball with centre p and radius la. This contradicts Corollary 5.6.2. •

Let F be a Dirichlet region for a Fuchsian group F and let u, t? be vertices of
F. Then w and v are called congruent if there exists TeT such that T(u) = t;.
Congruence is an equivalence relation on the vertices of F and the
equivalence classes are called cycles. If u is fixed by an elliptic element S then
v is fixed by the elliptic element TST~l. Thus if one vertex of a cycle is fixed
by an elliptic element then so are all vertices of that cycle. Such a cycle is
called an elliptic cycle and the vertices of that cycle are called elliptic
vertices.

As the Dirichlet region F is a fundamental region it is clear that every
point w of W fixed by an elliptic element 5' of F lies on the boundary of T(F)
for some TeV. Hence u=T~ l(w) lies on the boundary of F and is fixed by
the elliptic element 5 = T~lS'T. By Theorem 5.7.3, 5 has finite order k.
Suppose first that k > 3; then as S is a hyperbolic isometry fixing u which
maps H-lines to H-lines, u must be a vertex of F whose angle 6 is at most
2n/k, as illustrated in Fig. 5.11. The hyperbolically convex region F is
bounded by a union of H-lines. The intersection of F with one of these H-
lines is either a single point or a segment of an H-line. These segments are
called sides of F.

Fig. 5.11

If S has order 2 then its fixed-point might lie on the interior of a side of F.
In this case, S interchanges the two segments of this side separated by the
fixed-point. We will include such elliptic fixed-points as vertices of F, the
angle at such vertices being n. Thus a vertex of F is a point of intersection in
Jll of two bounding H-lines of F or a fixed-point of an elliptic element of
order 2. (All the previous definitions such as conjugate, elliptic cycles, etc.
apply to this extended set of vertices.)
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The only non-trivial finite cyclic subgroups of PSL(2, R) (even of
PSL(2, C)) are those generated by elliptic elements (see §§5.2 and 5.7) and
each elliptic element of PSL(2, (R) has a unique fixed-point in (JU. The same
remark therefore applies to elliptic elements of F. Also, if a point in <%l has a
non-trivial stabiliser in F then this stabiliser is a finite cyclic subgroup of F
by Theorem 5.7.3; by Lemma 5.2.3, this finite cyclic subgroup is a maximal
finite cyclic subgroup.

Theorem 5.8.6. There is a one-to-one correspondence between the elliptic
cycles of F and the conjugacy classes of non-trivial maximal finite cyclic
subgroups of F. •

Example. Let F be the modular group. The Dirichlet region F in Fig. 5.10
has vertices in °U at z3 = ( - 1 + iyj3)/2, w3 = (1 + i\/3)/2 and i. These are
stabilised by the cyclic subgroups generated respectively by zi-*( —z — l)/z,
zi-»(z — l)/z, and zh+l/z. As zi—>z -h 1 maps z3 to w3 these two vertices
belong to the same elliptic cycle. As there are no other vertices of F whose
angle is ^ 27i/3 these two vertices form an elliptic cycle. The point i is fixed
by an elliptic element of order 2.

As no other point of the boundary of F is fixed by an elliptic element of
order 2 (see Exercise 5Q), {i} is an elliptic cycle consisting of just one vertex.
By Theorem 5.8.6, the modular group has two conjugacy classes of maximal
finite cyclic subgroups, one consisting of groups of order 2, the other
consisting of groups of order 3.

Definition. The orders of the maximal finite subgroups of F are called the
periods of F. Each period is repeated as many times as there are conjugacy
classes of maximal finite subgroups of F of that order.

Thus the modular group has periods 2,3. A triangle group obtained from
a hyperbolic triangle with angles n/l, n/m, n/n as described in §5.6 has
periods /, m, n.

Note. A parabolic element is often treated as being an elliptic element of
infinite order. Then one allows infinite periods, the period oo occurring the
same number of times as there are conjugacy classes of maximal parabolic
subgroups. For example, it is easily calculated that in the modular group
every parabolic element is conjugate to zi-+z + n for some neZ so that the
modular group has periods 2,3, oo. Each parabolic cyclic subgroup of an
arbitrary Fuchsian group F fixes one point of IR u {oo}. In Beardon [1983]
it is shown that there is a Dirichlet region for F in which this point is a
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'vertex', that is two bounding H-lines of the Dirichlet region meet there. The
angle at this 'vertex' is 0. For example, with this convention, the Dirichlet
region for the modular group described in Theorem 5.8.4 has a vertex at oo
whose angle is n/oo = 0. Thus the modular group could be considered as a
triangle group obtained from a hyperbolic triangle with angles
7r/2, TT/3, TT/OO.

We now consider congruence of sides. Let 5 be a side of a Dirichlet region
F for a Fuchsian group T If T e r \ { / } and T(s) is a side of F then s and T(s)
are called congruent sides. Now T(s) is also a side of T(F) so that
T(s)^FnT(F). As T(F) is a neighbouring face of F in the Dirichlet
tessellation must have T(s) = FnT(F) (see Exercise 5R). There cannot be
more than two sides in a congruent set for suppose that T^s) is also a side of
F (Txer). Then T^s) = FnT^F) and thus s = T~i(F)nF = Tf H ^ n F so
that T=Tl. Thus the sides of a Dirichlet region fall into congruent pairs. If
a side has a fixed-point of an elliptic element S of order two on it then S
interchanges the two segments of the side of which are separated by this
fixed-point and thus this side is congruent to itself. It can be shown that this
is the only case where a side of F is congruent to itself (Lehner [1966] p. 37).
Alternatively, we could regard these two segments as being distinct sides
separated by the fixed-point.

Example. The two vertical sides of the fundamental region for the
modular group found in Theorem 5.8.4 are congruent via the transform-
ation z h-> z + 1. The side on the unit circle between z3 and w3 (see Fig. 5.10) is
mapped to itself by the elliptic element z »-> — 1/z of order 2. Alternatively we
can regard this as the union of two congruent sides, one from z3 to i, the
other from i to w3.

Theorem 5.8.7. Let {Tj be the subset ofT consisting of those elements
which pair the sides of some fixed Dirichlet region F. Then {Tt} is a set of
generators for T.

Proof Let A be the subgroup of T generated by the set {T,}. We have to
show that A = F. Suppose that Sx eA and that S2(F) is a neighbouring face
of S^F). Then SflS2(F) is a neighbouring face of F. Hence S^lS2 = Tk for
some Tke{Tt} and as S2 = Sj Tk we must have S2eA. If S3(F) intersects St(F)
in a vertex v then as there can only be finitely many faces with vertex v> by
Theorem 5.8.5, the above argument can be used repeatedly to show that
S3eA. Hence, if we let X = [JSeAS(F\ ^ = User A ^ X t h « n XnY=0.
Clearly, X u Y = ^, so if we show that X and Y are closed subsets of ^ then
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as °U is connected and I ^ 0 w e must have X = Ql and 7 = 0 . This shows
that A = F and the result is proved.

We now show that any union (J Vj(F) of faces of the tessellation is closed.
For suppose that there is an infinite sequence (zf) of points of \J Vj(F) which
tends to some limit le%. Then leA(F) for some AeT and so by Theorem
5.8.5 there exists a neighbourhood N of / intersecting only finitely many of
the VjiF).

Hence one face of this finite family, Vm(F\ say, must contain a
subsequence of (z,) tending to / and as Vm(F) is closed, leVm(F) £ (J V.(F).
Thus (J Vt(F) is closed and in particular X and Y are closed. •

Example. Theorem 5.8.7 implies that the modular group is generated by
zi->z + 1 and Z H — 1/z. (In the next chapter defining relations for the
modular group will also be obtained.)

A similar situation occurs in the case of lattices. The opposite sides of a
fundamental parallelogram or hexagon are congruent in pairs and the
transformations which pair them generate the lattice. By identifying the
sides in each pair we obtain the quotient space. We now wish to consider
the quotient-space °U/T and we will show that we can also obtain it by
identifying the congruent sides of a Dirichlet region.

5.9 The quotient-space Jl//V

We constructed the quotient-space C/Q in §3.5 and in an analogous way we
can construct the quotient-space ^ / F . We let [ z ] r or just [z] denote the F-
orbit of z and XYM-^^jY the natural projection given by Il(z) = [z]. As
before,aset Kc<^/r issaid to be open if ri"1(K) = {ze<%\H(z)eV} is open
in °U\ with this definition, II is a continuous and open map.

Theorem 5.9./. ^IJY is a connected Riemann surface and WM-^^UjY is a
holomorphic map.

Proof. We show that %/T is a connected HausdorfT space in exactly the
same way as we showed that C/Q is a connected Hausdorff space in
Theorem 4.11.1. There we used the fact that Q is a discontinuous group of
Euclidean isometries; here we use the result that F is a properly
discontinuous group of hyperbolic isometries. In fact, if F contains no
elliptic elements then we can adapt the proof of Theorem 4.11.1 in a
straightforward way to complete the proof of the theorem. However, if F
does contain elliptic elements then the projection Tl:%-> * / T is not one-to-
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one in a neighbourhood of an elliptic fixed-point and so we have to define
our charts in a rather different way.

First we define a suitable open covering of (JU. For each q e<% let 5(q) be the
least hyperbolic distance from q to a point of the orbit of q, other than q
itself, and let Wq be an open hyperbolic disc, centre q, radius S(q)/2. By
Corollary 5.6.2, d(q) > 0 and by the same argument as in the proof of
Theorem 5.6.3(i),

WqnT(Wq) / 0 for TeT implies that T(q) = q. (5.9.2)

Also, 8(S(q)) = S(q), for SeF, so that if r = S(q) then Wr = S(Wq).
Note that in (5.9.2), T= I unless <? is an elliptic fixed-point of F, and

that Wq contains no elliptic fixed-points of F other than q. Let 11̂  be the
restriction of n to Wq. Then as in the proof of Theorem 4.11.1, 11̂  is
continuous and open.

Let m(q) be the order of the stabiliser of q in F. Thus m{q) = 1 unless q is an
elliptic fixed-point of F. Define

Now z\-+(z — q)/(z — q) maps % onto ^, the open unit disc. (The calculation
is the same as that in §4.17 where q = i.) Hence fq maps Ql onto 2. A.sfqy

being an analytic function, is continuous and open, and as fq(q) = 0 it
follows that fq(Wq) is an open disc with centre 0 contained in ®.

By §5.2 and Theorem 5.7.3, every elliptic element Kof F fixing/? satisfies

V(z)-q \z-q,

where a is an m(q)lh root of unity, and thus fq(zl)=fq(z1) if and only if
z2 = V^z^) where Vx is an elliptic element of F fixing q.

Now define

™q~ J q°*lq »

as depicted in Fig. 5.12. Then <&q:Tlq{Wq)->fq(Wq)^@. We wish to show
that <t>q is a homeomorphism for all qe°U. This is obvious if q is not an
elliptic fixed-point, for then FI~ l:Tlq(Wq) -+ Wq is a homeomorphism and as
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m(q) — 1, fq is a homeomorphism. Now suppose that q is an elliptic fixed-
point. Then (5.9.2) implies that l\q(zx) = F l ,^ ) if and only if z2 = Vx(zx) for
some VxeT which fixes q. This occurs if and only if fq(zx)=fq(z2). Thus
0>q=fq°Tlqi is a well-defined function, in fact Q>q[z] = / ,°n," l [z] =fq(z).
We now show that O, is one-to-one. If O^zJ = C\,[z2] then fq(zx)=fq(z2)
and so z2 = ^1(̂ 1) for some elliptic element VxeT which fixes g. Hence
lzi] = E^i(zi)] = C î] and hence <S>q is one-to-one. As both nq and /fl are
continuous and open, 0>q:Tlq(Wq)-+fq(Wq) is a homeomorphism. Thus < /̂F
is a surface and {FIq(W )̂, <t>q} is an atlas defined on %/T. We now show that
this atlas is analytic.

Suppose that n , (^)nl l r ( l f r ) # 0 and consider the homeomorphism

We have

Now

(/,°n; ^n^z) = (/ronr- ̂ [z] =/r(T(z))
for some TeF, and hence fr°H~l °WqM ~> 9 is analytic. Also, each branch
of/,"1 is analytic except at 0 when m(q)> 1, so that with these possible
exceptions O^O"1 is analytic. In the exceptional cases
0ed>q(nq(Wq)nnr(Wr)) and m(q) >\.Asq\s the only point of Wq wh ich / ,
maps to 0, [q]eTlq{Wq)nIlr(Wr). Now Ŵ  contains no elliptic fixed-points
except possibly r and so r = S(q) for some SeT. By the way in which the
H-discs Wq were chosen we have Wr = S(Wq) and thus i y H )̂ = Ur{Wr) and

where /c(̂ f) depends only on g. Hence d>r°O ~! is analytic. Thus in all cases
cD,.0*,"1 is analytic and so {(n,(W^), <!>,)} is an analytic atlas.

Finally, as O ^ I l ^ / g is analytic, Tl:<%->$t/r is a holomorphic
map. •

Thus quotient-spaces of Fuchsian groups are Riemann surfaces. Now, by
Theorem 4.19.8 the universal covering space of a Riemann surface X not
homeomorphic to the sphere, plane or torus is ̂ , and X = %/A where A is a
properly discontinuous group of automorphisms of °U acting without fixed-
points (A is the group of covering transformations). Thus by Theorem 5.6.3
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A is a Fuchsian group and as it acts without fixed-points, A contains no
elliptic elements. If we include Fuchsian groups with elliptic elements then
every Riemann surface can be represented as the quotient-space of ^U by a
Fuchsian group. For example, we shall see that the quotient-space for a
triangle group is a sphere and as every Riemann surface homeomorphic to
the sphere is conformally equivalent to the Riemann sphere Z (see Theorem
4.17.2) it follows that I is conformally equivalent to tft/T where F is a
triangle group.

The advantage of using Fuchsian groups without elliptic elements to
represent Riemann surfaces is apparent from the following theorem which
shows that there is a one-one correspondence between Riemann surfaces
and conjugacy classes of Fuchsian groups without elliptic elements. It is
analogous to Theorem 4.18.1 and the proof follows along the same lines.

Theorem 5.9.3. Let Al 5A2 be Fuchsian groups without elliptic elements.
Then <%/Al and tft/A2

 are conformally equivalent if and only if there exists
TePSL{2M) such that T A ^ " 1 = A2.

Proof First of all as Ax, A2 act without fixed-points 91 is a covering space
oi9l/Al and ^ /A 2 (Exercise 4U), and hence as 91 is simply connected it is
the universal covering space of ̂ /A x and ^ /A 2 . Thus if g\°lljAx -+9t/A2 is a
conformal homeomorphism then, as in the proof of Theorem 4.18.1, there
exists an automorphism g:9l-+9/ such that the diagram in Fig. 5.13
commutes, where n . i ^ - ^ / A , are the natural projection maps, (i =1,2).

Fig. 5.13

In,

By Theorem 4.17.3, g = TePSL(2, U) and so

Now if SeA,, then [z]A, = [S(z)]Al and so lTS(z)]A2 = [T(zftA2. It
follows that there exists FeA2 such that TS(z) = VT(z) for all ze'W and so
TST~l = VeA2. Therefore TAXT~X ^ A2 and a similar argument using
3 " 1 W A 2 = [T '" 1 (Z)]A 1 shows that T~lA2T^ Alf so that TA^-1^^.

Conversely, if TAjT" l = A2 then the map

is a conformal homeomorphism of %/Ax onto ^ /A 2 . •
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The theorem is false for arbitrary Fuchsian groups, for if we consider two
triangle groups with different periods then they are not isomorphic and
hence not conjugate in PSL(2,R). However, the quotient-space of each
group is the Riemann sphere as remarked above. The converse statement,
that the quotient-spaces of conjugate Fuchsian groups are conformally
equivalent Riemann surfaces, is true for arbitrary Fuchsian groups as the
above proof applies.

Theorem 5,9.4. If A is a Fuchsian group without elliptic elements then
Aut(^/A) £ N(A)/A where N(A) is the normaliser of A fn PSL(2, R).

Proof Let r:<8f/A->*/A be an automorphism of #/A. Then *[z]A =
[7(z)]A for some TePSL(29U). By putting A i = A 2 = A in the above
theorem we see that TAT'1 = A so that TeN(A). Conversely, if TeN(A)
then the map t: [z]A -> [T(z)]A is an automorphism of %/A. It is now easy to
see that T\->1 gives a homomorphism of N(A) onto Aut(^/A) whose kernel
is A. Hence by the first isomorphism theorem Aut(^/A)^ N(A)/A. •

Corollary 5.9.5. If A is a non-cyclic Fuchsian group without elliptic
elements then every group of automorphisms of <%/A is isomorphic to F/A
where F is some Fuchsian group such that A ^ F.

Proof This follows directly from Theorem 5.9.4 in conjunction with
Theorem 5.7.5. Q

These results will be used shortly to find information concerning groups of
automorphisms of compact Riemann surfaces.

Let F be a Dirichlet region for a Fuchsian group F. As the edges of F are
paired by elements of F it seems likely that we can obtain the quotient-space
* / F by identifying the sides in each pair in the same way as we obtained a
torus by identifying the opposite sides of a parallelogram. (Actually, the
proof of the result that we can obtain C/Q by identifying the opposite sides
of a fundamental parallelogram or hexagon for Q is not completely obvious
but it does follow by adapting the proof below.) As the only points of F
which are identified under F are corresponding points of paired sides, the
space we obtain by identifying paired sides is F/T.

Theorem 5.9.6. IfF is a Dirichlet region for F then F/T is homeomorphic to
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Proof. Let i:F-• <% be the inclusion map, and $:F->F/T, !!:<%-><%/r be
the natural projection maps. We define 0:F/F-*^/r to be the map which
makes the diagram (Fig. 5.14) commute. That is, if zeF then 9(\j/(z)) = U(z).
If $(zx) = \l/(z2) then z2 = S(zx) where S pairs sides of F, so that as Ser,

= n(z2) and hence 9 is well-defined and similarly, 9 is bijective. Now if
c i//r then

so if V is open then as n is continuous, n~1(K) is open in U and so
Fn n " X(V) is open in F. Thus if/" x(0" X(F)) is open in F and so by definition
of the quotient topology 9~ l(V) is open in F/T. Thus 0 is continuous. We
now show that 9 is an open map.

Fig. 5.14 f i •* <#

J In
F/r r

Let /I c f / r be open and let <z> = ^(z)e/l. By Theorem 5.8.5, F is locally
finite so that

f 1 « z » = {z = T0(z), ^(z), T2(z),..., T^z)},

a finite set. As \//~1(A) = A is relatively open in F and i^~l(<z>) is finite,
there is a hyperbolic disc B with centre z, such that

Tj(B)nFc% and T(B)nF*0 implies that T= 7} (1 <;<s) . (5.9.7)

(This is illustrated in Fig. 5.15; A is the shaded region.)

Fig. 5.15

Now 0(<z» = II(z)en(B) which is open, so if we show that U(B) s 9(A)
then 9(A) is an open neighbourhood of 0(<z>).

Let [w]ell(£) where weB. Then there exists TGF such that T(w)eF.
Hence T ( B ) n F / 0 so that by (5.9.7) T=Tj ( !<;<s) . Therefore
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Tj(w)eTj(B) and Tj(w)eF and so by (5.9.7), Tj(w)eA. Hence

[W] = n(w) = n(TjLw))en(A) = m(A) = 9(A). n
In the previous chapter we observed that a particularly important role was
played by compact Riemann surfaces. We now prove two results about
Fuchsian groups whose quotient-spaces are compact.

Theorem 5.9.8. Let F be a Dirichlet region for a Fuchsian group F. Then
is compact if and only if F is a compact subset of°lt.

Proof. If F is compact then F/F, being a continuous image of F, is
compact. Hence, by Theorem 5.9.6, tfl/T is compact. Now suppose that °UjY
is compact. By local finiteness (Theorem 5.8.5) it follows that if \z\e^ljY
then there are at most a finite number of z'eF such that Il(z') = [z]. Now
let zx, z2 , . . . be an infinite sequence of distinct points of F. We will show that
this sequence has a limit point in F so that F is compact (see § 1.2). By local
finiteness [ z j , [ z 2 ] , . . . is a sequence containing infinitely many points so
that it must have a limit point [/]e^/F; [/] has finitely many pre-images
/ l v . . , / r i n F and we show that at least one of them is a limit point of the
sequence (Zj). For otherwise each /, has a neighbourhood V{ in <%
containing only a finite number of points of the sequence and as li9...Jr

are in the same F-orbit, each V( contains finitely many points of the form
S(Zj). Hence f]r

iss x Il(K,) is an open neighbourhood of [/] containing only
finitely many points of the sequence ([z,]), a contradiction. •

Theorem 5.9.9. Iftft/T is compact then F contains no parabolic elements.

Proof. Let F be a Dirichlet region for F. Then by Theorem 5.9.8, F is
compact. By Corollary 5.6.2,

rj(z) = inf {p(z, T(z))\ TeT\{I}9 T not elliptic} > 0.

As for each TGF, p(z, T(z)) is a continuous function of z, rj(z) is a continuous
function of z. Therefore, as F is compact rj = inf {rj(z)\zeF} is attained and
^ > 0 . If ze<% then there exists SeT such that w = S(z)eF. Hence if
T0€T\{I} is not elliptic,

p(z, T0(z)) = p(S(z\ S(T0(z))) = p(w,SToS-'M) > n,

and therefore

Now suppose that F contains parabolic elements. As ^/F is
homeomorphic to ^/Tx when F is conjugate to Tl in PSL(2, U) we may
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assume by §5.2 that T0(z) or TQ1(Z) is the transformation zf->z+l.
However, by (5.4.4), p(z,z + l)-»0 as Im(z)-> oo, a contradiction. •

It is appropriate here to mention ways in which a Dirichlet region can be
non-compact in °U. First of all, a Dirichlet region with an infinite number of
sides is non-compact (see Exercise 5P). However, finite-sided Dirichlet
regions can be non-compact in % in the following ways. Firstly, there might
be a 'vertex' in (Ru {oo}. For example, it is known that if the group has a
parabolic element T, then there is a Dirichlei region for the group which has
a 'vertex' at the fixed-point x of T and such that the two sides whose end-
point is at x are paired by T(see Beardon [1983] and see Fig. 5.16). Such a
vertex is called parabolic vertex and the quotient-space has a 'puncture' at
points corresponding to parabolic vertices. For example, the modular
group has oo as the fixed-point of the parabolic element z h+ z + 1 and the
two vertical sides of the Dirichlet region of Fig. 5.10 are paired by this
element. The quotient-space is then a sphere with one puncture and so is
homeomorphic to the plane. Secondly, the Dirichlet region might be
bounded by a section of the real axis. For example, the Dirichlet region
centred at i for the parabolic cyclic group generated by Z K Z + 1 is
{ze<%\ - 1 ^ Re(z) ^ i } . This is bounded by the section {xeR| - \ < x ^ £}
of the real axis; this Dirichlet region also has a vertex at oo. The quotient-
space is a sphere with a closed disc removed (corresponding to the section of
the real axis) and a puncture (corresponding to oo). This is homeomorphic
to a cylinder. (A removed disc is topologically, but not conformally,
equivalent to a puncture.) (See §6.10 for more details about the quotient-
space for the modular group.)

Fig. 5.16

5.10 The hyperbolic area of a fundamental region

By using Theorem 5.5.1 we observe that the proof of the following Theorem
is exactly analogous to that of Theorem 3.4.6.

Theorem 5.10'./. Let F l 5 F 2 , be two fundamental regions for a Fuchsian
group F. Suppose that the boundaries of F1,F2 have zero hyperbolic area.

Q
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The importance of this theorem is that the hyperbolic area of a fundamental
region is a numerical invariant of the group. The condition that the
boundary has zero hyperbolic area will almost always be satisfied. For
example, the boundary of a Dirichlet region is a countable union of H-lines
and so has zero hyperbolic area.

It is possible for a fundamental region to have infinite hyperbolic area.
For example, the Dirichlet region for the parabolic cyclic group generated
by z\-*z+ 1 mentioned at the end of the previous section has infinite
hyperbolic area. The theorem is then interpreted as saying that if one
fundamental region for the group has infinite hyperbolic area then so do all
fundamental regions for the group (still assuming that the boundaries have
zero hyperbolic area). A compact fundamental region (indeed, every
compact subset of °U) has finite hyperbolic area. However non-compact
fundamental regions may have finite hyperbolic area. For example, the
Dirichlet region for the modular group in Fig. 5.10 is a hyperbolic triangle
with angles 7r/3, TC/3, 0 and so by the Gauss-Bonnet theorem (5.5.2) has
hyperbolic area n/3.

The Gauss-Bonnet theorem will be used to compute the hyperbolic area
of a wide class of fundamental regions. In order to apply it we need to know
the sum of the angles at the vertices.

Theorem 5.10.2. Let F be a Dirichlet region for a Fuchsian group F. Let
0l,92i...,8tbethe internal angles at a congruent set of vertices ofF. Let m be
the order of the stabiliser in F of one of these vertices. Then

0! + 02 + • • • + 0 , = 27r/m.

(Remarks.

1. As F is locally finite there are only finitely many vertices in a congruent
set.

2. As the stabilisers of two points in a congruent set are conjugate
subgroups of F they have the same order.)

Proof Let vx, v2,..., vt be the vertices belonging to the congruent set, the
internal angle at i;, being 0,. Let H = {/,S,S2,...,Sm~l} be the stabiliser of
vx in F. Then the regions Sr(F)(0 ^ r ^ m — 1) all have a vertex at vl whose
angle is 61. Now suppose that Tk(vk) =* vl {TkeT). Then the set of all elements
which map vk to v1 is just the coset HTk which also has m elements so that all
the regions SrTk(F) have vx as a vertex, the angle there being 0k. On the other
hand, if a region A(F) (AeV) has a vertex vx then A'l(vl)eF and so
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A~l(vx) = vt for some i (1 ^ i ^ t). Thus AeHT( so that the region A(F)
has been included in the above description. Thus these are mt regions
surrounding the vertex i^, and each angle 0t is repeated m times; these
regions are distinct for if SrTk(F) = SqTt(F) then SrTk = ST, so that Tk = Tt

and Sr = Sq. Hence

which gives the result. •

We now make the assumption that F is a Fuchsian group with %/T compact.
Then by Theorem 5.9.8, a Dirichlet region F for F is compact and so has a
finite number of sides (Exercise 5P). Therefore F has finitely many vertices
and hence only finitely many elliptic cycles. By Theorem 5.8.6, F has a finite
number of periods mx,..., mr, say. If tfl/T has genus g then we say that F has
signature (g;m{,...,mr).

Theorem 5.10.3. Let F have signature (g;ml9...9 mr). IfF is a fundamental
region for F whose boundary has zero hyperbolic area then

Proof By Theorem 5.10.1 we may assume that F is a Dirichlet region for
F. By Theorem 5.8.6 we know that F has r elliptic cycles of vertices. (As
described in §5.8 we include the interior point of a side fixed by an elliptic
element of order 2 as a vertex whose angle is 7t, and then regard this side as
being composed of two sides separated by this vertex.) By Theorem 5.10.2,
the sum of the angles at all the elliptic vertices is 2n^!i= 10M). Suppose that
there are s other conjugacy classes of vertices. None of these is fixed by an
elliptic element so that by Theorem 5.10.2 the sum of the angles at these
vertices is 2ns. Hence the sum of the angles of F is

— ) + s

The sides of F are paired by elements of F. If we identify these paired sides
we obtain, by Theorem 5.9.6, a compact orientable surface of genus g. If
there are n such pairs then the images under the projection from ^ to
^/F of the vertices, edges and interior of F gives a decomposition of ^ /F
into (r + s) vertices, n edges and one simply connected face. Hence by the
Euler-Poincare formula (Theorem 4.16.2),

•w+1. (5.10.4)
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By the Gauss-Bonnet theorem (5.5.2) we obtain

= (4g - 4 + 2r + 2s)7c - 2TC Y

Equation (5.10.4) can prove useful for calculating the genus of °UjY. For
example, let F be a triangle group obtained from a hyperbolic triangle with
angles n/l, n/m, n/n as described in §5.6. If the reflections in the sides of the
triangle are Ri,R2, R3 as indicated in Fig. 5.17 then the sides AB, AB' are
paired by RXRZ and the sides BC, B'C are paired by RXR2. Thus there are
two conjugate pairs and so n = 2. (ABCDf is a fundamental region
for F.) {£,#'} is an elliptic cycle, both these vertices being stabilised by
cyclic groups of order m, {A} is an elliptic cycle, A being stabilised by
a cyclic group of order /, and {C} is an elliptic cycle, C being stabilised
by a cyclic group of order n. Therefore r = 3, s = 0 hence

2 - 2 0 = 3 - 2 + 1 = 2 ,

giving g = 0. (Alternatively, by 'glueing' AB to >UB' and CB to C£' we see
that we obtain a surface homeomorphic to the sphere.) Thus %/T has genus
0 and F has periods /, m, n. Therefore the signature of F is (0; /, m, n). The
hyperbolic area of a fundamental region for F is

/ m n\
As another example, consider a Fuchsian group A which is the group of

covering transformations of a compact Riemann surface S of genus g > 1
(regarding % as a covering space of 5). As A acts without fixed-points (§4.19)
it has no elliptic elements and its signature is (g;—), where the dash indicates
no periods. By Theorem 5.9.9, A has no parabolic elements so that, besides
the identity, it contains only hyperbolic elements.

We now sketch a proof of the existence of Fuchsian groups with given
signature. This first appeared in Poincare's original paper on Fuchsian

Fig. 5.17
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groups (Poincare [1882]) but rigorous proofs have been given only
comparatively recently (Maskit [1971]).

Theorem 5.10.5. If g ^ 0, m^2 are integers and if

2g-2+ £ (l-(l/m,))>0,
1 = 1

then there exists a Fuchsian group with signature (g;mu...,mr).

Indication of Proof It is convenient to use the unit disc model of
hyperbolic geometry (see Exercise 5H). Here the H-lines are circles and
Euclidean lines orthogonal to the boundary of the unit disc 2. From the
centre of 2 draw (4g + r) radii at equal angles. Let 0 < t < 1 and choose
points at Euclidean distance t from the centre along each radius. If we join
successive points by H-lines then we get a regular hyperbolic polygon M(t).
On the first r sides of M(t) construct r external isosceles hyperbolic
triangles such that the angles between the equal sides of the triangles are
2n/ml9...,2n/mr. The union of M(t) with these triangles is a starlike
hyperbolic polygon N(t) with Ag + 2r sides. Label these sides ax, fil9 a'l9
ft,...,a^, pg, a ,̂ p'g9 £l9 &, . . . ,£ , <j;, and orient them as indicated in
Fig. 5.18 (where g = 2, r = 4).

Now the hyperbolic area of N(t) tends to 0 as t approaches 0, and by
Corollary 5.5.6 tends to (4g -I- 2r — 2)n — £J= x 27i/m,- as t approaches 1.
Hence for some t0 between 0 and 1 the hyperbolic area of N(t0) is

Fig. 5.18



260 PSL(2, R) and its discrete subgroups

By construction a£,«J have the same hyperbolic length as do /?,,/?} and
fk ,f i . Hence there exist hyperbolic isometries AhBp Xk(iJ = 1,...,#;
fc= l , . . . , r ) such that

We now compute the congruence classes of vertices (consult Fig. 5.18).
Start by calling the end of OL\ the vertex vx; this is congruent to the end of a!
which we call v29 which in turn is congruent to the beginning of fi\ which we
call t;3, etc. In this way we see that the (4g + r) vertices of the original
polygon M(t0) form a congruent set. The other r vertices wl9...,wr form r
congruent sets each with just one element.

As the area of N(t0) is

2nU2g-2)+}

the Gauss-Bonnet theorem 5.5.2 shows that the sum of the angles at the
congruent set of vertices vl9v29...9v^g+r is 2n. Now let F be the group
generated by

{Ai9Bj9Xk:i9j=l9...,g;k=l9...9r}.

We wish to show that N(t0) is a fundamental region for F. If we compare
Theorem 5.10.2 we see that we certainly need the sum of the angles at
i>i,...,t>40+r to be 2n and the angle at wk to be 2n/mk. As we have these
conditions it can be shown that the F-images of N(t0) cover Q) without
overlap so that N(t0) is a fundamental region for F. (The same idea was used
in §5.6 when we constructed triangle groups.) Thus F is a properly
discontinuous group of hyperbolic isometries and if we transfer back to %

we get a Fuchsian group.

The quotient-space 3f/T is decomposed into ( r + 1 ) vertices (correspond-
ing to the (r + 1) congruent sets of vertices), (2g + r) edges and one simply
connected face. Hence by the Euler-Poincare formula (Theorem 4.16.2) its
genus h satisfies

2 — 2h = (r + 1) — (2g + r) + 1 = 2 — 2#,

and thus h = g. There are r elliptic cycles namely {w 2 } , . . . , {w r } and the

stabilisers have orders m x , . . . , mr. Hence F has signature (gm
9rnl9...9 mr). •

The signature of a Fuchsian group also determines its algebraic structure.
The presentation of a group with signature (g;mi9...9mr) is
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Here, the X( are elliptic and the Ak,Bk are hyperbolic. (For details see
Lehner [1964]. Presentations are discussed in Appendix 2.) If

(20-2)+ t( 1 - -
«=1 \ Mi

then there clearly does not exist a Fuchsian group with signature
(g;ml,...ymr). (By a simple arithmetical calculation there are only a finite
number of such signatures.) For example, there is no Fuchsian group of
signature (1;—). This gives an alternative proof that no Fuchsian group
without elliptic elements represents a compact Riemann surface of genus 1
(see the Note in §5.7). However, it can be shown that if

then there is a group of Euclidean isometries acting on C corresponding to
this signature. For example, a lattice corresponds to the signature (1;—),
and we get the Euclidean triangle groups (0;2,4,4), (0;2,3,6), (O;3,3,3) from
triangles with angles n/U n/m, n/n where 1// + 1/m + \/n = 1. If

we get groups of isometries of the sphere including the spherical triangle
groups treated in Theorem 2.13.5.

Theorem 5.10.7. IfF is a Dirichlet region for a Fuchsian group T wit
compact then /z(F)^ 7i/21. ///i(F) = TC/21 then V is a triangle group with
signature (0; 2,3,7).

Proof This is by calculation using Theorem 5.10.3. If g^2 then
H(F) ^4n.lfg=\ then as n(F) > 0, F must have periods and then fi(F) ^ 7c,
the minimum being attained for a group with signature (1; 2). If g = 0 then

As l - ( l / m , ) ^ i , fi(F) ^ 2n( - 2 + (r/2)) = n(r - 4) so that if r ^ 5 then
li(F) ̂  7i, the minimum being attained for a group with signature
(0; 2,2,2,2,2). If r = 4 and mx = m2 = m3 = m4 = 2 then ii(F) = 0 which is
inadmissable. The minimum value oifi(F) (for r = 4) corresponds to a group
of signature (0; 2,2,2,3) giving fi(F) ^ TC/3. The only cases left to consider are
g = 0, r ^ 3. If g = 0, r ̂  2 then n(F) < 0 and so we only consider g = 0, r = 3.
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Therefore F has signature (0; m1,m2,m3) and

J L J L

We may assume that ml^m2^m3. If m1 ^ 4 then jx(F) ̂  rc/2. If n^ = 3
then (0; 3,3,3) gives fi(F) = 0 and the minimum is attained for (0; 3,3,4)
giving fi(F) ̂  7u/6. If ml = 2 then m2 > 2 and if m2 ^ 4 then /x(F) ̂  7i/10, the
minimum corresponding to (0; 2,4,5). If m2 = 3 then (0; 2,3,6) gives ji(F) = 0
and the minimum is attained for (0; 2,3,7), giving fx(F) ^ n/2\. •

As we have been dealing, for simplicity, with groups F for which <^/F is
compact, we have not considered groups with parabolic elements (see
Theorem 5.9.9). It can be shown (Lehner [1966]) that if F has a Dirichlet
region F with finite hyperbolic area then F has a finite number of sides and
so by Theorem 5.8.7, F is finitely generated. Suppose that F has r conjugacy
classes of elliptic cyclic subgroups of orders mu..., mr, s conjugacy classes
of parabolic cyclic subgroups and tft/T has genus g. Then we say that F has
signature

to;«i Wr;4 (5.10.8)

By a similar proof to Theorem 5.10.3 we can show that

= 2 n \ ( 2 g - 2 ) + £ ( )

and as in Theorem 5.10.7 we can show that if s > 0 then fi(F) ̂  TT/3, this
minimum being attained for the modular group, which has signature
(0;2,3; 1). (Thus in Theorem 5.10.7 the hypothesis that ^ / F is compact is
not necessary.)

If fi(F) > 0 then we can show, by a similar method of proof to Theorem
5.10.5, that a group F with signature (5.10.8) exists. (We need s of the isosceles
triangles to have vertices on the boundary of the disc, the angle at these
vertices being 0.) The algebraic structure of the group F is determined by its
signature, a group with signature (5.10.8) having the presentation

Theorem 5.10.9. Let F be a Fuchsian group and A a subgroup of index n. If

F = AT! uAT2u...uA7;

is a decomposition ofY into A-cosets and if F is a fundamental region for F
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then

(i) Fx = r ^ F J u r 2 (F)u . . .uT n (F) is a fundamental region for A,
O'O if n(F) is finite and the H-area of the boundary of F is zero then

Proof, (i) Let zetft. Then as F is a fundamental region for F, there exists
weF such that z=T(w\ TeF. Now T=STi for SeA and l ^ K n .
Therefore

As Ti(w)eFl, z is in the A-orbit of some point of Fl. Hence the union of the
A-images of F1 is tft.

Now suppose that zetx (the interior of Fx) and that S(z)ePu for SeA.
We need to prove that S = /. Let e > 0 be so small that BE{z) (the open
H-disc, centre z, radius s) is contained in Pv Then Be(z) has non-trivial
intersection with precisely k of the images of / under Tl,...,Tn9 where
l ^ f c ^ n ; suppose that these images are Til(P),...9Tik(f). Let B£(S(z))
= S(BE(z)) have non-empty intersection with 7}(/) say, (1 ^7 < n). It follows
that Be(z) has non-empty intersection with S " 1 ^ / ) so that S'1^^ Tu

where 1 ^ / < k. Therefore

so that Tj = Th and S = /. Hence / \ contains precisely one point of each A-
orbit.

(ii) This follows immediately as fi(T(F)) = fi(F\ for all TePSL(2,U\ and
O f o r ^ ; . Q

5.11 Automorphisms of compact Riemann surfaces

In §2.1 we considered the automorphism group of the Riemann sphere, the
unique Riemann surface of genus 0, and in §4.18 we considered the
automorphism groups of compact Riemann surfaces of genus 1. In these
cases we found that the automorphism groups were infinite; by contrast we
show that groups of automorphisms of compact Riemann surfaces of genus
g ^ 2 are necessarily finite.

Theorem 5.11.1. Let S be a compact Riemann surface of genus g^2. Then
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Proof. Let S = $t/A where A is a Fuchsian group without elliptic
elements. (The existence of such a group follows from Theorem 4.19.8 and
was discussed before Theorem 5.10.5.) As A has signature (g;—) the
hyperbolic area of a Dirichlet region for A is 2n(2g — 2). By Corollary
5.9.5, and Exercise 5T, Aut S ^ F/A for some Fuchsian group F containing
A as a normal subgroup. Now [z]A*-> [z ] r is a well-defined continuous map
from °UjK onto ^ /F and as #/A is compact it follows that ^ /F is compact.
Hence a Dirichlet region F for F is compact in °U by Theorem 5.9.8 and
so fi(F) is finite; also by Theorem 5.10.7, fi(F)^n/2\. It follows from
Theorem 5.10.9 that

where Ft is a fundamental region for A. •

The fmiteness of the automorphism group of a compact Riemann surface
of genus g ^ 2 was first proved by Schwarz in 1878 and the bound given
in Theorem 5.11.1 was proved by Hurwitz in 1893.

We now investigate briefly the question of when the bound of Theorem
5.11.1 is attained. A group of 84(0—1) automorphisms of a compact
Riemann surface of genus g ^ 2 is called a Hurwitz group.

Theorem 5.11.2. A finite group H is a Hurwitz group if and only if H is
non-trivial and has two generators x,y obeying the relations

x2 = y3 = (xy)1 = 1.

Proof If H is a Hurwitz group then by Corollary 5.9.5 and Theorem
5.10.7, H ^ F/A where F is a triangle group of signature (0;2,3,7) and A
has signature (g; —) for some integer g ^ 2. Now F has two generators X,
y, obeying the relations X2 = Y3 = (XY)7 = I, so that if 9T-+H is the
canonical homomorphism then x = 9(X), y = 9(Y) generate H and obey
the relations x2 = y3 = {xy)7 = 1. Also H is non-trivial as its order is
divisible by 84.

Conversely, let H be a non-trivial finite group with two generators x, y
obeying the relations x2 = y3 = (xy)1 = 1. Let F be a triangle group with
signature (0; 2,3,7) and presentation < X, Y | X2 = Y3 = (X Y)1 = I >. By the
results of Appendix 2 there is a homomorphism 9 from F onto H such
that 0(X) = x and 0(Y) = y. Let A be the kernel of 9. We show that A
contains no elliptic elements. By Theorem 5.8.6 every elliptic element of
F is conjugate to a power of X, Y or XY, so if A contains elliptic elements
then as A <1F and as 2,3 and 7 are prime it must contain X, Y or XY.
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Suppose that A contains X. Then x = 1 and hence y3 = y1 = 1 so that
y = 1 and H is trivial. Similarly, if A contains Y or XY then H is trivial.
Thus A contains no elliptic elements. Also, by Theorem 5.9.9, F contains
no parabolic elements and hence A contains no parabolic elements. As A
has finite index in F, it has a compact fundamental region by Theorem
5.10.9, and so A must have signature (g\—) for some integer g which must
be greater than or equal to 2 by the discussion before Theorem 5.10.7.
Hence F/A is a group of automorphisms of */A, a compact Riemann
surface of genus g ^ 2, and by Theorem 5.10.9,

l). •

Theorem 5.11.3. Let H be a Hurwitz group and let Hx be a non-trivial
homomorphic image of H. Then Hl is a Hurwitz group.

Proof Let x,y generate H and obey the relations x2 = y3 = (xy)1 = 1.

Let (f> be the homomorphism from H onto H1.U </>(x) = xx, (j)(y) = yx then

)7 = l. •

Corollary 5.11.4. A Hurwitz group of smallest order is a simple group. •

Theorem 5.11.5.

(i) There is no Hurwitz group of order 84.
(ii) / / Z 7 denotes the field with seven elements then PSL(2, Z7) is a Hurwitz

group of order 168.

(There is a unique field with seven elements, namely the integers {0,1,2,
3,4,5,6} under addition and multiplication mod (7). For the definition of
PSL(2, F), where F is a field, see §2.2.)

Proof (i) By Corollary 5.11.4, a Hurwitz group of order 84 would be
simple. We now use the Sylow theorems (Rose [1978]) to show that there
is no simple group of order 84. A group of order 84 must contain (Ik + 1)
Sylow 7-subgroups where (Ik + 1) divides 84. The only possibility is that
k = 0 so that the group must contain a unique Sylow 7-subgroups which
must then be normal.

(ii) PSL(2,Z7) = SL(2,Z7)/{±/} so that P5L(2,Z7) is a homomorphic
image of SL(2,Z7). Let A, BeSL(2,Z7) be defined by

0 l) BJ° ~
- 1 0/ VI 1
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Then

~\0 ly
and

A2 = B3=-I, (AB)n = L

Let x, y be the images of A, B respectively under the homomorphism
from 5L(2,Z7) to PSL(2,Z7). Then

so we just need to show that x,y generate PSL(2,Z7). Direct calculation

shows that if C = ABA~lB~l then C2 = K ^ J and C 4 = - / . Thus

if u is the image of C in PSL(2, Z7) then u has order 4. Thus x, y generate
a group whose order is divisible by 3 x 4 x 7 = 84. It cannot be 84
by part (i) and a simple calculation (repeated in §6.9) shows that
|PSL(2,Z7)| = 168. Hence x,y generate PSL(2,Z7). •

(Corollary 5.11.4 and Theorem 5.11.5 imply that PSL(2, Z7) is simple. This
is a special case of the theorem that PSL(2, F) is simple for any field F
with more than three elements, see Dickson [1958].)

Thus the Hurwitz bound is not attained when g = 2 but is attained
when g = 3. It can be shown that it is attained for infinitely many values
of g and not attained for infinitely many values of g (Exercises 5W, X, Y).
The precise values of g for which the Hurwitz bound is attained are
unknown; the first four values are g = 3, 7, 14, 17.

5.12 Automorphic functions and uniformisation

We mention, without proof, a few results about automorphic functions
and their relationship to algebraic curves. Automorphic functions are
meromorphic functions defined on ^ which are invariant under trans-
formations of a Fuchsian group. Thus they are related to elliptic functions
which are meromorphic functions defined on C invariant under trans-
formations of a lattice.

Let F be a Fuchsian group; for simplicity we shall assume that <W/V is
compact. A function / which is meromorphic on ^ is called T-automorphic
if f(T(z))=f(z) for all TeT. As with elliptic functions a major problem
is to show that non-constant automorphic functions exist. This can be
achieved by writing down quotients of appropriate infinite series. It is
then found that automorphic functions possess many properties analogous
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to those of elliptic functions. For example, the F-automorphic functions
clearly form a field which we denote by ^(F). If/, ge^(V) then there is
a polynomial 0>(x,y) such that <b(f(z\g(z)) = Q (see Theorem 3.11.2).

Now suppose that F has no elliptic elements. Then as with elliptic
functions (§4.12) there is an isomorphism between «^(F) and the field
of meromorphic functions on the Riemann surface < /̂F; if / is F-auto-
morphic and if we define f:^/F-^Z by f [z] r = f(z) then f is meromor-
phic on ^/F and f*-+/ gives this isomorphism.

Now suppose that A(x,y) = 0 is an irreducible algebraic function with
Riemann surface S of genus greater than one. Then by §§4.13 and 4.14
there exist meromorphic functions 0, ^ defined on 5 such that (j)(s) = x,
\j/(s) — y. By Theorem 4.19.8, S = < /̂F for some Fuchsian group F without
elliptic elements and then $, \p give rise to F-automorphic functions $,
$ such that (?(z) = 0 [z ] r , ^(z) = i^[z]r. Hence A{$(z\ $(z)) = 0. Thus
from the algebraic function A(x, y) = 0 which expresses y as a many-valued
function of x we have found single-valued functions $, \fl such that
x = <?(z), y = $(z).

The process of representing many-valued functions in terms of single-
valued functions in this way is called uniformisation. Theorem 4.17.2 is
often called the uniformisation theorem because it is a crucial step in
establishing the above process.

There are simpler examples of uniformisation not involving Fuchsian
groups. There are two well-known examples of the uniformisation of
x2 + y2 = 1, namely x = sin r, y = cos t and x = (2t)/(l + f2), y = (1 -12)/
(1 -h t2). (These are in terms of simply periodic functions and rational
functions respectively. In fact any irreducible algebraic function whose
Riemann surface has genus 0 can be uniformised by rational functions as
these are the meromorphic functions on the sphere as shown in Theorem
1.4.1.) In Chapter 3 we saw how we could uniformise some cubic curves
y2 = 4x3 - g2x — 03 with elliptic functions. In the next chapter we shall
see that all such curves with g\ # 21 g\ can be so uniformised. Interestingly,
the proof involves functions which are automorphic with respect to the
modular group.

EXERCISES

5A. Show that every transformation in PSL(2, U) is a composition of trans-
formations of the form z\-*kz (AeR\{0}), z\->z + \x (iieU) and Z K — l/z
(see §2.3).

5B. Prove that T:zh+z + 1 and T~ x\zv+z - 1 are not conjugate in PSL(2, R).
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5C. Show that the transformations in PSL(2, R) together with the transformations

ad-bc=-l

form a group 5£ which contains PSL(2, R) with index 2. Prove that every
transformation of 5£ is an angle-preserving homeomorphism of °U.

5D. Show that if a 4- d ^ 0 then the transformation (*) has two fixed-points in
Ru {oo}, and if a + d = 0 then the fixed-point set in <?/ of the transformation
(*) is either a semi-circle centred on R or a line perpendicular to R. (In the
terminology of §5.3 these are H-lines. In the hyperbolic geometry of % the
transformations (*) are orientation-reversing isometries; those with a + d = 0
are hyperbolic reflections and those with a + d ^ 0 are hyperbohc glide-
reflections.)

5E. Divide the transformations (*) into conjugacy classes in $£ and compute the
centraliser of an element of each conjugacy class.

5F. If z = (ai + b)/(ci + d),a,b,c,deU, ad-bc=\, prove that

cosh p(i, z) = {(a2 + b2 + c2 4- d2\

where p is the hyperbolic metric in Ql.
5G. Let Tbe a hyperbolic element with fixed-points a,beUv{oo} and let Q be the

H-line joining a and b. If peg show that p(p, T(p)) is independent of p. (Hint:
map Q onto the imaginary axis and use Theorem 5.3.5.)

5H. Using the result that zh+(z - i)/(z 4- i) maps °U bijectively onto the unit disc 0
(§4.17), prove that Q> carries an induced hyperbolic metric given by

2\dw\

and show that the geodesies of this metric are segments of Euclidean circles or
Euclidean lines perpendicular to the unit circle.

51. If px denotes the hyperbolic distance in the unit disc prove that

sinh2 [ ^ ( z , w)] = \lZ^l _ .

5J. Show that a hyperbolic circle in & with centre at 0 is a Euclidean circle with
centre at 0. Find a formula relating the hyperbolic radius and the Euclidean
radius.

5K. (i) Show that every hyperbolic element of PSL(2, R) is a product of two
parabolic elements of PSL(2, R) (see Exercise 2N).

(ii) Still using 2N show that every elliptic element of PSL(2, C) which lies in
Aut Q) is a product of two parabolic elements in Aut 9).

(iii) Hence show that PSL(2, R) is generated by parabolic elements and
deduce that PSL(2, R) is a simple group.

5L. Consider a hyperbolic triangle T which contains a hyperbolic triangle Tx in its
interior. Compute the H-area of the (non-simply connected) hexagon
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consisting of those points exterior to 7\ and interior to Tin terms of the angles
of the polygon. Hence show that the Gauss-Bonnet formula given in
Corollary 5.5.6 is false for non-simply connected polygons.

5M. Let m:PSL(2, R) x PSL(2, R) - PSL(2, R) be defined by m(S, T) = ST and let
i:PSL(2,R)->PSL(2,R) be defined by i(S) = S~l. Prove that m and i are
both continuous (so that PSL(2, R) is a topological group - see §3.2).

5N. Show that every transformation in PSL(2, R) can be written uniquely in the
form TR where R is an elliptic element fixing i and T(z) = az + b
(a,beU,a>0). Deduce that as a topological space PSL(2, R) is homeo-
morphic to R2 x S1, where S1 is a circle.

5P. Show that the vertices of a Dirichlet region F are isolated, that is every vertex
of F has a neighbourhood containing no other vertices of F. (Hint: use local
finiteness.) Deduce that a compact Dirichlet region has a finite number of
vertices.

5Q. Show that i is the only point of the region F in Fig. 5.10 that is fixed by an
involution of the modular group.

5R. Let F be a Dirichlet region for a Fuchsian group F and let s be a side of F. If
TeT and T(s) is a side of F prove that

FnT(F)=T(s).

5S. If F is a Dirichlet region for F centred at p prove that T(F) is a Dirichlet region
for TVT1 centred at T{p).

5T. (i) Let A be the cyclic group generated by z\-*kz(k > 1). Find the Dirichlet
region for A centred at i.

(ii) Let A be the cyclic group generated by z i-» z + 1. Find the Dirichlet region
for A centred at i.

(iii) Prove that if A is a cyclic Fuchsian group then (JUjK is not compact (use
Theorem 5.9.8).

5U. Let p = g — 1 > 84 be a prime number. Show that there is no compact
Riemann surface of genus g admitting 84(# — 1) automorphisms. (Hint: use
Theorem 5.11.3 to show that a Hurwitz group of order84p must be simple and
then use the Sylow theorems to show that a Sylow p-subgroup must be
normal.)

5V. Let p ^ 5 be a prime number. Construct an epimorphism 0 from a triangle
group with signature (0; p, p, p) onto Cp, the cyclic group of order p, such that
the kernel of 0 has no elliptic elements. Deduce that Cp acts as a group of
automorphisms of a Riemann surface of genus (p — l)/2.

The following problems show that for infinitely many values of g there is a
compact Riemann surface of genus g admitting 84(# - 1) automorphisms. The
proof follows an idea of Macbeath [1961]. The first of these problems is purely
group-theoretic.

5W. (i) Let G be a group. A subgroup K of G is called characteristic if <x(K) = K for
all group automorphisms a:G->G. Prove that if K ^ N ^ G and N is
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normal is G and K is characteristic in N then K is normal in G. (Hint:
consider the automorphism of N defined by n\-+yny~l, yeG.)

(ii) Let Gm be the subgroup of G generated by the mth powers of elements of G.
Let [G, G] denote the commutator subgroup of G, that is the subgroup of
G generated by elements of the form aba~lb~l, (a, beG). Prove that Gm,
[G, G] and Gm[G, G] are characteristic subgroups of G.

(It follows from results in Appendix 2 that if a presentation for G is

then a presentation for G/Gm[G, G] = G is

where a, is the image of a, under the canonical homomorphism from
G to G.)

5X. If A is a Fuchsian group of signature (g\—) use the presentation (5.10.6) to show
that A/Am[A, A] is a finite abelian group of order m2g.

5Y. Let F be a triangle group with signature (0; 2,3,7) and let A be a normal
subgroup of signature (g;—). (Theorem 5.11.5 shows that at least one such
normal subgroup exists when g = 3, its index being 84(3 — 1) = 168.) Prove
that for each positive integer m there is a normal subgroup of F of index
84(0 — l).m29 and hence show that for each such m there is a compact Riemann
surface of genus

g' = ml9(g-\)+\y

which admits 84(#' — 1) automorphisms.
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The modular group

The modular group F = PSL(2, Z) is the most widely studied of all
Fuchsian groups, and several books have been written about F, its action
on %, and the associated modular functions (meromorphic functions
invariant under F). The importance of F lies in its many connections with
other branches of mathematics, and especially with number theory; indeed,
interest in F first arose out of the investigations of Gauss into number-
theoretic properties of quadratic forms ax1 + bxy + cy2 (a, b, ceZ). We will
concentrate on those aspects of F which are related to topics considered
in earlier chapters; for example, we will apply F to the problem (partially
dealt with in §4.18) of classifying the compact Riemann surfaces of genus 1.

In §6.1 we construct a bijection between the set of all conformal
equivalence classes of tori C/Q (equivalently, the similarity classes of lattices
Q c C ) and the orbits of F on °U. In order to apply this to the Riemann
surface S of yjp(z) (considered in §4.9), where p is a cubic polynomial, we
introduce in §6.2 the discriminant A, the non-vanishing of which is
equivalent to p having distinct roots, that is, to S having genus 1. We use A
in §6.3 to obtain an analytic function J\°ll -• C invariant under the action of
F; detailed study in §6.4 of the analytic properties of J enables us to show in
§6.5 that J maps °U onto C and that the level sets J~ *(c), ceC, are the orbits
of F. This gives a bijection between conformal equivalence classes of tori
and points ceC, and from this we obtain a proof (independent of the
uniformisation theorem) that if p has distinct roots then S = C/Q for some
lattice Q. In §6.6 we give one of the classical applications of the ./-function,
the proof of Picard's theorem on entire functions, and in §6.7 we show how J
is related to the cross-ratio function X considered in §2.5. In §6.8 we use the
action of F on ^ to obtain a presentation for F in terms of generators and
relations, and we use this in §6.9 to study the homomorphic images of F,
many of which have appeared earlier in this book in different contexts. This
involves studying certain normal subgroups N of F, and in §6.10 we
examine the corresponding quotient surfaces
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6.1 Lattices, tori and moduli

We saw in §4.18 that if ft and ft' are lattices in C, then the tori C/ft
and C/ft' are conformally equivalent if and only if ft and ft' are similar,
that is, ft' = /xft for some /ieC\{0}. If {co1,co2} and {co'l9(o2} are bases
for ft and ft', then by Theorem 3.4.2 this is equivalent to

ffli-M^a + ^ O ( 6 U )

a>\ = ii(cco2 + da>x\ J

where a,b,c,deZ and ad — be = ± 1.
Since (x>x and a>2 are linearly independent over R we have Im {cojeo^ ̂  0;

interchanging col and co2 if necessary, we may assume that Im (a>2/o>i) > 0.
We define the modulus of the basis {couco2} to be

X =

where the numbering is such that

Im(T)>0.

Each lattice ft determines a set of moduli, the moduli of its various bases,
and since fico2/fia)l =co2/a)u similar lattices determine the same sets of
moduli. Putting T = ojwy^ and t' = a)2/co\ (the moduli of the above bases
for ft and ft'), we see from (6.1.1) that ft and ft' are similar if and only if

T< = ^ , (6.1.2)
CT + d

where a, fc, c,deZ, and ad — bc= ± 1. Now both T and T', being moduli, lie in
the upper half-plane

as shown in §2.8, if ad — be = — 1 then the Mobius transformation T:z\->
(az + b)/(cz + d\ which is in PGL(2, U)\PSL (2, R), maps ^ onto the lower
half-plane, so we must therefore have ad — be = 1. Conversely, if a, fe, c, deZ
and ad — bc= 1, then (6.1.1) gives a basis {a>\, w2} for a lattice ft' similar
toft.

As we saw in §5.6, the Mobius transformations

cz + a
(6.1.3)

form a discrete subgroup of PSL(2, R), the modular group P5L(2, Z), which
we shall denote throughout this chapter by F. Summarising the above
argument, we have:

Theorem 6.1.4. If ft = Q(cou a>2) and ft' = ft(co'1,a/2) we lattices in C,
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with moduli x = o)2/(oi and x' = (or
2/co\ (so that xyx'e%\ then the following

are equivalent:

(i) the tori C/Q and C/0! are conformally equivalent;
(ii) the lattices Q and Q' are similar;

(Hi) x' = T(x)for some TeT. •

In §5.7 we observed that every compact Riemann surface of genus 1 is
conformally equivalent to C/Q for some lattice ft, so Theorem 6.1.4 gives
a bijection between the conformal equivalence classes of such Riemann
surfaces and the points on the quotient-space °UjY. Thus we can think of
°UIT as representing the set of all complex structures which can be imposed
on a surface of genus 1. Now by Theorem 5.9.1, <%/T is itself a Riemann
surface! If we consider the Dirichlet region (see Fig. 6.1) F = {ze<%\\z\ ^ 1
and |Re(z)| ^ | } for F, given by Theorem 5.8.4, then Theorem 5.9.6 shows
that <#/F is homeomorphic to F/F, and by using the transformations
z»-»z + 1 and z h+ — 1 /z to identify congruent sides of F we see that F/T (and
hence °U/T) is homeomorphic to the plane C (later in this chapter we shall
introduce an analytic function J:%->C which induces a conformal
equivalence between °U[Y and C).

Fig. 6.1 ; •

More generally, for each integer g ^ 0, let Rg be the set of all conformal
equivalence classes of compact Riemann surfaces of genus g; this set is
called the Riemann space, or space of moduli of genus g. We have seen
that Rx can be identified in a natural way with C, so that Riemann surfaces
of genus 1 are parametrised by one complex parameter (or, equivalently,
two real parameters). Riemann observed that, for any given g > 1, Riemann
surfaces of genus g are parametrised in some sense by 6g — 6 real para-
meters, and this inspired attempts to realise Rg as a (6g — 6)-dimensional
space. In the 1930s the theory of quasi-conformal mappings led to the
discovery of Teichmiiller space Tg (O. Teichmiiller [1913-41]); this is a
metric space, homeomorphic (for g> 1) to U69~6, admitting a disconti-
nuous group Tg of isometries such that Rg = TJTg. For g = 1, Tx is the
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upper half-plane % (homeomorphic to R2), the metric is the hyperbolic
metric, T1 is the modular group F, and (as we have seen) Rx can be
identified with ^ / F . For g = 0, Ro consists of a single point since Theorem
4.17.2 implies that any Riemann surface of genus 0 is conformally equi-
valent to Z.

For an account of this theory, see Abikoff [1980], or Bers' survey
article [1972].

6.2 The discriminant of a cubic polynomial

In §4.9 (iv) we saw that if p(z) is any cubic polynomial with distinct roots,
then the Riemann surface S of y/p(z) has genus 1. Our aim is to produce
a lattice Q such that S ^ C/Q, or, equivalently, to parametrise S by means
of elliptic functions. In this section we give a necessary and sufficient
condition for p to have distinct roots.

In §3.10 we saw that Weierstrass' elliptic function 9 satisfies a differential
equation &' = ^/p(i?), where p is a cubic polynomial of the form

p(z) = 4z3 - c2z - c3 (C2,C3GC); (6.2.1)

any polynomial of the form (6.2.1) is said to be in Weierstrass normal form.
By means of a substitution 9:z\-+az + b (a,beC,a ^0) , any cubic poly-
nomial may be brought into this form; now 0:C-»C is a bijection,
preserving the multiplicities of roots, so without loss of generality we can
restrict our attention to cubic polynomials p in Weierstrass normal form.

If eue2 and e3 are the roots of the polynomial p in (6.2.1), then we
define the discriminant of p to be

A, = 16(et - e2)
2(e2 - e3)\e3 - erf; (6.2.2)

clearly these roots are distinct if and only if Ap ^ 0.

Theorem 6.2.3. Ap = c\ - 21c\.

Proof. Putting

p(z) = 4(z — ex)(z — e2)(z — e3), (6.2.4)

and equating coefficients between this and (6.2.1), we have

et + e2 + e3 = 0,

= - ^ , I (6.2.5)
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The remaining symmetric functions of the roots may be obtained from
(6.2.5), for example

el + el + el = (ex +e2 + e3)
2 - 2{ele2 + e2e3 •

and

C2

e\e\ + e\e\ + e\e\ = (exe2 + e2e3 + e a e j 2 - 2^^263(6! + e2 + e3) = —.

Now differentiating (6.2.1) and (6.2.4) at z = e1? we have

with similar expressions for p'(e2) and p'(e3). Hence

\ + e\e\ + e\e\)

Corollary 6.2.6. p has distinct roots if and only if c\ — 21 c\ / 0. •

One can give a direct proof of Corollary 6.2.6, without introducing Ap,
by eliminating z between the equations p(z) = 0 and p'(z) = 0, thus giving
a necessary and sufficient condition for p and p' to have a common root.
We have chosen the above proof since the discriminant is an interesting
function in its own right.

6.3 The modular function J

Theorem 6.1.4 suggests that we can obtain information about lattices and
tori by studying the action of the modular group F on the upper half-plane
fy. With this in mind we shall construct a function J : ^ - * C with the
property that J(T') = J(T) if and only if 1 = T(T) for some 7eF; thus J
distinguishes between different similarity classes of lattices and hence
between different conformal equivalence classes of tori.

By Theorem 3.10.5, the Weierstrass function P associated with a lattice Q,
satisfies P' = yjp( 9\ where p is a cubic polynomial in Weierstrass normal
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form

with

The modular group

(6.3.1)

weft

and

= 140 2>
If we write A(Q) for the discriminant Ap of p, then by Theorem 6.2.3 we have

A(O) = 02(O)3-2703(O)2. (6.3.2)

Theorem 3.10.9 implies that p has distinct roots, so A(Cl)^0 by
Corollary 6.2.6, and hence we may define the modular function J{Q) by

(6.3.3)

For a similar lattice fiCl {p. / 0) we have

= 60£'
coeCl

= 140 X'

and

so that

It follows that

J(/iQ) = J(Q) (6.3.4)

for all /ieC\{0}, so that similar lattices determine the same value of J
(the converse is also true, as we shall prove in §6.5).

We can regard g2,g^A and J as functions of ze<% by evaluating them
on the lattice Q = Q(1,T) which has T as one of its moduli. Thus

and (6.3.5)

where £m,« denotes summation over all (m,n)eZ x Z except (0,0); then
3 T ) 2 (6.3.6)
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and

If T' = T(x) for some Ter, then by Theorem 6.1.4 the lattices Q, = 12(1,T)
and Q' = Q(1,T') are similar, and hence J(T') = J(x) by (6.3.4). This proves

Theorem 6.3.8. J(T{x)) = J(x)for all xe<% and TeT. Q

Thus J(T) is invariant under the action of the modular group F; we now
show that the functions g2(x\ g3(x) and A(T) come close to sharing this
property. If T:x\-+(ax + b)/(cx + d) is an element of T, then

= 60(CT X

= 60(CT + <i)-*X;'(M + nb) + (mc + na)x)~A;
m,n

since ad — bc=l, the transformation (m,n)f->(md + nfc,mc + na) merely
permutes the elements of the indexing set (Z x Z)\{(0,0)}, by Theorem
3.4.2, so that by absolute convergence (Theorem 3.9.2) we have

92{T{x)) = 60(CT
m,n

g2(T). (6.3.9)
Similarly,

g3(T(x)) = (cx + d)-6g3(x), (6.3.10)
and hence

A(T(T)) = (CT + </)-1 2A(T), (6.3.11)

from which we immediately obtain an alternative proof of Theorem 6.3.8.
In the special case where a = b = d = 1 and c = 0, we have T(x) = t + 1,
giving

Theorem 6.3.12. The functions g2(*\ 9s(^\ A(T) and J(x) are periodic with
respect to Z. •

It is also useful to determine the effect on these functions of the orientation-
reversing transformations of * of the form

T{x) = ^ ^ (a, b, c, deZ, ad - be = - 1). (6.3.13)
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Calculations similar to those above give

J(T(T)) =

6.4 Analytic properties of ^ 2 , ^ 3 , A and J

The main result of this section is:

Theorem 6.4.1. The functions and JM -+C are analytic on

Proof. Given any xoe<%, let d = \\m(x0) (so that <5>0) and let K(x0)
be the compact disc { r e ^ | | T — TO| ^<5}. Now the functions (m'+nr)"4

and (m + nx)~6 are analytic on °U for all (m,«)e(Z x Z)\{(0,0)}, so if we
can show that the series (6.3.5) defining Q2{T) and g3(x) are normally
convergent on each K(T 0 ) , TOE<%9 then by §3.7 it will follow that
these two functions are analytic on <%.

For all m ,ne i with n ^ O w e have — m/neU and hence

m

(see Fig. 6.2); therefore for all m,neZ (including n = 0) and TGK(T0)

we have
\(m + nx) - (m -h nxo)\ = \n\\x - xo\

Fig. 6.2
/ K(xo)\

26

and so the triangle inequality gives

\m + nx\ ^\m + nxo\ - \(m + nx) - (m
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Thus for any r > 0 we have

for all T6/C(T0) and (m,n)#(0,0). By Theorem 3.9.2 the series
Y*'m,n\m + n*o\ ~2r converges for each r > 1, so Sm,n(m + nx)~2r is normally
convergent on K(T0). Putting r = 2 and r = 3, we see that g2(x) and gz(z)
are analytic on ^.

It immediately follows from (6.3.6) that A(t) is analytic on <#, and since
A ( T ) ^ 0 on 91 by Theorem 3.10.9 and Corollary 6.2.6, it follows from
(6.3.7) that J(T) is analytic on ^. •

Our next task is to discover the behaviour of the functions #2(T), gz(x\
A(T) and J(x) as Im(t)-> + oo; by Theorem 6.3.12 all four functions are
periodic, so by Theorem 3.3.1 we can express them as analytic functions
of q = e2nit(0 < \q\ < 1), and we then see how they behave as ^-•O. First
we need the following result:

Lemma 6.4.2. Zm = i^" 4 = n*/90 andZ%=i™~6 = n6/945.

Proof. We saw in §3.8 and Exercise 3J that

f (z - m) - 2 = n2 cosec2 nz. (6.4.3)
m— — oo

By squaring and then inverting the series

we obtain the Laurent series

, , 1 n2 n4z2 n4z2 2n6z*
^ + + ^ + ~ , (6.4.4)

valid for \z\ < 1 since n2cosec2 nz — (l/z2) is analytic on the unit disc. By
differentiating twice in (6.4.3) and (6.4.4) we have

, £ , , * 6 27t4 8JT6Z2

6 X (z-my* = ? + _ + - g r + ...,m = - o o

and differentiating twice again we have

, 6 120 16;t6

both valid for |z| < 1. Cancelling the principal parts at z = 0 with the

120 X
m = - ao
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summands corresponding to m = 0, and then putting z = 0, we have

and

(where J ^ denotes summation over all W E Z \ { 0 } ) , and hence the result. •

(This method allows us to evaluate the Riemann zeta-function £m= lm~5

at each even integer s ^ 2; for example, (6.4.3) and (6.4.4) immediately give

We can obtain the Fourier series for the periodic function n2 cosec2 nz
from that of sin nz: if we put ( = e2nlz, then since

sin nz =

we have

n2 cosec2 nz =

(l-02

the Fourier series for n2 cosec2 nz, valid for |(| < 1, that is, for Im(z)>0.
By (6.4.3) we therefore have

m m

— n2 cosec2 nz

r = l

(where Xm denotes summation over all meZ). Differentiating this twice
with respect to z, and using d(/dz = 2niC, we have

2\

-An

C-2 +
- 4 T T 2 C

2

r1

and differentiating twice again,

- 6 = - 6 4 T T 6
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both valid for Im(z) > 0. We now put z = nx where n is any positive integer
and te^f; we have £ = qn where q = elni\ so

and

m r = 1

For n < 0 we have

r = l

and similarly,
oo

V"1 / , \ — 6 _S_^i-6 V"1

m r= 1

while for n = 0, Lemma 6.4.2 gives
oc

t Z ™~4

m = l

~4 5 '

and similarly,

As shown in the proof of Theorem 6.4.1, Zm,»(m + WT)~4 is normally
convergent on compact subsets of T̂, so it is absolutely convergent on <#;
we may therefore combine the cases n > 0, n = 0 and n < 0 to obtain

7r4 1 6 T T 4 °° °°2 > + nT)-* = J- + ̂ X XrV, (6.4.5)

valid for 0< |^ f |< l . Each power series Xr°°= ir3qnr, having radius of
convergence 1, is absolutely convergent for \q\ < 1. Moreover, £*= x Xr0^ i
|r3^"r| converges for \q\ < 1: there is no problem when <? = 0, and if \q\ = q0

satisfies 0 < q0 < 1 then
oo oo oo oo

Z ZkVl= Z Z'Vo
« = l r = l n = 1 r = l
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converges by (6.4.5) since, putting q0 = e2nito(T0e<%\ ZIntn(m + M T O ) ~ 4

converges. Thus the double series in (6.4.5) is absolutely convergent, so we
may rearrange it and collect the powers of q: if we define

r\k

for each positive integer k (summing over all positive divisors r of fc), then
(6.4.5) gives

' (m + nx) 4 = — +
13 J lc = 1

and similarly, if we define

r\k

then

A(t)

^ 3 + 1 0 5 7 ^ + .. .)•

By (6.3.5) we therefore have

= 7t4(| + 320<? + 2830^2 + 8960(73 + ...) (6.4.6)
and

- . . . ) , (6.4.7)

so (6.3.6) gives

= 7t12(4096(? - 98304?2 + . . . ) , (6.4.8)

and then (6.3.7) gives

1 + 7 4 4 + 196884q + . . . ) . (6.4.9)
q /
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These expansions, valid near q = 0, can be used to define #2,03, A and
J as functions of q at g = 0 (that is, at T = oo): notice that A and J have a
simple zero and a simple pole respectively.

One can show (see Exercise 6B) that (6.4.8) can be written in the form

A(T) = (2TE) 1 2 X anq\
n = l

with the coefficients an all integers. The function ani of considerable
importance in number theory, is Ramanujan's tau-function, usually denoted
by x(n) (a notation we have avoided, having used T already). Similarly the
coefficients c(n) in

are all integers, of great interest to number-theorists; recent work
of J. H. Conway, S. Norton and J. G. Thompson has shown that these
coefficients arise in a rather mysterious way in connection with a finite
simple group known as the Fischer-Griess monster (see Conway-
Norton[1979]). For connections with number theory, see Apostol [1976],
which includes a proof of the remarkable infinite product representation

00

6.5 The Riemann surface of yjpir), p a cubic polynomial

Our main aim in this chapter is to show that if p(z) is a cubic polynomial in
C[z], with distinct roots, then there is a lattice Q, such that the Riemann
surface of yjp(z) is conformally equivalent to C/Q. The main step in the
argument is to show that J maps % onto C, a non-trivial result requiring
virtually all the information we have so far acquired concerning J and F.

Lemma 6.5.1.

(0 / /2Re(r)eZ then g2(r\ gz(x\ A(T) and J(T) are all real
(ii) If \r\=Athen 02(T) = T402(T), 0 3 M = T603(T), A(T) = T12A(T) and

Proof

(i) If 2 Re (T) = neZ then T is fixed by the reflection T\x\-+ n — f, which is of
type (6.3.13) with a= - 1, fe = n, c = 0 and d = 1, so the result follows from
(6.3.14).
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(ii) If | x | = 1 then T is fixed by the inversion T:xt-> 1/f in the unit circle;
putting a = d = 0 and b = c = 1 in (6.3.14) we have

and similarly for the other three functions. •

We proved in Theorem 5.8.4 that T has a fundamental region
F = {T6* | |T | ^ 1 and |RC(T)| ^ | } . We immediately have:

Corollary 6.5.2. J(x) is real whenever x is on the imaginary axis or
on the boundary dF of F. •

Corollary 6.5.3. g2(p) = ^3(0 = J(p) = 0and J(i) = 1, where p = e2ni/z.

Proof. Part (i) of Lemma 6.5.1 shows that g2 and g3 both take real values

at i and p, while part (ii) shows that g2(p) = P92(p) an<* 03(0= —03(0-
Thus g2(p) = ^3(0 = 0, so (6.3.7) gives J(p) = 0 and J(i) =1 . D

Let L = L 1 u L 2 u L 3 , where

Lx = {te«r||T| > 1 and Re(t) = - i } ,
L 2 = {T6^ | |T | = 1 and - i < R c ( t ) < 0 } f

L3 = {TG^| |T| ^ 1 and Re(t) = 0}, as illustrated in Fig. 6.3.

Fig.6J ; ;

- 1 -Vi 0 1

By Corollary 6.5.2 we have J(L) £ R, but in fact we can prove equality:

Theorem 6.5.4. J maps L onto U.

Proof If t€L3 then we have T = iy with y ^ 1. Then q = e2nit = e""2*',
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and as y-+ + oo we have g->0 through positive real values, so (6.4.9)
gives J(x) = (q~l + 744 +...)/1728-> + oo. Similarly, on Lx we have
T=—\ + iy and q=-e2ny, so as y-> + oo we have q->0 through
negative real values, and hence J(x) -> — oo. Thus, as a real-valued function
on L, J is unbounded above and below. Being analytic on <% (by Theorem
6.4.1), J maps L continuously to R; since L is connected, it follows that
J(L) is connected. Now it is easily seen that a connected subset of R,
unbounded above and below, must be R itself, so J(L) = R. •

By Theorem 6.3.8, J is constant on each orbit of T in Ql. The next two
results explain why we have devoted so much attention to J:

Theorem 6.5.5. For each ceC there is exactly one orbit of V in °U on which J
takes the value c.

Combining this with Theorem 6.1.4, we immediately have:

Corollary 6.5.6. If lattices Q and Q' have moduli x, T 'E* , then the tori C/Q
and C/O' are conformally equivalent if and only if J(x) = J(T'). •

(By Theorem 6.5.5, J induces a homeomorphism ^ /F ->C; this confirms
our claim at the end of §6.1 that the Riemann space Rx of genus 1
is homeomorphic to the plane C, and it is not hard to show that these
two surfaces are conformally equivalent.)

Proof of Theorem 6.5.5. By §5.8, each orbit of T meets the
fundamental region F either at a unique point in the interior / , or else
at one or two equivalent points on dF.

First suppose that ceC\R; since J(dF)^U by Corollary 6.5.2, it is
sufficient to show that there is a unique solution of J(x) = c in i \ By
Theorem 6.4.1 and Corollary 6.5.3, J is analytic and not identically equal
to c, so the function

J(T)-C

is meromorphic on <%; by an argument analogous to that used in the proof
of Theorem 3.6.4, aetft is a solution of J(T) = c with multiplicity k if and
only if g{x) has a pole with residue k at a. We can use (6.4.9) to express
g(x) as a function of q = e2nit, meromorphic at q = 0 since J(x) is; hence
g(x) is analytic for sufficiently small non-zero \q\, that is, provided Im(t)
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is sufficiently large, say Im(i) ^ K for some K > 1. Thus the poles of g(x)
in F all lie within the interior of G = {xeF\lm(x) < X}, illustrated in Fig. 6.4,
so the sum of the residues of g(x) in F (and hence the number of solutions,
counting multiplicities, of J(x) = c in F) is equal to

1 1 ' * (6.5.7)

where the boundary dG has the positive orientation.

Fig. 6.4 -te+iK 7 '/2+/AT

p+1

Now the sides Re(i)= — \ and Re(t) = ^ of G are equivalent under
the transformation TI->T+ 1 of F, so J(x) and hence g(x) take the same
values at equivalent points on these sides; hence the integrals of g(x) along
these sides cancel in (6.5.7), and similarly the integral along the unit circle
from p to i cancels with the integral from i to p 4-1, using the transformation
TH+ — 1/T. Hence

JrG

where y is the side Im(t) = X of G, oriented from i +i'K to - \ + iK.
Away from the poles of #(T), each branch of the logarithm function satisfies

so

J
the change in the value of log(J(r) — c) arising from analytic continuation

Fig. 6.5

0 t S
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along y. As T follows y,q winds once (in the negative direction) around
the circle 8 given by \q\ = e~lnK, starting and finishing at -e~2nK (see
Fig. 6.5). By (6.4.9), q(J(x) - c) is analytic and non-zero for 0 < \q\ ^ e~2nK,
and, since this set is simply connected, the monodromy theorem (4.5.3)
implies that

[log(?(J(T)-c)]y = 0,

so
[l0g(J(T) - C)]y = [l0g<?(J(T) - C) -

= 2ni.

Hence (6.5.7) shows that the number of solutions of J(x) = c in F is equal
to (\l2ni)'2ni= 1, as required.

Finally, suppose that ceU. By Theorem 6.5.4 there is at least one orbit
of F on which J takes the value c. If there were more than one such orbit,
there would be two inequivalent solutions T^ T2 of J(T) = c, so by choosing
c'eC\R sufficiently close to c we would have two inequivalent solutions
x\ and T'2 of J(T) = C', close to TX and T2 respectively. We have already
shown that this is impossible, so the orbit is unique. •

Corollary6.5.8. If c2,c3eC satisfy c\ — 21c\^§, then there is a lattice
Q c C with gk(Cl) = ckfor k = 2,3.

Proof First suppose that c2 = 0, so that c 3 ^ 0 . By Corollary 6.5.3,
9iip) = 0 and hence g3(p) ^ 0 since g2{xf - 27#3(T)2 = A(T) does not vanish
on W. We can therefore choose //eC\{0} such that /x"6gf3(p) = c3, so putting

= ft(n, \lp)

we have g2(ty = A*~402(P) = 0 = c2 and g3(Cl) = n~6g3(p) = c3, as required.
Similarly, if c3 = 0 then c2 # 0. We have g3(i) = 0 / gf2(i), so we can

choose /xeC\{0} satisfying ^~4^2(0 = c2» a n ^ then Q = Qbi,fii) satisfies
g2(Q) = jT402(O = 2̂ and g3(Cl) = 0 = c3.

Finally we consider the general case, where c2 # 0 # c3. By Theorem
6.5.5 there exists TG^ such that

^ k (65-9)
For any /XGC\{0} the lattice Q = Q(/*,^T) satisfies ^2(ft) = /i"4^2(

T) a n d
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0 3 (O) = /X~6<73(T), both non-zero since

(6.5.10)

does not take the value 0 or 1, by (6.5.9) and the fact that c2 # 0 ^ c3. We
can therefore choose \i # 0 so that

and hence

Thus gk(Q) = Ack (/c = 2,3) for some A ^ 0, so substituting in (6.5.10) and
using (6.5.9) we have

4 =J(Q)
c\-21c\

' Pc\-21X2c\

c\

Hence X = 1 and so gk(Q) = ck(k = 2,3), as required. •

We can now achieve our main aim by proving:

Theorem 6.5.11. If p(z) is a cubic polynomial in C[z] with distinct roots,
then the Riemann surface Sofw = y/p(z) is conformally equivalent to C/ft
for some lattice Q c C .

Proof. Since the transformations d:z\-+az + b(a,beC,a #0) are auto-
morphisms of C, they leave the complex structure of S unchanged, so by
using such a transformation we may assume that p(z) is in Weierstrass
normal form

p(z) = 4z3 - c2z - c3.

Since p{z) has distinct roots, c\ — 21 c\ ^ 0 by Corollary 6.2.6; hence
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Corollary 6.5.8 implies that there is a lattice Q c
and now Theorem 4.18.3 gives C/fi s S. D

By quoting (without proof) the very deep uniformisation theorem (4.17.2),
we were able to prove in §5.7 a generalisation of Theorem 6.5.11, namely
the result that every compact Riemann surface of genus 1 is conformally
equivalent to C/Sl for some lattice ft; Theorem 6.5.11 is independent of
the uniformisation theorem, as is Exercise 6Q where we prove the same
result for the Riemann surface of w = y/p(z),p(z) a polynomial of degree
4 with distinct roots (by §4.9(v) we know that this surface has genus 1).

6.6 The mapping J\<% - • C

In this section we see how J induces an infinite-sheeted branched covering
of C by %, and from this we deduce an important theorem of C. E. Picard
(1856-1941) concerning entire functions. First we need to know which
images of F under F are adjacent to F.

Consider the elements

(6.6.1)
Z:TH»T

of T. Of these, X and Y are elliptic, fixing i and p = e2ni'3, while Z is
parabolic, fixing oo. They satisfy

X2 = Y3 =

= z. ] (6.6.2)

By applying these transformations successively to F, we obtain that part
of the tessellation of Ql shown in Fig. 6.6.

We see that F meets Z[F\ Z~\F) and X(F) across its edges Re(t) = | ,
Re(i) = - ^, and |T| = 1, and that each point TedF is contained in exactly

Fig. 6.6

-1 -%-V* 0 V3
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two images of F under F (including F itself), except that p and p + 1
(vertices with internal angle 27c/6) are each contained in six images of F.

Theorem 6.6.3. J :<%->£ is a branched covering map, with infinitely many
sheets, and with branch-points of order 1 and 2 on the orbits J - 1 ( l ) and
J~l(0) ofT containing i and p respectively.

Proof. Since J is an analytic function from % onto C, §1.5 shows that
away from the branch-points (the zeros of J') J is an unbranched covering
map; there are infinitely many sheets since, for each ceC, J~ l(c) is infinite
(being an orbit of F).

A point ae°M is a branch-point of order k — 1 (with k > 1) if and only
if J is locally /c-to-one near a; applying an element of F to a, we may
assume that asF. Now if asP then there is a neighbourhood N of a in / ;
since no two elements of N are equivalent under V,J is one-to-one on N
by the uniqueness result in Theorem 6.5.5, and so a is not a branch-point.

A similar argument applies if aedF\{i,p,p + 1}. Suppose, for example,
that Re (a) = \ and \a\ > 1. Let N be an open disc, centred at a, of radius
less than min(|a( — 1,£), so N is contained in the interior of FuZ(F) (see
Fig. 6.7). It follows that J is one-to-one on N, for if t, r'eiV are equivalent

Fig. 6.7 !

Z(F)

7=0 P

Fig. 6.8
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under T then (relabelling if necessary) we must have TGF and T' =
T + 1 eZ(F), impossible since N has diameter less than 1. Similar arguments
may be applied to the other sides of F, so the only possible branch-points
in F are at the vertices i, p and p + 1.

We can choose arbitrarily small neighbourhoods N of i in the interior
of FuX(F), such that for each reN\{i} there is a unique equivalent point
T' = X(x) = — 1/TGN (see Fig. 6.8). Thus J is locally two-to-one near i, so
J'(i) = 0 # J"(i) and i is a branch-point of order 1, as are all equivalent points

Similarly, if T is sufficiently close to p, as in Fig. 6.9, then there are
equivalent points T' = Y(r) and T" = Y2(x) near p, and no others (for
example, if x-+p within P then the element f of Z~l(F) equivalent to T
satisfies f = T — l->p — 1, s o f i s not close to p). Thus J is locally three-
to-one near p, so J'(p) = J"(p) = 0 ^ j"'(p) and p is a branch-point of order
2 (as are all its equivalent points in J~ x(0), such as p -I-1). •

Fig. 6.9

It follows from Theorems 6.5.4 and 6.5.5 that if

X = {TGF|Re(r)<0}
and

B = {TG/?|Re(r)>0},

then J maps AvB homeomorphically onto C\R, so A and B must be

Fig. 6.10
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mapped to the two connected components % and ££ of C\R, illustrated
in Fig. 6.10; either J(A) = °U and J{B) = «£?, or vice-versa. Now we saw in
the proof of Theorem 6.5.4 that if T = iyeL3, then J(T)-» + oo as y-> + oo.
For y > 1 we have J'(T) ^ 0 by Theorem 6.6.3, so J is directly conformal
and hence A and B (on the left and right of L3 as y increases) are mapped
to the regions on the left and right of R as J{x) increases, that is,

J(A) = % and J(B) = <£.

We now give an important application of the ./-function. A function
/:C->C omits a value a if aeC\/(C); we say that / i s entire if / is analytic
on C (equivalently, / is represented by a power series with infinite radius
of convergence). Now Lioirville's theorem states that a bounded entire
function must be constant, but by using the monodromy theorem and the
properties of J we can prove a much stronger result, Picard's theorem:

Theorem 6.6.4. If f is an entire function omitting more than one value,
then f is constant.

(Notice that ez is entire and omits just 0, while a polynomial of positive
degree omits no values, by the fundamental theorem of algebra.)

Proof Suppose that / omits two distinct values a and b; then the entire
function / * = (/— a)/(b — a) omits 0 and 1, and / is constant if and only
if / * is, so by replacing / by / * we may assume that / omits 0 and 1,
thatis,/(C)c=C\{O,l}.

By Theorem 6.6.3, J:^-+C restricts to an unbranched covering map

J : * \ J " 1 ( { 0 , l } ) - C \ { 0 , l } ,

depicted in the commutative diagram, Fig. 6.11. Thus C\{0,1} is a union
of elementary neighbourhoods U such that J~l(U) is a disjoint union of
sets V mapped homeomorphically onto U by J (see §4.19). Using the
inverse homeomorphisms g = J~l\U'->V we obtain a set ^ of analytic
germs [g°f~\z(zeC) representing the local branches of the many-valued
function J~l°f:C-+<%\J~l({0,1}). Now # is sufficient for analytic

Fig. 6.11 4r\y-"({o,i})

C\{0,l}
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continuation within the simply connected region C, so by Corollary 4.13.2
(which is essentially the monodromy theorem) any germ in ^ extends to
a single-valued analytic function h:C-><9t\J~l({0,1}), locally equal to a
branch of J'1 °/, so that J°h=f.

Since h is entire and maps C into °U, the function h* — (h — i)/(h + i) is
entire and satisfies \h*{z)\ < 1 for all zeC. Liouville's theorem now implies
that h* is constant, so h is constant and hence so is / = J°h. •

6.7 The A-function

Let Cl = £l((ol,co2) be a lattice with modulus x = co2/cole
(%9 and let co3

denote coj + co2. Then as shown in §3.15 the Weierstrass elliptic function
p(z) = P(ztQ) induces a 2-sheeted covering map P :C/Q-*E with branch-
points at [0], [icoj] lying above the points oo, ej(j = 1,2,3) of Z; the points e}

are the roots of the cubic polynomial p associated with P (see (6.2.1)), and
are given by

Taking these four points in the order ao,e29e39e1 we have the cross-ratio

= lim
— z)

= ^ \ (6.7.1)
e3-e2

and if we replace a>1 and co2 by the corresponding basis \xx>l,\iu>2 of a
similar lattice fxQ(fi ̂  0) then each ej is replaced by P(jficop //ft) = ii~2ej9

so A is unchanged. Thus we may regard A as a function A(T) of the modulus
T, since two bases with the same modulus generate similar lattices and
hence determine the same value of A.

Suppose, on the other hand, that we replace {a>l9co2} with another basis

o)'2 = aco2 + bco!,

a)\ = cco2 + da*!

for the same lattice ft; thus a,b,c,deZ with ad-bc= ± 1 by Theorem
3.4.2, and by transposing a>\ and a/2 if necessary (so that x' = (D'2I(D\S^I)

we see that ad — bc = \. The branch-points of P now lie above oo and
e'j= P(\cofj)(j= 1,2,3), and since these points depend only on Q (and
not on the particular basis for ft), we must have {e\,ef

2,e3} = {^1,^2^3}-
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Thus each matrix A = ( )eSL(2, Z) induces a permutation a• C D
{^1,^2^3} g*ven by 0L(ej) = e'p so that by taking the four points in the new
order ao,e2,e'3,e\ we obtain a possibly different cross-ratio Aa =

Now e'j = ^(ia;;) = P (i(cco2 + do^)) and similarly e'2 =
o2 + bcox))\ it follows (since P is periodic) that if A,BeSL{2,Z) are

congruent mod (2) in the sense that their corresponding entries are congruent
mod (2), then they induce the same permutation ij/(A) = \jt(B) of {^1,e2,^3}.
Every element of SL(2,Z) is congruent mod (2) to precisely one of

(-: J) - a ".>
and it is easily seen that the corresponding permutations are

I== >̂ i^i^2/> v^2^3/> i^i^3/» \^i^2^3/ and

For example, if A = I ) then

O)2 = Cl)2

CDj = = — 0

and

so that

and

giving

Thus ^ maps SL(2, Z) onto the group S3 of all permutations of {el9 el9 e3},
and one easily sees that \I/(AB) = \j/(A)\l/(B) for all >4, BeSL{29 Z) (composing
permutations from left to right in this case), so that ^ is a group-
homomorphism. The kernel K of ^ is the normal subgroup of index 6
in 5L(2, Z) consisting of the matrices A = I mod (2), and we have

The values Aa = (e3 -e\)/(e'3 — e'2) corresponding to the six permu-
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tations a = ij/(A)eS3 are, as shown in §2.5, given by

A. = A, - , 1 - A, - — - , —— and
'A' ' A - T A 1 -A

respectively. For instance, in the above example ct = (ele2e3)9 so that

= > t - l

A '

It follows that the function

is independent of the choice of basis of Q, since a change of basis (by a
matrix AeSL(2,Z)) merely permutes the six factors Aa+ 1. Since similar
lattices have similar bases, O depends only on the similarity class of £2,
so we may regard <b as a function O(T) of the modulus re^ , invariant
under the modular group T = PSL(2, Z). The subgroup of T leaving A(T)
invariant is the group F(2) consisting of all Mobius transformations corres-
ponding to matrices AeK = ker(^), that is, satisfying A = /mod(2). Since
X contains the kernel { ± /} of the natural map SL(2, Z) -• T = PSL(2, Z),
we have

We can calculate O as follows. We have

A — ,

SO

A + l = ^
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using the relation el + e2 + e3 = 0 (see (6.2.5)). Similarly

and

so substituting in (6.7.2), and writing A, g2 and J for A(T), etc., we have

-9^2-9^1-9^3
<j) = _—t _ _

= - 16.9V ie2e3)2
 ( b y 6.2.2)

= - ^ (by 6.2.5)

= 27(1-J). (by 6.3.3)

It follows that

, - l ) 2 - (A+l ) 2 (2 -A) 2 (2A- l ) 2

27A2(A - I)2

4(1-A + A2)3

: 27A2(A-1):2 '

6.8 A presentation for T

(The reader who is unfamiliar with group presentations should consult
Appendix 2.)

We know from §5.8 that F is generated by the transformations

X:xU - 1/T ]
and V (6.8.1)

Z:TI-*T+1,J

which pair the sides of the fundamental region F. Putting

y=ATZ:Ti->-l/(T+l)

we see that X and Y generate T (since Z = X Y) and that they satisfy the
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relations

X2=Y3=\. (6.8.2)

We shall show that these are defining relations for F, so that F has a
presentation

r = <Ar, Y\X2=Y3 = 1 ) . (6.8.3)

Any relation in F can be written in the form

W(X,Y)=19 (6.8.4)

where W is a word in X and Y. We shall show how, given any word
W(X, 7), we can test whether or not W(X, Y) = 1 in F: we use the relations
(6.8.2) to reduce W to a simpler word W'^, y), equal to W as an element of
F, and then by considering the action of W on °U, we see whether or not W
is the identity transformation.

We write

where each gr(l ^ r ^ /c) is a power of X or of y, and then we successively
use the following two operations to simplify W\

(i) if consecutive terms gr and gr+l are powers of the same generator X
or y, then we amalgamate them, replacing grgr+i by a single power
of that generator;

(ii) we use the relations (6.8.2) to reduce all powers of X and Y to
Xl(i = 0,1) and Y\i = 0,1, - 1), and then delete any powers with i = 0
(since they represent the identity element).

If we apply (i) and (ii) successively to W, then after a finite number of
steps the process must stop (since the length k of W decreases), at which
point either

(a) we have reduced W to a non-trivial reduced word

W' = hlh2...hl

of length / > 0 , where each hr is X, Y or y 1 , and no consecutive
terms hnhr+1 are powers of the same generator, or

(b) we have deleted all terms in W, producing the identity element W = 1
(which we may regard as the empty, or trivial reduced word of length
/ = 0). Notice that in either case, W = W in F since steps (i) and (ii)
do not change elements of F. For instance, W= XY~2 X X3Y X
(with k = 6) gives W= XY~2X4YX = XYX°YX = XY2X = XY~lX,
so W = XY~ lX, a simpler expression for the same element of F.
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We shall show that if W is a non-trivial reduced word then W # 1 in
T. It follows that if W=* 1 in T then since W= W we have W = 1 and
hence we are in case (b), so that the reduction of W to W = 1 enables us
to deduce (6.8.4) from (6.8.2), as required.

Theorem 6.8.5. If W(X, Y) is any non-trivial reduced word in X and Y,
then W'(X, Y) * 1 in T.

Proof Let

and
and

C = AnB,

as illustrated in Fig. 6.12. Clearly <% = A <JB and C ̂  0 .

Fig. 6.12

- 1 - « / 2 0

Since

we have

and Re(i)<0}

X(A)nA =

If xeB then | Y(x) + 11 = 11 - l/(t + 1)| = |T/(T + 1)| < 1, so Y(x)iB\ thus
y(B)nB = 0 , and by applying Y'lto this we have Y~l(B)nB = 0. Thus

*(i4)£«V4£fl (6.8.6)
and

Y\B) s ^ \ B c /4 (i = ± 1). (6.8.7)

Now let W' = h1h2...ht be a non-trivial reduced word in X and Y.
Suppose first that hl = ht = X, so that / is odd, fer = X for all odd r, and
hr = r'-o; = + 1) for all even r. Then
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XYl\
XYh.
XYh.
XYh.

,.XY^X(A)
..XY^-^B)
..X(A)

(since C^A)
(by 6.8.6)
(by 6.8.7)

£ * \ C ,
so l^'(C)nC = 0 and hence W / 1. Similar arguments apply in the other
three cases, when either or both of hl and hx are powers of Y. •

From this and the preceding argument we immediately have:

Corollary 6.8.6. F has presentation < X, Y\X2=Y3 = 1). •

This shows that F is an example of a free product. If G = <#*!#> and
if = <̂ |«Ŝ > are groups, where #* and ^ are disjoint sets of generators
and 9t and ,9* are sets of relations involving SC and ty respectively, then
the free product G*H is the group with presentation <#*u^|#uy>( i t
can be shown that G*H is independent of the chosen presentations for
G and //). In our case, if we take

and

then we have F = G* // = C2 * C3. For the general theory of presentations,
including free products, see Johnson [1980], Lyndon & Schupp [1977],
or Magnus, Karass & Soli tar [1966].

6.9 Homomorphic images of T

Among the homomorphic images of F are a number of interesting groups,
including many of those we have considered earlier. The next result follows
directly from Theorem A. 13.

Lemma 6.9.1. Let G be any group. Then the following are equivalent:

(0 there is an epimorphism 9:T->G;
(ii) there is a normal subgroup A ^ F with F/A s G;
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(Hi) G is generated by elements x, y satisfying x2 = y3 = 1 (and possibly other
relations). •

We now give some examples of homomorphic images of F.
(i) In §5.6 we introduced the triangle groups with signature (0;/,m,n),

generated by elements x, y satisfying xl = ym = (xy)n = 1 (in fact one can
show that these are defining relations). It follows from Lemma 6.9.1 that
if Gn denotes the triangle group with signature (0; 2,3, n) then there is an
epimorphism Qn\T-+Gn given by Xv+x, Y\-+y; equivalently, G n ^F /A
where A = ker (6n) is the smallest normal subgroup of F containing
(XY)n = Zn. By considering the action of Gn on Z (for n ^ 5), C (for n = 6)
and <% (for n ^ 7), one can show that Gn is finite for n ^ 5 and infinite for
n ^ 6. The finite groups (which we have already met in §2.13) are

G2 £ D3, G3 s i44, G4 s S4, G5 s >45,

the rotation groups of a triangle, tetrahedron, octahedron, and icosahedron
inscribed in Z; we can take x and y to be rotations of X (through n and
27r/3) about the mid-points of an edge and an adjacent face, so that xy
rotates Z about a vertex.

(ii) The Hurwitz groups (introduced in §5.11) are groups of S4(g— 1)
automorphisms of a Riemann surface of genus g>l, and by Theorem
5.11.2 they coincide with the non-trivial finite homomorphic images
H = ^(G7) of the triangle group G7 with signature (0; 2,3,7). Putting
4> = \l/°01 (see Fig. 6.13), where 07 is as defined in (i), we see that the
Hurwitz groups are the non-trivial finite homomorphic images <f>(T) of F
such that Z7eker(</>).

Fig. 6.13

(iii) For each integer n ^ 2, let Zn denote the ring of integers mod (n);
then the 2 x 2 unimodular matrices with coefficients in Zn form a group
SL(2, Zn) in which the matrices ± / form a normal subgroup (which is
trivial if n = 2). The natural ring-epimorphism Z ->Zn, a\-+ [a], induces (in
the obvious way) a group-homomorphism SL(2, Z) -»SL(2, ZJ, and this
in turn induces a group-homomorphism </>„ from F = P5L(2,Z) =
SL(2,Z)/{±/} to PSL(2,ZJ = 5L(2,Zw)/{±/}. The kernel T(n) of <£„,
consisting of those transformations T\-+(az+ b)/(cx + d) in F for which
a = d = ± 1 mod (n) and b = c = 0 mod (n), is called the principal congruence
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subgroup of level n. Any subgroup A of F, containing some F(n), can be
defined by finitely many congruences mod(n) between the coefficients
a,b,c,d of the elements of A; we therefore call A a congruence subgroup,
and the least such n is the level of A.

In §6.7 we constructed an epimorphism \I/:SL(2,Z)-+S3, such that K =
ker (y/) is the largest subgroup of F leaving invariant the function A, that is,

J )eSL(2,Z)|a = d l m o d ( 2 ) and b = c = 0 m o d ( 2 ) i .dJ J
Since {± /} ^ K, the matrices in K are precisely those corresponding to
the transformations in F(2) ^ F, and we have

S3 s SL(2,7)1 K s F/F(2) ^ PSL(2, Z2). (6.9.2)

We shall now show that </>n maps F onto PSL(2, Zn), so it follows that
the final inclusion in (6.9.2) is an isomorphism.

Theorem 6.9J. The map (t>n:T->PSL(2, Zn) is an epimorphism.

Proof. It is sufficient to show that the reduction mod(n) maps SL(2,Z)
onto SL(2, Zn), that is, that if the coefficients of some element AeSL(2, Zn)
are represented by integers a, fc, c, d (so that ad —be = I mod (n)), then there
exist integers a\b',c\d\ congruent to a, b, c, d mod (n), with a'd' -b'd= 1

(for then A' = ( a
 J )eSL(2, Z) is mapped to A).

\c d)
We have ad-be = 1 + kn (k e Z) so that (c,d,Ai) = 1. For each X e Z we

define cA = c + An, ^A = ^ + &n, hx = (CA, dx). We first show that there exists
A G Z such that hx = 1. As cA - dx = c - d, hx\c - d (where '|' reads
'divides'), and thus for all A e Z, hx takes only finitely many values so we can
let h = \x.m.{hx\X e I}. Now (hx,n)\(cx,dx,n) so that (hx,n)\(c,d,n) and
hence {hx,n) = 1, for all A e Z and thus (h,n) = 1. Hence there exists u e Z

such that AIM ss -c mod A. Letting A' = u + 1 we find that cx> = c + («+l) t t

= AZ mod /i. As AA|CA', AAI^ and (hyn) = 1 we deduce that hx=l. Write c' =

c + A'AZ, d' = d + X'n, ad' - be' = 1 -h In (/ € Z) . Choose r, 5 e Z such that

rd' - sc' = - / and let a' = a + rn,bf = b + sn. Then a'd' - b'c' = (a+m)d'
-(b+sn)c' = l. D

Corollary 6.9.4. V/r(n) s PSL(2, Z j . •

We now calculate the order of PSL(2, Zn) in the case where n is a prime
p. First we determine the order of GL(2, Zp). The elements of this group

are the matrices I , ), with a, b, c, deZp, such that the row-vectors (a, b)
\c d)
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and (c, d) are linearly independent. There are p2 — 1 choices for (a, b\
excluding (0,0), and for each (a,b) there are p2 — p choices for (c,rf),
excluding the p multiples of (a, fc), so we have | GL(2, Zp)\ = (p2 — \)(p2 — p).
Now SL(2,ZP) is the kernel of the epimorphism det:GL(2,Zp)-»Zp\{0}, so

\SL&Z,)\ = \GL(2,Zp)\/\Z,\{0}\

= p(p2-l) .

Since PSL(2, Zp) = SL(2, Zp)/{ ± 1} we have

(p(P2 ~ 1)
|PSL(2,ZP) |=J~~T~" ^ P ^ an odd prime, (6.9.5)

(6 ifp = 2.

(For the general formula for |P5L(2,Zn)|, see Exercise 6L.)
If 6n:T->Gn is as in Example (i), then since Zn\t\-+T + n lies in T(n) we

have ker 9n < F(n), so there is an epimorphism \l/n:Gn -• PSL(2, Zn) satisfying
\jinoQn=z (j)n (see Fig. 6.14). For n < 5 it can be shown that ker0n = F(n), so
that \j/n is an isomorphism; however, if n ̂  6 then Gn is infinite whereas
PSL(2, Zw) is finite, so ij/n is not an isomorphism. Taking n = 7we see that
PSL(2,Z7) is a Hurwitz group, and by (6.9.5) it has order 168 (as we
claimed in §5.11), so PSL(2,Z7)^ Aut(S) for some compact Riemann
surface S of genus 3.

Fig. 6.14

6.10 Quotient-surfaces for subgroups of T

In this section we show that if A is a subgroup of finite index in F then
<#/A (a non-compact Riemann surface) can be compactified by adding
finitely many points; more precisely, there is a compact Riemann surface
S such that */A £ S\P for some finite subset P c S. We shall consider
the genus and automorphisms of S in the simplest case, when A is normal
in F; important examples include the principal congruence subgroups
A = F(n).

As an elementary example, consider the case where A = F. We saw in
§6.5 that ./:<#-• C induces a conformal equivalence between */A and
C = £\{oo}, so we can take S = I and P = {oo}, the genus being0. Without
knowledge of J (not relevant in more complicated cases) we could argue
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that if F is the Dirichlet region for A = F (given in Theorem 5.8.4 and §6.6)
then <#/A = F/\ fails to be compact only 'near oo', that is, for xe^l with
large Im (T). We therefore define, for each r > 0,

and

the closure of °Ur in <% (though not in I). By considering the tessellation
of <% by images of F (see Fig. 6.6) we see that %x is mapped into %\^x

by every element of A except for the translations Zw:ih->T + n, neZ; hence
T, t 'e^i are in the same A-orbit if and only if T' - TGZ. NOW the function

2nix maps ^lx conformally onto the punctured disc

with e(r) = e(T/) if and only if T' — teZ, so that the natural projection
pM^fyjk induces a conformal equivalence e^p'1:^^-^ W. As T
approaches oo in 4^, W = €(T) approaches 0 in W; we therefore add a
single point to p(^i) (denoted by [oo]A since it corresponds to the orbit
of A containing oo), we define (e°p~1)([oo]A) = 0, and we use e°p~l as a
chart at [oo]A, making p(^i)u{[oo]A} a Riemann surface conformally
equivalent to the open disc Wu{0}. Now p(4?2)u{[oo]A} *S compact
(being homeomorphic to a closed disc), as is p(<%\9£2) = p(F\<%2) (since p
is continuous and F\<%2 compact), so WA)u{[oo] A } =p(^r)u{[oo]A},
being the union of these two subsets, is also compact. We shall show in
Lemma 6.10.1 that [oo]A = Q u {oo} for A = F, so if we define

(not a surface!) then J:# /r = (^/F)u{[oo]r}->I is a conformal equi-
valence, mapping 4P/r onto C and the single point [oo]r to oo.

For convenience, let us denote Qu{oo} by 0 . The above argument
suggests that when we consider 4Sf/A for arbitrary subgroups A < F, we
must consider the orbits of A on 0 (such as [oo] above) and those parabolic
transformations (such as Z above) which fix points in these orbits. This
we now do.

If C is any subgroup of PSL(2, IR), then by Theorem 5.7.4, C is abelian
if and only if it is cyclic, in which case, by Theorem 5.2.5, all non-identity
elements of C have the same fixed-point set and are of the same type:
elliptic, parabolic or hyperbolic. The parabolic subgroups of a Fuchsian
group A are defined to be those non-identity cyclic subgroups C ^ A
which consist of parabolic elements (together with the identity) and which
are maximal with respect to this property. The parabolic class number s
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of A is the number of conjugacy classes of parabolic subgroups of A. Here,
we are interested in subgroups of F, so from now on we will assume that

Lemma 6.10.1. F acts transitively on 0 = Q u {oo}.

Proof. Clearly 0 is invariant under F. If r = a/ceQ, with a, ceZ and
(a,c)=l , then by the Euclidean algorithm there exist b, del with
ad-bc=\, so the transformation r\-+(ax + b)/(cx + d\ an element of F,
maps oo to r, as required. •

Corollary 6.10.2. The parabolic subgroups of A are the non-trivial
stabilisers Ar(re0).

Proof Each parabolic subgroup C ̂  A has a unique fixed-point
relRu{oo}, so C ^ Ar; solving cr2 + (d — a)r — fe = 0 (a,b,c,deZ,ad — bc= 1,
\a + d\ = 2) we see that r = (a- d)/2ce®.

We now show that each stabiliser Ar(reQ) is either trivial or a parabolic
subgroup. Conjugating A by an element of F mapping r to oo (possible
by Lemma 6.10.1), we may assume that r = oo, so that Ar is contained in
F^, the subgroup generated by Z:TI-+T + 1. Thus Ar is cyclic and consists
of parabolic elements together with the identity. If Ar is non-trivial then
it must be parabolic, since any larger cyclic subgroup of A would also fix
r (by Theorem 5.2.5) and would therefore be contained in Ar. Conversely,
we have seen that every parabolic subgroup C is contained in some
Ar(re0); by the maximality of C we must have C = Ar, non-trivial by
definition of parabolic subgroups. •

Corollary 6.10.3. The parabolic class number of A is the number of orbits
of A on 0 for which the stabilisers Ar are non-trivial

Proof Elements r,r'e€b9 with non-trivial stabilisers, lie in the same orbit
of A if and only if Ar and Ar' are conjugate in A, so the result follows
from Corollary 6.10.2. •

For example, F has parabolic class number s = 1, the parabolic subgroups
of F being the conjugates of the subgroup C generated by Z; equivalently,
F has a single orbit on 0 and the stabilisers are all non-trivial (being the
conjugates.of C). On the other hand, A = C has infinitely many orbits on
0 , but only the orbit {oo} has non-trivial stabiliser, so again s = 1, C
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being its unique parabolic subgroup. The cyclic subgroups generated by
elliptic or hyperbolic elements have s = 0, since they contain no parabolic
elements.

We now assume, for the rest of this section, that A is a subgroup of finite
index N in F; this will enable us to remove the 'non-triviality' conditions
in Corollaries 6.10.2 and 6.10.3. First we need the following result.

Lemma 6.10.4. If A and B are subgroups of a group G, and C = AnB,
then\B:C\^\G:A\.

Proof To each coset bC of C in B we associate the coset bA of A in G;
this is independent of the choice of coset representative, since if bxC = b2C,
then bi1b2eC ^ A implies btA = b2A. Distinct cosets bC correspond to
distinct cosets bA, for if bxA = b2A (with bl,b2eB) then bilb2eAnB = C
giving blC = b2C. Thus there are at least as many cosets of A in G as
there are of C in B. •

(Notice that this Lemma is valid even when the indices may be infinite.)
We now have the results we need when considering <%/A:

Corollary 6.10.5. The parabolic subgroups of A are the stabilisers Ar (reO),
and the parabolic class number of A is the number of orbits of A on 0 .

Proof. By Corollaries 6.10.2 and 6.10.3, it is sufficient to prove that Ar

is non-trivial for each reO. Putting G = F, A = A and B = Fr in Lemma
6.10.4, we have C = AnB = Ar (see Fig. 6.15), and hence |Fr:Ar| < |F:A|,
which is finite. Thus Ar has finite index in the infinite group Fr (generated
by some conjugate of Z), so Ar is non-trivial (in fact, infinite!). •

Fig. 6.15

Corollary 6.10.6. The parabolic class number s of A satisfies 1 ^ s < N,
where N is the index |F:A|; in particular, s is finite.

Proof Since s is the number of orbits of A on 0 , we have 5 ^ 1 . Let
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ATU..., ATN be the cosets of A in V. For any re® we have r = T(oo) for
some TeT, by Lemma 6.10.1, and putting T=ST, for some SeA and
i= 1,...,N we see that r = STf(oo) lies in the A-orbit containing T({oo).
Thus A has at most N orbits, so s ^ N. •

We now show how to make <%/A into a compact surface by adding s
points, one for each orbit of A on ®. Suppose that ru..., rs are elements
of 0 , one chosen from each orbit. For each r = r,, Ar is a parabolic subgroup
of A, and if TeT maps oo to r then T~1ArT is a parabolic subgroup
of T~lAT, with fixed-point oo = T"1(r), and therefore generated by
Z'lTh* r + / for some positive integer / = lt (we call r a cusp for A, and / its
amplitude, or width); thus r~1ArT is the unique subgroup of index / in
T" T r T = <Z>, as is Ar in Tr = < TZT~l >. As before (in the case A = T)
two points in dU1 are in the same orbit of T~l AT if and only if they are
equivalent under T"1ArT, that is, under some power of Zl. Now e^x*-*

e2nh/i m a p s ^ o n t o t h e punctured disc Wt = {weC|0 < |w| < e~2n'1}. (If
/ = 1, then el = e and Wx = W as considered at the start of this section.)
Hence et°T~l maps T(^j) onto Wt as in Fig. 6.16, and we have
feoT'l)(x) = feoT"1)!:') if and only if T'l(r') = T~\x) + /m(me/), that
is, if and only if T~ ^T') = ZlmT~ l(x). As remarked above, this is equivalent
to T~l(x) and T~1(x') being in the same orbit of T~ * AT, that is, to x and
T' being in the same A-orbit, so it follows that \ip\°U-^^ljA is the natural
projection then el°T~l°p~1 is a conformal equivalence from (
onto Wx. We therefore 'fill in' the puncture in (j>°T)i?U^) by adjoining a
single point, denoted [r]A since it corresponds to the A-orbit containing
r; as before, we use e^T"1 °p~x as a chart at [r]A. This construction is
independent of the choice of r = r,, so doing it once for each orbit we
obtain a surface */A = (•/A)u(0/A) = («/A)u{[rJA,..., [rJA}.

Fig. 6.16

•/A

To show that 4?/A is compact, it is sufficient to show that it is covered
by finitely many compact subsets. First observe that each puncture r = r,
( i= l , . . . , s ) is contained in a subset Ci = (p°T)(tft2)^

J{[r~\A} which is
compact, being homeomorphic under el°T~i°p~1 to a closed disc
{weC||w|^e"4 i l / /} . Secondly, if Y = AT 1 u. . .uAT N and F is the
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fundamental region for F given in §6.1, then G = T^F)^...uTN(F) is
a fundamental region for A in °U. Now F\$t2 *s compact (being closed
and bounded), and hence so are the sets T / F \ ^ 2 ) for; = 1,...,N; since
the projection pM-^tft/A is continuous, it follows that the sets D7 =
(p°Tj)(F\qt2) are all compact. It is easily seen that 4F/A = C 1 u . . . u C J u
D t u . . . u D N , so that < /̂A is compact; by Theorem 4.16.1 it has a genus,
which we will also refer to as the genus of A.

As an example, we consider A = F(2), the principal congruence subgroup
of index N — 6 and level 2 described in §6.7 and §6.9; we shall merely
outline the details, since the reader should have no difficulty in recons-
tructing them. Firstly, A has three orbits on Q, namely

[0]A = {plq\p,qel., p is even and q is odd},

[1]A = {p/q\p,qeZ, p and q are odd},

[ ° ° ] A = {P/QIP'Q^^ P is °dd and q is even}u{oo},

represented by cusps ^ = 0 , r2 = 1, r3 = oo respectively. Thus A has
parabolic class number 5 = 3, and in each case we have cusp-width /, = 2:
for example, A^ is the subgroup of index 2 in F^ generated by Z2. As
coset representatives for A in F we can take the elements

Tj = I,X,Z,ZY,Z2Y\ZYX (j = 1,...,6),

corresponding to the matrices

i}(-i o}(o i}(i i}(-i o}(-i
in SL(2, Z). These are congruent mod (2) to the six matrices given in §6.7;
we have used these instead since they give a simpler fundamental region
G = (J^=i Tj{F) for A, as illustrated in Fig. 6.17 where the index; denotes
the region Tj(F) {j = 1,...,6). Notice that G has cusps at r = 0, 1 and
(when we project % stereographically onto the sphere Z = S2) at oo, each
cusp formed from /, = 2 regions T/F); this is the motivation for using the

Fig. 6.17
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terms 'cusp* and 'width' for r, and /,-. The arrows indicate how the sides
of G are paired by elements of A: for example, the two vertical sides are
equivalent under Z2. When we form the quotient-surface <%/A = G/A by
identifying paired sides as indicated, we obtain a sphere with three
punctures, corresponding to the orbits of A on 0 containing 0, 1 and oo.
(Notice that the three vertices p,p + l and v = (p + l)/(p + 2) = ^ +
i/(2yj3) of G are all equivalent under A, so they are mapped to a single
point in <#/A.) This corresponds to the fact that the cross-ratio function
A, invariant under A = F(2), maps % onto E\{0,1, oo}. If we compactify
Wjk as above, by adjoining three points [0]A, [1]A and [oo]A to fill the
punctures, then the quotient-surface 4?/A is a sphere, corresponding to
the fact that k maps f = ^fuO onto £. This is illustrated in Fig. 6.18.

Fig. 6.18 [oo] [p+1]

Any subgroup A of finite index in F has a finite number of cusp-widths
/i, . . . , /„ one for each orbit on 0 . We define the level / of A to be the least
common multiple of IU...JS; we shall see later how this is related to the
concept of the level of a congruence subgroup, defined in §6.9.

Lemma 6.10.7. The integers k, which have the property that PkeAfor all
parabolic elements PeT, are the multiples of I (which is therefore their
greatest common divisor).

Proof Any parabolic PeT fixes a unique reQ, so Pl lies in the unique
subgroup (Tr)

1 of index / (consisting of the /th powers) in the stabiliser Fr.
Since the cusp-width /, of r divides /, Pl lies in (F,)'1, the unique subgroup
of index lt in T,; now |rr:Ar| = /,, so P'eAr^A. Thus / has the stated
property, and hence so do all its multiples.

Conversely, choose cusps r!,...,r^ one from each A-orbit; then each
Ar< is generated by some conjugate TflZliTt of a power of Z. If P*eA
for all parabolics P, then putting P=TrlZTt we have Tf ^ ^ e A for
all i; since TilZT{ fixes r,, so does T^lZkTh which therefore lies in Arr
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It follows that T;lZkT{ is a power of TflZliTh so each /,. divides k and
hence so does /, their least common multiple. •

It follows easily (see Exercise 6C) that / is the order of the permutation
induced by Z in the action of F on the cosets of A. From now on we will
assume that A is normal in F, since the theory is then a little simpler; as
before, |F:A| is assumed to be finite.

Corollary 6.10,8. If A is a normal subgroup of finite index N in F, then

(i) all cusp-widths lt for A are equal to the level /;
(ii) I is the order of ZA in the quotient group F/A;

(HI) IS = N, where s is the parabolic class number of A.

Proof, (i) Let r 1 , r 2 eO have cusp-widths lx = |Fr i :Ari | , /2 = |Fr2:Ar2|, and
choose TGT SO that T(rl) = r2, and hence T'^^T^T^. Since A is
normal we have r " 2 A r = A, so Ari = A n F r i =(T--l\T)n(T'lrr2T) =
T~1(AnTr2)T= T~1Ar2T. Thus conjugation by Tinduces an isomorphism
from Fr2 to Fr i , with Ar2 being mapped to Ari, so the indices lx = |Fr i:ArJ
and /2 = |Fr2:Ar2| must be equal. Hence all cusp-widths are equal, and
they must coincide with their least common multiple, which is /.

(ii) The order of ZA in F/A is the greatest common divisor of all k
such that ZkeA; now ZkeA if and only if T~1ZkTeA for all TeT (since
A is normal), and this is equivalent to the condition that PkeA for all
parabolics P, since they are the conjugates of powers of Z, so ZA has
order / by Lemma 6.10.7.

(iii) Since A ̂  F, F maps A-orbits on 0 to A-orbits, and permutes them
transitively since it permutes 0 transitively. An element TeV maps the
A-orbit [oo] to itself if and only if T(oo) = S(oo) for some SeA; this is
equivalent to TS~leT00, that is, TeFxA, so the stabiliser of [oo] is the
subgroup F^A of F. Since there are 5 A-orbits, permuted transitively by

Fig. 6.19

rxA
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rjriF^AI = s. Now A is normal in FXA (since A^F) , so F
roo/(roonA) = roo/Aoo, giving IF^AiAl = I F ^ A J =/, since oo has cusp-
width /, by (i). Thus N = |F:A| = I F I F ^ A I I F ^ A I A I = s/. (These subgroup
inclusions are depicted in Fig. 6.19.) •

For example, if A is the principal congruence subgroup T(n) of level n (as
defined in §6.9), then in the quotient-group F/F(n)^ PSL(2,Zn\ Z is
mapped to the transformation T K T + 1 of order n, so A has level l — nby
Corollary 6.10.8 (ii); thus our two definitions of level agree for principal
congruence subgroups, and indeed a theorem of Wohlfahrt (Wohlfahrt
[1964], or Newman [1972]) shows that they agree for all congruence
subgroups of F. We can also use Corollary 6.10.8 (iii) to find the parabolic
class number s of F(n); for example, when n is a prime p, the index N is
given by (6.9.5), and N = ls = ns implies that

2-{ if pis odd,

ifp = 2.

Theorem 6.10.9. If A is a normal subgroup of level I and of finite index
N >3 in F, then the Euler characteristic of tft/A is

that is, the genus of^/A (and hence of A) is

Proof The map / : # / A - > # / F , given by [i]Ai->[T]r(Te<t), is easily
seen to be a branched covering, with branch-points over the points [i]r ,
[p] r and [oo]r of #/F, unbranched elsewhere.

As # /F is a sphere (since J induces a conformal equivalence # /F -• £),
we can calculate the genus of ° /̂A by determining the number of sheets
and the total order of branching of / , and then applying the Riemann-
Hurwitz formula (Theorem 4.16.3).

If T is not fixed by any non-identity element of F, and if 7\ , . . . , TN are
coset representatives for A in F, then

so that away from the branch-points every point in %/T is covered by N
points in 4?/A; in other words, / is an N-sheeted covering.
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To determine the order of branching, we first show that A contains
neither of the generators X, Y of F (defined in §6.8). Let 0:F -• F/A be the
natural homomorphism, mapping X and Y to generators x, y of F/A as
in Lemma 6.9.1. If XeA then x = 1 and hence F/A, being generated by
an element y satisfying y3 = 1, has order N ̂  3, against our assumption;
thus X$A, and similarly Y$A since x2 = 1, so A contains neither X nor
y, nor (being normal) any of their conjugates. It follows that for each
coset ATj of A in F, ATjX is a different coset, say AT,,, with ATrX =
ATjX2 = ATj. Thus the cosets are arranged in ±N pairs AT,, ATr, and
since X generates the stabiliser F, of i in F, we see that f~l([i]r) consists
of the ±N distinct A-orbits [T/ODA = [^'(i)]A» that is, [ i ] r is covered by
\N points in 4?/A. Similarly, [ p ] r is covered by %N points, while
Corollary 6.10.5 implies that the number of points covering [oo]r = 0 is
the parabolic class number s of A, and this is equal to N/l by Corollary
6.10.8 (iii). Thus the total order of branching, which is the number of
'missing points', is

so the Riemann-Hurwitz formula gives

from which we can calculate the Euler characteristic 2 — 2g. •

Corollary 6.10.10. For each prime p, the genus of<%/r{p) is

2)(p-3)(p-5) . AA1
I 0 ifp = 2.

Proof This follows from the previous Theorem, 6.9.5 (giving N\ and the
fact that T(p) has level / = p. •

Notice that in Corollary 6.10.10, €/F(p) has genus 0 if and only if p = 2,
3 or 5. By calculating the genus of ̂ /F(n) for composite n (see Exercise
6M), we see that the only other case giving g = 0 is n = 4. We will conclude
our investigation of F by considering the automorphisms and tessellations
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of the quotient-surfaces corresponding to principal congruence subgroups
of small level.

If A ^ F then, as shown in §5.9, each element AT of F/A acts as an
automorphism of #/A by mapping each A-orbit [z]A to [T(z)]A. We have
seen that if A has finite index in F, then 4F/A is a compact Riemann
surface formed from */A by filling in finitely many punctures [r]A(reQ);
now AT permutes these punctures, mapping [r]A to \_T(r)]A, and from
our description of the charts at the punctures it is easily seen that AT
induces an automorphism of 4F/A. If we choose xe^l to be fixed by no
non-identity elements of F (that is, TG^\([Qru[p]r)), then AT fixes [ T ] A

if and only if TGA; hence F/A acts faithfully on 4?/A, that is, we have an
embedding of F/A in the automorphism group Aut (4F/A), and, in parti-
cular, taking A = F(n) we have

PSL(2, Zn) s r/T(n) ^ Aut (#/F(H)) .

For example, if n = 7 then 4?/F(7) has genus g = 3 by Corollary 6.10.10;
now (6.9.5) gives |PSL(2, Z7)| = 168 = 84(# - 1), which is the upper bound
for the number of automorphisms of any surface of genus g — 3, by
Theorem 5.11.1. Thus PSL(2,Z7)^ Aut(€/T(7)), and moreover we have
another proof (confirming Theorem 5.11.5 and §6.9) that PSL(2, Z7) is a
Hurwitz group; this proof is a little more satisfactory in that it actually
specifies a surface of genus 3 on which PSL(2, Z7) acts.

If n = 2,3,4 or 5 then #/F(n) has genus 0, and hence by Theorem 4.17.2
it is conformally equivalent to the Riemann sphere £. By Theorem 4.17.3
(i) we therefore have Aut (4?/F(n)) s PSL(2, C) in these cases, so Corollary
2.13.2 implies that PSL(2, Zn), being a finite group of Mobius transfor-
mations, must be isomorphic to a finite group of rotations of Z; it then
follows from Theorem 2.13.5 that PSL(2, ZJ is cyclic, dihedral, or
isomorphic to the rotation group of a regular tetrahedron, octahedron or
icosahedron. For example, we showed in (6.9.2) and Theorem 6.9.3 that
PSL(2,Z2) is isomorphic to the symmetric group 53, and hence to the
dihedral rotation group Z>3; we can see the action of PSL(2, Z2) on 4?/T(2)
by considering Fig. 6.18, where there are exactly six rotations of the sphere
permuting the three punctures [0], [1] and [oo]. In the cases n — 3,4 and
5 we have |PSL(2,ZJ| = 12,24 and 60 by (6.9.5) and Exercise 6L; it is not
hard to show that PSL(2, Zn) is neither cyclic nor dihedral for n > 2 (see
Exercise 6N), so in these three cases the corresponding rotation groups
must be those of a tetrahedron, octahedron and icosahedron respectively.

We shall illustrate the isomorphism between PSL(2,Z5) and the ico-
sahedral rotation group A5 (see §2.13); the cases n = 3,4 are similar (see
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Exercise 6P). Let us put A = F(5); having index 60 and level 5, A has
parabolic class number ^ = 1 2 by Corollary 6.10.8(iii). Thus * /A is a
sphere with 12 punctures, and we shall find an icosahedron J inscribed
in the sphere 4P/A, with the 12 punctures [r]A(re0) as its vertices, such
that J is invariant under the action of PSL(2, Z5) = F/A. We shall do this
by choosing a fundamental region <& for F on Ql such that three adjacent
images of <t> under F form a hyperbolic triangle A with vertices in 0 ; then
A projects onto a triangle in 4?/A with punctures as its vertices. Since a
fundamental region for A consists of |F:A| = 60 copies of 0, when we
form #/A by identifying edges of this fundamental region we find that
there are ^p = 20 copies of A, and we shall show that they form the faces
of an icosahedron invariant under PSL(2, Zs).

Unfortunately, we cannot take 0 to be the Dirichlet region F which
we have used so far: a little experiment will soon convince the reader that
one cannot form a suitable triangle A from three copies of F. Instead, we
take

a fundamental region formed from F by removing the subset F+ =
{TGF|Re(i) > 0} and replacing it by the congruent set Z~ l(F+) illustrated
in Fig. 6.20 (see §3.4). We then let

Fig. 6.20

i - l

-Vi

Fig. 6.21
<D

- 1
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a hyperbolic triangle with vertices at 0, - 1 and oo, shown in Fig. 6.21.
By an argument used in the proof of Theorem 6.10.9, we may choose

coset representatives for A in F to have the form

i i, i 11, i 11 , . . . , T20, T20Y9 T2QY

for suitable elements Tu...iT2OeTi and hence by Theorem 5.10.9 a
fundamental region for A is

7\(«) u Tx r(<P) u Tx Y
 2(O) u . . . u T20(<t>) u T20 Y(<&) u T20 Y

 2(<D)

= rl(A)u...uT20(A).

Thus the projections A, of T/A) in * /A (; = l,...,20) form a triangular
tessellation of the sphere 4F/A. For example, we can take 7\ = 7GF, and
then 7\(A) = A projects onto the triangle Al with vertices [0]A, [ - 1]A

and [oo]A, shown in Fig. 6.22.

Fig. 6.22

Consider the action of an element TeV on a triangle T7{A): we have
j = STkY

E for some SeA, fc= l, . . . ,20, and 6 = 0,1,2; then

= STk(A)

(since y maps A to itself), and this projects to the image Ak of Tk(A) in
4?/A. Thus in the action of F/A as a group of automorphisms of 4?/A,
the triangles A; are permuted amongst themselves; in fact, F/A permutes
them transitively since F permutes the images in Ql of O transitively. Since
Al has all three of its vertices at punctures, so does each A;; since F/A
permutes the punctures transitively (by Lemma 6.10.1), every puncture is
a vertex, so the tessellation of 4F/A has exactly twelve vertices. By Corollary
6.10.8(i) all cusp-widths are equal to 5, so exactly five triangles A, meet
at each vertex: for example, taking Tj = Zj~1 for;= 1,...,5 we see that
the vertex [oo]A is surrounded by the five triangles AU...,A5.

Now let /:4?/A-+E be a conformal equivalence; then ^(F/A) 0 /" 1 is
a group of automorphisms of I , and being finite it is conjugate to a
subgroup T°fo(V/A)°f-1 ° T~1 of the rotation group PSU(2, C) for some
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TePSL(2, C), by Corollary 2.13.2. To put it another way, if we use 7 ° / to
identify 4F/A with I , then F/A is a group of rotations of 4F/A. Since FA
permutes the three sides of Ax cyclically, Ax is an equilateral triangle, and
hence so are all its images A7. It is easily seen that a tessellation of a
sphere by 20 equilateral triangles, five at each vertex, must correspond to
an inscribed icosahedron J\ thus PSL(2, Z5) = F/A is contained in the
rotation group of J, and comparing orders we see that these two groups
are equal.

Had we wished to use the Dirichlet region F rather than <D, we could
have shown that

n= \Jz\F)
i = 0

projects onto a pentagon in 4?/A, and that the 12 images of this pentagon
form a dodecahedron (dual to J) rotated by PSL(2,Z5). In the cases
A = F(3) and F(4), similar methods produce a tetrahedron and an octa-
hedron (or its dual, a cube) with PSL(2, Z3) and PSL(2, Z4) as their rotation
groups.

Thus, having reached the modular group by a long and circuitous route,
involving elliptic functions and the classifications of lattices and of tori,
we see that this group, so rich in geometric, number-theoretic and group-
theoretic structure, embodies some of the earliest topics considered in this
book, namely the Riemann sphere and its rotations.

EXERCISES

6A. Verify that if T(x) = (ax + b)/(cx + d\ a,b,c,deZ, ad-bc= - 1, then

6B. (i) If q = elKix show that

f 2 4 x 3 x 5
J k = l

and that

2 7 ( ^ 3 ( T ) ) 2 = — T C 1 2 I 1 - 2 3 X 3 2 X 7
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Deduce that

+ power series in q with coefficients in Z.

(ii) Show that if d^ 1 is an integer then d*{\ —d2) is divisible by 12 and
deduce that

A(i) = (2;r)12 £ akq
k

* = i

where akeZ.
6C. Let A be a subgroup of F of index n. Suppose that

r = AT,uAT 2 u . . .uAr B

is the coset decomposition of F into right A-cosets. Let Z:TI-*T + 1 act on
these cosets by right multiplication, that is

This gives a permutation of the n cosets. Show that if we write this permutation
as a product of disjoint cycles then the lengths of these cycles are the cusp-
widths of A. Deduce that the order of the permutation is the level of A and the
number of cycles is the parabolic class number of A.

6D. For each prime number p let F0(p) be the set of those transformations
zh+(az + b)/(cz + d) of F for which c = Omodp, and let T°(p) be the set of
transformations with b = 0 mod p. Prove that T0(p) and r°(p) are subgroups
of F which are conjugate in F.

Prove that F°(p) has index p + 1 in F by showing that / ,Z ,Z 2 , . . . ,Z p ~ l

and X:x\-> - 1/T are right coset representatives for V°(p) in F.
Using Exercise 6C or otherwise show that F°(p) has parabolic class number

equal to 2. What is its level?
The following series of problems will enable us to calculate the index of F(w)

in F. We would like to thank John Thornton for showing us Exercise 6F.
6E. Show that if X, Y, Z are as in §6.8 then Z and W= X Y2 generate the modular

group.
6F. Let ml and m2 be a pair of co-prime positive integers. Then there exist a, beZ

such that amx+bm2 = 1. By calculating {Zmi)a(Zm*)b and (Wmif(Wm2)b and
using Exercise 6E, show that every element of F is of the form AB where
AeTinii) and BeT{m2).

The following exercise is purely group-theoretic.
6G. Let H be a group and NUN2 normal subgroups of H with NtN2 = H (where

NtN2 = {nin2|nieNi,n2eW2}). Prove that

H/(NlnN2)*(H/Nl)x(H/N2).

6H. Let G(m) denote the subgroup of SL(2,Z) consisting of the matrices
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AeSL(2,Z) such that A = Imodm. Prove that if (mi,m2) = 1 then

(0 GfaJnG^) = G(mlm2\
(ii) -leG(mx)G(m2).

61. Show that G(m) is the kernel of the natural group homomorphism from
SL(2, Z) to SL(2, Z J (described in §6.9) and hence show that if m = qx.. .q5 is
the prime-power decomposition of m (4 u . . . ,q 5 being powers of distinct
primes), then SL(2,Z J s SL(2,Z€l) x ... x SL(2,Z J .

6J. Show by example that if (m1,m2)= 1 then it is not necessarily true that
r(ml)nT(m2) = Ffm^j). (For this reason PSL(2y Zm) does not have the direct
product structure of SL(2, Zm) described in Exercise 61.) What can in general
be said about the relationship between the subgroups r t m J n F ^ ) and

6K. Show that the order of the group SL(2, Zpr) (p prime) is p3r" 2(p2 - 1). (Hint:
first show that a pair ([a], [6]) of elements of Zpr, where [x] is the residue class
of x, can be the first row of a matrix in SL(2, Zpr) if and only if a, 6 and p have no
common divisors other than ±1.)

6L. Show that the index of T(n) in F is given by

6 if w = 2

where p ranges over the distinct prime factors of n.
6M. Find the genus of 4?/F(n).
6N. Show that the only cyclic or dihedral groups which are homomorphic images

of the modular group are the cyclic groups of orders 1,2,3 or 6 and the dihedral
group of order 6. Deduce that P5L(2, ZJ is not cyclic or dihedral if n > 2.

6P. Give illustrations of the isomorphisms PSL(2,Z3)^/14 and
PSL(2,Z4)^S4 analogous to that given for the isomorphism
PSL{2,Z5)^A5 in §6.10.

6Q. Let aua2,a^a4 be 4 distinct complex numbers and consider the Riemann
surface S of the equation w2 = (z — ax)(z — a2)(z — a3)(z — a4). Define Z =
l/(z -ai\W= w/(al - z)2.Show that (z, w)h+(Z, W) induces a bijection from S
to a Riemann surface S' of an equation of the form W2 = A(Z — bx)(Z — b2)
(Z — 63), (bx,b2,b3 distinct, A ^ 0), and using Theorem 6.5.11 show that S is
conformally equivalent to C/Q for some lattice Q.



APPENDIX 1

A review of complex variable theory

In this appendix we review the theorems of complex variable theory which
have been important in the text. We give proofs of some of the results
which have been used particularly often.

Theorem A.L (Cauchy-Riemann equations). Let f(z) be analytic in a
region R and let w(x, y), v(x, y) be the real and imaginary parts of f(z)
respectively. Then

du dv du dv
dx dy dy dx

at all points of R. These are called the Cauchy-Riemann equations.
Conversely, suppose that ux,uy,vxivy exist and are continuous in R and
satisfy the Cauchy-Riemann equations. Then f is analytic throughout R. •

The basic theorem of complex integration is Cauchy's theorem.

Theorem A.2. Let f(z) be analytic in the simply connected region A and
let y be a piecewise differentiable closed path lying in A. Then

If(z)dz = 0. •
y

We give some of the important consequences of Cauchy's theorem.

Theorem A3. (Cauchy integral formula). Let f(z) be analytic in a simply
connected region A, let y be a piecewise differentiable simple closed path in
A and let b be a point of the region enclosed by y. Then

2ni]y(z-b)

Moreover, we have the following formula for the derivatives of f, obtained
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by differentiating under the integral sign:

J *" 2ni)y(z-br>-

Theorem A.4. (Liouville?s theorem). / / / is analytic throughout C and if
there is a real number M such that | / (z) |<M for all zeC, then f is
constant. •

Cauchy's theorem has the following converse:

Theorem A.5. (Morera's theorem). Let f be continuous in a region A and
suppose that J y /= Ofor every closed curve yinA. Then f is analytic in A. •

Theorem A.6. Let y be a piecewise differentiable simple closed path lying
in a region R and enclosing a region A. Let f be analytic in R except
possibly for a finite number of singularities in A. Then \yf(z)dz = 2ni {sum
of the residues at the singularities of f in A}. •

The following result is a simple consequence of the previous Theorem.
The proof follows that of Theorem 3.6.4.

Theorem A.7. Let y be a piecewise differentiable simple closed path lying
in a region R and enclosing a region A. Let f be analytic in R except
possibly for a finite number of poles in A and suppose that / ( z ) / 0 along
y. Then

where N is the sum of the orders of the zeros off in A and P is the sum of
the orders of the poles of f in A, each counted with the correct multiplicity.

•
One of the main applications of complex integration is the existence of
power series for analytic functions. If a function g is analytic at a point
ZOEC then it can be represented by a power series

<7(z)= £ bn(z-zor,
11 = 0

which converges in some disc with centre at z0. This leads to a proof of the
basic result underlying analytic continuation.
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Theorem A.8. Let f be analytic in a region R with zeros at a sequence of
points z{ which tend to a limit z*eR. Then f is identically zero in R.

Proof. As / is continuous, f(z*) = lim^^/(z,) = 0. If / is not identically
zero then we can expand / as a power series about z*,

/(z)= g an(z-z*)\

in which not all the coefficients an are zero. If am is the first non-zero
coefficient then

where g is analytic in R and g(z*) = am^0.
Suppose that \g(z*)\ = 2e. Then as g is continuous there exists <$>0

such that if |z - z* | < 8 then |g(z) - g(z*)\ < e. Hence in the disc \z — z*\<89

\\g(z)\ -2e\ = \\g(z)\ - \g(z*)\\ ^ \g(z)-g(z*)\<e,

and therefore \g(z)\ >e'm this disc. Thus f(z) ^ 0 in a disc with centre z*
which contradicts the hypothesis that z* is a limit point of zeros of / .
Therefore / is identically zero in R. •

This theorem is used to prove the following result due to Weierstrass.

Theorem A.9. An analytic function comes arbitrarily close to any complex
value in every neighbourhood of an essential singularity. •

Our next result is that non-constant analytic functions define open
mappings, that is if A c C is open and / is analytic in A then f(A) is
open. We first point out that we only need to prove this result locally,
that is, every aeA has an open neighbourhood Va c A such that f(Va) is
open; for then we can write A = \JaeA Va and

)
aeA / aeA

which is open.
The strategy of the proof will be to show that, apart from an additive

constant, every non-constant analytic function can be written locally as
a composition pm°<t> where pm(z) = zm

9 and <t>' does not vanish. We will
then show that 0 and pm define open mappings and the result will follow
from the observation that the composition of two open mappings is open.
The method of proof will show also that / is locally m-to-one.
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Theorem A. 10. (i) Let R^C be a region and let f be a non-constant
analytic function defined on R. Thenf:R-+C defines an open mapping.

(ii) If ZOER and if f(zo) = wo with multiplicity m then there exists a
neighbourhood N of z0 such that for each we/(N)\{w0}, the set f~l(w)
contains m points in N.

The proof is divided into three Lemmas.

Lemma 1. There is a disc D^R, with centre z0, such that for all zeD, f
can be written as

where <t> is an analytic function whose derivative does not vanish in D.

Proof. By Theorem A.8 we can find a disc D^R with centre at z0 such
that f(z) - w0 is non-zero for all zsD\{z0}. Hence in D we can write

f(z) -wo = (z- zo)
m(ao + ax(z - z0) + a2(z - z0)

2 + ...)

= ao(z - zo)
mg(z\

where m > 0, a0 # 0, # is analytic in Z), g(z0) = 1, and g(z) # 0, for all zeD.
Let F(z) = g'(z)/g(z) and for each zeD define

fc(z)=| F(z)dz9

where the integral is taken over a path from z0 to z lying in D. (By
Cauchy's theorem this integral is independent of the path.) Now h is
analytic in D and h\z) = F(z) = gf(z)/g(z). Also

and so g(z) = ceh{z\ where c is a constant. As g(z0) = 1 and h(z0) = 0, c = 1
and so

Choose a value of a.ym and define

Then

as required. •

Lemma 2. There is an open neighbourhood V ofz0 such that <p(V) is open
and 4> is one-to-one on V.
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Proof. We know that 0(z)^O for all zeD\{z0}. Let Dx be a disc with
centre at z0 which is properly contained in D. Then <j)(z) does not vanish
on dDXi the boundary of Dx, and as dDx is compact the minimum \i of
\<t>(z)\ is attained on dDx and /i ^ 0 . Let A be an open disc with centre at
0( = </>(z0)) and radius \i. We will show that if wxeA then there is just
one value of zeDx such that ^(z) = wx. We put F = </>" ^AJnD! and then
(f> is one-to-one on F, zoeV and </>(K) = A is open.

To achieve this aim we show that <f)(z) — wx has precisely one zero in
Dx. As <j)(z) — Wj is analytic in Dl9 Theorem A.7 implies that the number
of zeros of $(z) — wx in Dx is N(wx\ where

— w

where the dash denotes differentiation with respect to z. Note that if we A
then <t>(z) — w cannot vanish on dDx for otherwise

which contradicts the definition of /*.
As <t> only vanishes at z0 inside Dx and as (j)f(zo)^0, <f> has a simple

zero at z0 and N(0) = 1. We now show that N(w) is a continuous function
of w, for WGA, and as N(w) is an integer this implies that N(w) = 1 for all
we A. Now if s, teA then

| N ( s ) - N ( t ) ! = . . . . . . .

^ —

27trM|t-s|

where r is the radius of Du M is the maximum of \4>'(z)\ on 3Dt and
d = min{\<t>(z)-s\,\(j>(z) — t\\zedDi}. As we saw above 4>(z) — w cannot
vanish on dDl for any we A and hence by the compactness of dDuS is
non-zero. Therefore N(w) is a continuous function of w. •

Lemma 3. For each positive integer m, pm(z) = zm defines an open mapping.

Proof. Let A be an open set in C. We just need to show that every zoeA
has an open neighbourhood W such that p(W) is open. If z o # 0 then
Pm(zo) ?* 0 a n d t n e proof follows directly from Lemma 2 by putting 4> = pm.
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If z0 = 0 then we let W be an open disc, centre 0, radius r < 1, which is
contained in A. Then pm(W) is an open disc, radius rm < r, which proves the
result. •

Part (i) of Theorem A. 10 now follows as pm and <p are both open. Part
(ii) is clear as <t> is locally one-to-one and pm is locally m-to-one. More
precisely, let P be a disc, with centre w0, contained in f(V). Then
N =f~l(P) has the required properties. •

Theorem A. 10 gives an easy proof of the following important result.

Theorem A .11 (maximum-modulus principle). If f(z) is a non-constant
analytic function in a region R then \f(z)\ has no maximum in R.

Proof UZOER then as/(K) is open,/(z0) is an interior point off(R). Hence
there exists a disc with centre at/(z0) which is contained in f(R). This disc
contains points/(z), (zeR) whose modulus is greater than/(z0). Hence |/(z)|
does not achieve its maximum at the point z0. As z0 is an arbitrary point of
R, \f(z)\ has no maximum in R. •

By Lemma 2, analytic functions / with non-zero derivatives in a region
define a local homeomorphism in that region. (As with real variables we can
then show that the inverse function is also analytic.) Such functions have an
important geometric property which we now describe. A sense-preserving
mapping/:/? -+f(R) is called directly conformal if whenever two differenti-
a t e paths yl5 y2 intersect at an angle 9 then/(y1),/(y2) intersect at the same
angle 0. (A sense-reversing mapping with this property is called indirectly
conformal.)

Theorem A.I 2. If R^C is a region then f:R-+f(R)^C is directly
conformal if and only iff is analytic in R and f'(z)^0for all zeR.

Proof For a direct proof see Ahlfors [1966]. We outline an alternative
proof which uses the induced mapping on the differentials.

First assume tha t / i s analytic and /'(z) ^ 0 for all zeR. Let w =/(z) =
u + it;, where z = x + iy. Then by the chain rule,

'du\ Jux uy\(dx\

dv) \vx vj\dy)'

where we assume that the partial derivatives uxi uy, vx, vy are evaluated at
some given point zeR.
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Using the Cauchy-Riemann equations

|/'(z)|2 = !i2 + i£#O
and writing J for the above 2 x 2 matrix we find, again by the Cauchy
Riemann equations, that

where A is orthogonal (that is, AA* = /) and has determinant equal to + 1.
Thus on the tangent space spanned by the differentials dx, dyj is a rotation
about z followed by a magnification, which implies that / is directly
conformal.

For the converse we assume that/ is differentiable with respect to x and y
(for otherwise our definition of conformality has no meaning), so we assume
that the first partial derivatives exist and are continuous. Then direct
conformality implies that J J* = (det J)I and d e t J > 0 a s / preserves
orientation - see §4.15. Then f = (det J)J~l which gives the Cauchy-
Riemann equations. Thus/ is analytic and |/'(z)|2 = det J =^0. •

If/'(zo)=/"(zo) = '" =/(m"1)(^o) = Oand/('w)(zo)^0 then by Lemma 1,
apart from an additive constant,/ = pm°<t> where </>'(z0) ̂  0. As <f> defines a
local homeomorphism, by Lemma 2, we see that the topological character
of/in a neighbourhood of z0 is the same as that of the map z\-* zm\ that is,/is
like a branched covering map. Geometrically, / expands angles by a
factor m.
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Presentations of groups

Suppose that a group F is generated by elements Xt (iel) satisfying relations
RjiXi) = 1 (;e J), where / and J are indexing sets and each Rj(Xt) is a word
in the generators Xi9 that is, a product of finitely many powers (positive or
negative) of generators Xt. We say that the relations Rj(Xt) = 1 are defining
relations for F if every relation in F (in effect, the multiplication table for F)
can be deduced from them, using only the group axioms; more precisely, this
condition states that a word W(X{) represents the identity element of F if
and only if it can be transformed, by using the group axioms, to a product of
conjugates of words K;(X,). We then say that F has a presentation

r = (Xi(ieI)\Rj(Xi)=\(jeJ)y.

For example, finite cyclic and dihedral groups have presentations

and (as shown in §6.8) the modular group has presentation

PSL(2,Z) = <X, Y\X2 = Y3 = 1 >.

The following result shows that homomorphic images of F are obtained
by adding relations to a presentation for F.

Theorem A.13. Ifr = (Xi(ieI)\Rj(Xi)=\(jeJ)}andGisanygroupithen
the following are equivalent:

(i) there is an epimorphism O.T-tG;
(ii) there is a normal subgroup A ̂  F with F/A ^ G;

(Hi) G is generated by elements x^iel) satisfying relations Rj(Xi) = I for all
jeJ (and possibly other relations not implied by these).

Proof (i)=>(ii). This is the first isomorphism theorem, with A = ker(0).

(ii)=>(iii). Since F is generated by the elements Xh satisfying Rj(X() = 1,
F/A is generated by the cosets X(A, satisfying Rj(XtA) = 1. (For example,
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in the modular group F we have X2 — 1, so that (XA)2 = XA-XA =
X2 A = A, which is the identity in F/A.) If xt is the element of G correspond-
ing to XtA under the isomorphism F/A^G, then {xjie/} generates G
and satisfies #/x f ) = 1 for all jeJ, by the elementary properties of
isomorphisms.

(iii)=>(i). We define 0:F-^G as follows. Each geT can be expressed as
a word W(Xt) in the generators Xh so we define 6(g) to be the corresponding
element W(x,) of G. To show that this is well defined, suppose that
g=Wl(Xi)=W2(Xi) in F (for example, XY=YX~l in /)„). Then
W1(ATi)W2(A'l-)~

1 = 1 in F, and this relation must be a consequence of the
defining relations Rj(Xi) — 1 of F; the same argument which derives WX(X^
W2(Xi)~

i = l in F from these relations can also be used to derive
Wl(xi)W2(xi)-

1 = 1 in G from the relations /^(x,) = 1 (we simply replace
Xt by x, throughout), so W^1(x,)= W2(x{)

 an(^ hence 0(^) is independent
of the word chosen to represent g. By construction, 9(gh) = 9(g)0(h) for
all g,heT, so 0 is a homomorphism. Since the image 6(T) contains a set
of generators x, for G, 9 must be an epimorphism. •

A simple example of this is the way in which the finite cyclic group
G = C2 — <*|x2 = 1 > can be formed from a larger cyclic group T = C6 =
(X\X6= 1> by adding an extra relation, say X2 = 1 (or even X* = 1,
which, together with X6 = 1, implies X2 = 1). For less trivial examples,
see §5.11 and §6.9, and for a more detailed treatment of presentations, see
Johnson [1980], Lyndon & Schupp [1977] or Magnus, Karass & Solitar
[1966].
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Resultants

Let F be any field, and let

amxm + ... +axx

be polynomials in F[x], with am9bn ^0 . We need necessary and sufficient
conditions, in terms of the coefficients a, and bj9 for a(x) and b(x) to have
a non-constant common factor in F[x].

Suppose that

a(x)c(x) = b(x)d(x)9 (1)

where c(x) and d(x) are non-zero polynomials in F[x], with

deg(c)<n,
deg(rf)<mJ

Since F[x] is a unique factorisation domain, both sides of (1) have the
same factorisation in F[x], so the irreducible factors of a(x) all divide
b(x)d(x\ and hence each divides b(x) or d(x). Since d(x) has degree less
than that of a(x\ they cannot all divide d{x), so at least one divides b(x).
Thus a(x) and b(x) have a common factor.

Conversely, if p(x) is a common factor of a(x) and b(x), then

and
b(x) = p(x)c(x)

for some non-zero polynomials c(x) and d(x) satisfying (2); clearly, (1) also
holds, so (1) and (2) are necessary and sufficient conditions for a(x) and
b(x) to have a common factor.

To see whether c(x) and d(x) exist, we write

and
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with ci9djEF and possibly cn_ t = 0 or dm_ x = 0. Then substituting in (1) and
equating coefficients, we see that

We can take all terms across to the left, and regard this as a system of
m + n simultaneous linear equations in the m + n variables cn_!,...,c0,
- dm_!,...,- d0, with coefficients ai5 b;. Then we have seen that a(x) and
b(x) have a common factor if and only if this system has a non-trivial
solution in F (that is, with not all c, or dj = 0); this is equivalent to the
vanishing of det M, where M is the (m + n) x (m + n) matrix

u m - l

0«,-9

0m

0^-1

01

00

K-2 K

\

02

I
n columns m columns

given by the coefficients of the system of equations. We define det M to
be the resultant

R = R(a,b)

of a(x) and b(x); it vanishes if and only if a(x) and b(x) fiave a common
factor, or equivalently a common root x (possibly in some extension field
of F), so we can eliminate x from the pair of equations

a(x) = 0,

to obtain a single equation

as in §3.17. Notice that
with integer coefficients.

is a polynomial in the variables a( and
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Suppose that we multiply M on the left by the square matrix

\

• n—1
1
X 1

Since d e t J = l , we have R = det M = det J. detM = det (JM). Now the
entries in the last row of JM are

while the other rows are identical to those of M. Hence, if we expand
R = det (JM) using the entries of its last row and their cofactors, we see that

R = u(x)a(x) + v(x)b(x\ (3)

where w(x) and v(x) are polynomials in x, whose coefficients are polynomials
in a{ and by

We now give two applications of resultants.
(i) Let p(z) be a polynomial of degree k in C[z]. Then p(z) has a repeated

root if and only if it shares a factor with its derivative p'(z\ or equivalently,
if and only if p'(z) and b(z) = kp(z) — zp'(z) have a common factor (this
second condition is simpler to use, since b(z) has degree less than the
degree k of p(z)). Thus p(z) has a repeated root if and only if the resultant
R = R(p\b) vanishes; this resultant, or rather a suitable multiple of it, is
called the discriminant of p(z).

For instance, let k = 3 and let

p(z) = 4z3 - c2z - c3

as in §6.2. Then

pf(z)=l2z2-c2

and
= — 2c2z — 3c3,

of degrees m = 2 and n = 1, so R is the 3 x 3 determinant

12 - 2 c 2

- 3 c 3 - 2 c 2

- c2 - 3c3

= -4A p ,

where Ap is the discriminant of p(z) as defined in §6.2. This gives an
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alternative proof of Corollary 6.2.6, that p(z) has distinct roots if and only
i fA p #0 .

(ii) Let a(z9w) and b(z,w) be elements of C[z,w], that is, polynomials
in z and w with coefficients in C. We can also regard them as polynomials
in w, whose coefficients a{ = at(z) and bj = bj(z) are in the polynomial ring
C[z], and hence in the field F = C(z) of rational functions of z.

Suppose that a and b are co-prime in C[z,w]. Then it follows easily
from Gauss's lemma that they are also co-prime in F[w], so their resultant
R is a non-zero element of F. Moreover, our construction of R as a
determinant shows that R is a polynomial R(z) in z, with coefficients in C.

Now suppose also that a{z, w) = 0 = fc(z, w) for some particular choice
of z, weC. Since (3) gives

R(z) = w(z, w)a(z, w) 4- v(z9 w)b(z, w)

for suitable polynomials w,i;eC[z,vv], we see that R(z) = 0 for all such z.
However, R(z) is a non-trivial polynomial in z, so there are only finitely
many such elements z in C. Thus we have proved:

Theorem A.I4. Let a(z,w) and b(z,w) be co-prime elements o/C[z,w].
Then there are at most finitely many zeCfor which the equations

a(z,w) = 0, b(z,w) = 0

have a common root weC.

(This result is used in §4.14.)
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Modern developments

Finally, we will discuss some further developments of the theories described
in this book. For recent references and more details the reader is referred
to Bers [1972], Thurston [1982], Beardon [1983].

In Chapter 2 we investigated the group PSU2, R) in detail and in Chapter 5
we considered discrete subgroups of PSL(2, R) with particular reference
to plane hyperbolic geometry. As we have already mentioned, the connec-
tion between hyperbolic geometry and PSL(2, R) was formulated by
Poincare and published in 1882. In a paper published a year later Poincare
studied discrete subgroups of P5L(2,C) using 3-dimensional hyperbolic
geometry (Poincare [1883]). As the topology of 3-dimensional manifolds
was so little understood at the end of the nineteenth century this interesting
connection between 3-dimensional manifolds and discrete subgroups of
PSL(2,C) was rather neglected. In recent years 3-dimensional topology
has advanced considerably and this connection is proving to be of great
importance.

We consider R3u{oo} as the one-point compactification of R3, (see
§1.2). We identify x + i>eC with the point (x,y,0)eR3 so that
Cu{oo} is a subset of R3u{oo}; we also denote upper half 3-space
{(x,>>,K)eR3|M>0} by # 3 . We now describe how elements of PSL(2,C)
act as directly conformal (angle- and orientation-preserving) transform-
ations of <#3.

If TePSL(2,C) then by exercises 2£ — G, T is a product of an even
number of inversions in circles (where this includes reflections in lines, §2.7).
Every circle in C is the equatorial circle of a unique sphere in R3 and every
line in C belongs to a unique plane in R3 perpendicular to C. Each inversion
in a circle extends to an inversion in the corresponding sphere or reflection
in the corresponding plane. Each such inversion or reflection gives an
indirectly conformal transformation of R3 so that T extends to a directly
conformal transformation of ^ 3 to itself.

We can make # 3 into a model of hyperbolic 3-space by defining the
length h{P) of a piecewise continuously differentiable path p(t) = (x(f), y(t\
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h{p)= f1 J((dx/dt)2 + (dy/dt)2 + (du/dtf) ^

Jo "
We can define hyperbolic surface-area and volume similarly. PSL(2, C) is
then the group of orientation-preserving isometries with respect to the
hyperbolic metric.

Let F be a discrete subgroup of PSL(2,C). As we saw in §5.6, F need
not act discontinuously onCujoo} . However it does act discontinuously
on ^ 3 and conversely every subgroup of PSL(2,C) acting discontinuously
on ^r3 is discrete in PSL(2, C); (this is analogous to Theorem 5.63(i)).
Now let ae(R3u{oo} and let (Tn) be a sequence of distinct elements of
T. If (Tn(<x)) has a limit point zoe(R3u{oo} then z0eCu{oo}. The set
of all such limit points is called the limit set L(T); it is a closed subset of
Cu{oo} and its complement in Cujoo} is called the ordinary set (or
regular set) O(T). If O(T) ^ 0 then F is called a Kleinian group and then
F acts properly discontinuously on the plane set O(T). For example if
F = Q is a lattice then L(Q) = {oo} and O(Q) = C. If F is a Fuchsian group
then L(T) ^ R u {oo}; if L(F) = R u {oo} then O(T) has two components,
the upper and lower half-planes, whereas if L(T) is a proper subset of
Ru{oo} then 0(F) has just one component. It is quite possible for O(T)
to have an infinite number of components when F is not Fuchsian.

A conjugate of a Fuchsian group in PSL(2,C) has its limit set lying on
a circle or line and will clearly have the same algebraic and geometric
characteristics as a Fuchsian group. For an example of a Kleinian group
which is not conjugate in PSL(2,C) to a Fuchsian group (and is more
complicated than a lattice) consider 2g>2 circles Cx, C2, . . . , C2g such that
the domain exterior to Cj contains every Ck, (k^j). Let Tl,...9Tg be
Mobius transformations such that 7} maps the exterior of Cj to the interior
of Cg+j. The group generated by 7\ , . . . , Tg is a Kleinian group which, in
general, is not conjugate to a Fuchsian group in P5L(2,C). Such a group
is called a classical Schottky group; a non-classical Schottky group can
be obtained by replacing the C, by Jordan curves.

We can also consider discrete subgroups of PSL(2,C) for which
O(F) = 0 . An example is the Picard modular group PSL(2,Z[i])
considered in §5.6. (Some authors use the term Kleinian group for arbitrary
discrete subgroups of PSL(2, C), calling those for which O(F) = 0 Kleinian
groups of the first kind and those for which O(F) ^ 0 Kleinian groups of
the second kind.)

If F is an arbitrary discrete subgroup of PSL(2,C) then ^T3/F is a 3-
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manifold. Recent work of W. Thurston shows that most 3-manifolds can
be obtained in this way (Thurston [1982]). If F is a Kleinian group then
( * 3 u 0 ( r ) ) / r is a 3-manifold with boundary O(F)/F. This boundary is a
union of connected surfaces and by an extension of Theorem 5.9.1 we can
show that these are Riemann surfaces and that the projection from O(F)
to 0(F)/F is holomorphic.

We now restrict attention to the case where F is finitely generated.
If F is a Fuchsian group with a Dirichlet region having a finite number
of sides then by Theorem 5.8.7, F is finitely generated. The proof of the
theorem is easily adapted to show that a discrete subgroup of PSL(2, C)
which has a Dirichlet region - this will be a hyperbolic polyhedron in
^ 3 - with a finite number of sides is finitely generated. For Fuchsian
groups the converse is true; every Dirichlet region for a finitely generated
Fuchsian group has a finite number of sides. However, for discrete sub-
groups of PSL(2,C) the converse is false; in 1966, L. Greenberg showed
that there exist finitely generated Kleinian groups possessing no
fundamental polyhedron with a finite number of sides.

One of the most important results concerning finitely generated Kleinian
groups is Ahlfors' finiteness theorem, (1964):

Let F be a finitely generated Kleinian group. Then O(F)/F is a finite union
of connected Riemann surfaces. Each such surface can be obtained from a
compact surface by removing a finite number of points and there are at most
a finite number of points in O(T)/r over which the natural projection from
0(F) is branched.



References

W. Abikoff, 1980. The Real Analytic Theory of Teichmuller Space. Lecture
Notes in Mathematics, Volume 820, Springer-Verlag, Berlin, Heidelberg, New
York.

L.V. Ahlfors, 1964. 'Finitely generated Kleinian groups,' Amer. J. Math., 86,
413-29.

L.V. Ahlfors, 1966, Complex Analysis (2nd Edn). McGraw-Hill, New York.
N. Ailing, 1981. Real Elliptic Curves. North-Holland Publishing Company,

Amsterdam, New York, Oxford.
T.M. Apostol, 1963, Mathematical Analysis, A Modern Approach to Advanced

Calculus. Addison-Wesley, Reading, Massachussets.
T.M. Apostol, 1976. Modular Functions and Dirichlet Series in Number Theory.

Springer-Verlag, New York, Heidelberg, Berlin.
M.A. Armstrong, 1979. Basic Topology. McGraw-Hill, London.
A.F. Beardon, 1983. The Geometry of Discrete Groups. Springer-Verlag, New

York, Heidelberg, Berlin.
A.F. Beardon, 1984. A Primer on Riemann Surfaces. London Mathematical

Society Lecture Note Series 78. Cambridge University Press, Cambridge.
E.T. Bell, 1965. Men of Mathematics (2 vols.) Penguin, Harmondsworth,

Middlesex.
L. Bers, 1972. 'Uniformization, moduli, and Kleinian groups/ Bull. London

Mathematical Society, 4, 257-300.
A. Borel, 1956. 'Groupes lineaires algebriques.' Ann. of Math. (2), 64, 20-82.
H. Cohn, 1967. Conformal Mapping on Riemann Surfaces. McGraw-Hill,

New York.
J.H. Conway & S.P. Norton, 1979. 'Monstrous moonshine.' Bull. London Math.

Soc, 11, 308-39.
H.S.M. Coxeter, 1969. Introduction to Geometry (2nd Edn). Wiley, New York.
L.E. Dickson, 1901. Linear Groups with an Exposition of the Galois Field

Theory. Teubner (Dover reprint 1958 with an introduction by W. Magnus).
P. du Val, 1964. Homographies, Quaternions and Rotations. Oxford University

Press, Oxford.
P. du Val, 1973. Elliptic Functions and Elliptic Curves. London Mathematical

Society Lecture Note Series 9. Cambridge University Press, Cambridge.
H.M. Farkas & I. Kra, 1980. Riemann Surfaces. Springer-Verlag, New York,

Heidelberg, Berlin.



References 335

L.R. Ford, 1951. Automorphic Functions (2nd Edn). Chelsea, New York.
A.R. Forsyth, 1918. Theory of Functions of a Complex Variable. Cambridge

University Press (reprinted by Dover Publications Inc. in 2 volumes 1965).
W.J. Harvey (Ed.), 1977. Discrete Groups and Automorphic Functions. Academic

Press, London.
N. Jacobson, 1951. Lectures in Abstract Algebra. Van Nostrand, Princeton.
D.L. Johnson, 1980. Topics in the Theory of Group Presentations. London

Mathematical Society Lecture Note Series 42. Cambridge University Press,
Cambridge.

F. Klein, 1893. On Riemann's Theory of Algebraic Functions and their Integrals.
Reprinted by Dover Publications Inc. (1963), New York.

F. Klein, 1913. Lectures on the Icosahedron (2nd Edn). Kegan Paul, London.
Reprinted by Dover Publications Inc. (1956), New York.

S. Lang, 1978. Elliptic Curves, Diophantine Analysis. Springer-Verlag, Berlin,
Heidelberg, New York.

J. Lehner, 1964. Discontinuous Groups and Automorphic Functions. American
Mathematical Society, Providence, Rhode Island.

J. Lehner, 1966. A Short Course in Automorphic Functions. Holt, Rinehart and
Winston Inc., New York.

R.C. Lyndon & J.L. Ullman, 1967. 'Groups of elliptic linear fractional
transformations.' Proc. Amer. Math. Soc, 18, 1119-24.

R.C. Lyndon & P.E. Schupp, 1977. Combinatorial Group Theory. Springer-
Verlag, Berlin, Heidelberg, New York.

A.M. Macbeath, 1961. 'On a theorem of Hurwitz.' Proc. Glasgow Math. Assoc,
5, 90-6.

W. Magnus, 1974. Noneuclidean Tesselations and Their Groups. Academic
Press, New York.

W. Magnus, A. Karass & D. Solitar, 1966. Combinatorial Group Theory,
Interscience, New York.

B. Maskit, 1971. 'On Poincare's theorem for fundamental polygons/ Advances
in Mathematics, 7, 219-30.

W.S. Massey, 1967. Algebraic Topology. An Introduction. Harcourt, Brace and
World, Inc., New York.

L.J. Mordell, 1969. Diophantine Equations. Academic Press, London, New York.
M. Newman, 1972. Integral Matrices, Academic Press, New York.
H. Poincare, 1882. Theorie des groupes Fuchsiens.' Acta Math., 1, 1-62.
H. Poincare, 1883. 'Memoire sur les groupes Kleineens.' Acta Math., 3, 49-92.
R. Rankin, 1977. Modular Forms and Functions. Cambridge University Press,

Cambridge.
J.S. Rose, 1978. A Course on Group Theory. Cambridge University Press,

Cambridge.
W. Rudin, 1974. Real and Complex Analysis (2nd Edn). Tata McGraw-Hill,

New Delhi.
B. Schoeneberg, 1974. Elliptic Modular Functions. Springer-Verlag, Berlin,

Heidelberg, New York.
G. Springer, 1957. Introduction to Riemann Surfaces. Addison-Wesley, Reading,

Massachusetts.



336 References

W.P. Thurston, 1982. Three dimensional manifolds, Kleinian groups and
hyperbolic geometry.' Bull Amer. Math. Soc, 6, 357-81.

H. Weyl, 1955. The Concept of a Riemann Surface (3rd Edn). Addison- Wesley,
Reading, Massachusetts.

K. Wohlfahrt, 1964. 'An extension of F. Klein's level concept/ Illinois J. Math.,
8, 529-35.



Index of symbols

C 1
I 1
*i:S2-I 2
J : I - I 4
CM 8
dcg(/) 8
v.(/) 10
Aut(Z) 17
GL(2,C) 18
SU2tC) 18
PGL(2,C) 18
PSU2X) 19
GL(n,F) 19
5L(n,F) 19
Aut(I) 19

20
U) 20

PG(1,C) 20
PG(n-l,F) 20
K, 20
Sr 20
T, 21
k 24,27
(zo.z^zj.za) 24,27
/c 28
G(X) 30
ir(A) 33
Rot(I) 40
P5l/(2,C) 40
SO(3,R) 41
l/(n,C) 41
SU(nX) 41
PSl/(n,C) 41
Cs 42
DB 45
^ 49
0 49
./ 49

50

J(T)
n,
sl

fi(O),, i

r, ~z;
D(Q)
X/G
ord(/)
11/11
11/11*
Log(z)
S(z)
Z(z)
P(z)

a

FlUn
FN{z)
P(z)
a(z)
CM
Gk(Q)

£(fi)

rjj
V(lx b

f'C/Q
E
£R

£R
£ Q

(Dl1fl
T(z)
ln(r)

54
56
60
60

co2) 65
, 66

68
71

73
81
81

i 83

87,89
89
89

90
91
91
91
91
92
92

93
94

96
97

98
98

101
!;...;/, A) 106
- I 107
109
111
119
119

123
)~(D2f/2) 124

127
127



338 Index of symbols

Dj 128 T (modulus) 272
Lj 128 r (modular group) 272
^ 141 Rg 273
yd (product of paths) 147 Tg 273
y ~l (inverse of path) 147 Ap 274, 329
nx(X,a) 148 A(Q) 276
nx(X) 148 J(Q) 276
"«(<*) 149 gf2(t) 276
g (genus) 163 03(T) 276
f^ag HI A(T) 276
C/L 177 J(t) 277
^ 177 (73(fc) 282
D(m) 177 o5(k) 282
xlf.Jt^lL 111 F 284
<t>:Jt^L 178 p 284
^T(m) 179 X,y,Z 289
^r,4 179 X(x) 293
^ 183 Aa 294
^(m) 184 ^:5L(2,Z)-*S3 294
5 ^ 184 <D(T) 294
CA 185 T(2) 294
Jr 191 G*H 299
J? 193 GH 300
X(5) 194 fl. 300
£ (conformal equivalence) 198 SL(2,ZJ 300
^ 199 0, 300
AutS 200 T(w) 300
/ 203 PSL(2,Zn) 300
^ 210 % 303
CGto) 220 ®r 303
e()?) 222 ^ 303
h(y) 222 0 303
p(z,w) 224 s 303
>/(z,w) 226 N 305
x(z,w) 226 /, 306
M £ ) (hyperbolic area) 228 / 308
L(O 235,332 T0{p) 316
Z H 235 r°(p) 316
PSL(2,Z[i]) 235 G(m) 316
NG(H) 240 /?(a,6) 328
D P ( H 241 # 3 331
fa-,mlf...fiiO 257 O ( H 332
(oi fn i,..., wi_ j s) 262



Index of names and definitions

Abikoff, W., 274
absolute convergence (of an infinite

product), 84
abstract Riemann surface, 169
addition theorem, 115
addition theorem for £> 118
Abel, N.H, 72
Ahlfors, L, 333
algebraic function, 184
algebraic group, 119
amplitude (of a cusp), 306
analytic at oo, 5
analytic atlas, 168
analytic continuation, 125
analytic continuation along a path, 138
analytic function, 1
analytic function on a Riemann surface,

172
analytic function element, 123
analytic germ, 177
angle (between curves), 37
angle (between H-lines), 229
anti-automorphism (of Z), 19
antipodal map, 40
antipodal point, 40
atlas, 168
automorphic function, 231, 266
automorphism (of a lattice), 120
automorphism (of a Riemann surface), 200
automorphism (of the Riemann sphere), 17

basis (for a lattice), 59, 65
Beardon, A.F., 225, 331
Bers, L., 274
Bolyai, J., 221
branch, 140
branch-point, 13, 107, 207
branch-point of order k - 1, 18, 183, 207
branched covering, 13, 207
branched Riemann surface (of a germ or

equation), 184

C00 atlas, 191
Cauchy integral formula, 318

Cauchy-Riemann equations, 318
Cauchy's theorem, 318
centraliser, 220
characteristic subgroup, 269
chart, 168
circle (in S2 or Z), 21
classical Schottky group, 332
closed path, 138
commutator subgroup, 270
compact, 3
compatible (atlases), 168, 191, 192
complete global continuation, 184
complex plane, 1
complex projective line, 20
complex structure, 169
concyclic, 28
conformal equivalence, 198
conformal homeomorphism, 198
conformal map, 36
conformally equivalent, 198
congruence (modulo a lattice), 66
congruence (modulo Z), 62
congruence subgroup, 301
congruent sides, 247
congruent vertices, 245
conjugacy class, 32
conjugate elements (of a group), 32
conjugate point, 28
convergence (of an infinite product), 83, 85
Conway, J.H., 283
coordinate transition function, 168
co-prime (polynomials), 8
covering map, 13, 206
covering space, 13
covering surface, 206
critical point, 185
cross-ratio, 24, 27
crystallographic restriction, 120
cusp, 306
cycle (of vertices), 245
cyclic quadrilateral, 28

D-neighbourhood, 177
defining relations, 325
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degree (of an algebraic function), 184
degree (of a rational function), 8
differential equation for P(z), 97
dihedral group, 45, 46
direct analytic continuation, 124
direct meromorphic continuation, 124
directly conformal, 37, 323
Dirichlet, G.P.L., 68
Dirichlet polygon, 68
Dirichlet region (for a Fuchsian group),

241
Dirichlet region (for a lattice), 68
Dirichlet tessellation, 241
disc (in I), 30
disc centred at a, 177
discontinuous group action, 208
discrete subgroup, 61
discrete subset, 57
discriminant, 274, 329
doubly periodic, 59
duplication theorem, 118

edge (of a polygonal subdivision), 193
Eisenstein series, 96
elementary neighbourhood, 206
elliptic curve, 109
elliptic cycle, 245
elliptic cyclic group, 232
elliptic function, 72
elliptic integral, 72
elliptic transformation, 35, 219
elliptic vertex, 245
entire function, 292
Euclidean length, 222
Euler, L., 116
Euler characteristic, 194
Euler-Poincare formula, 196
extended complex plane, 1, 2

face (of a polygonal sundivision), 193
Fagnano, C.G., 116
fibre, 206
field, 6, 98
Fischer-Griess monster group, 283
fixed-point, 32
Fourier, J.B.J., 64
free product, 299
Fuchs, L., 231
Fuchsian group, 231
function element, 123
fundamental group, 148
fundamental parallelogram, 66
fundamental polygon, 66
fundamental region (for a Fuchsian group),

240
fundamental region (for a lattice), 66

Galois group, 52, 190
gamma-function, 127
Gauss, C.F., 72, 271
Gauss-Bonnet formula, 229
Gaussian integers, 235
general linear group, 18, 19
genus (of a Fuchsian group), 307
genus (of a surface), 163, 193
germ, 177
great circle, 50
Greenberg, L., 333

H-circle, 227
H-invariant, 225
H-line, 224
H-line segment, 223
H-reflection, 237
Hadamard's gap theorem, 134
Hamilton, W.R., 42
Heine-Borel theorem, 3
holomorphic function, 1, 173
homotopic, 141
homotopy, 141
homotopy class, 141
Hurwitz, A., 264
Hurwitz formula, 196
Hurwitz group, 264, 300
hyperbolic area, 228
hyperbolic circle, 227
hyperbolic cyclic group, 232
hyperbolic distance, 224
hyperbolic geometry, 221
hyperbolic length, 222
hyperbolic line, 224
hyperbolic line segment, 223
hyperbolic metric, 224
hyperbolic plane, 224
hyperbolic polygon, 228
hyperbolic surface-area, 332
hyperbolic transformation, 35, 219
hyperbolic volume, 332
hyperbolic 3-space, 331
hyperbolically convex, 230
hyperbolically starlike , 230

indirectly conformal, 37, 323
infinite product, 83, 85
inverse (of a path), 147
inversion (in a circle), 28
isolated vertex, 269
isometric circle, 54
isometry, 37

Jacobi, C.G.J., 72
Jacobian, 191

^-transitive, 23
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Klein, F., 167
Kleinian group, 332

lattice, 59,65
Legendre's relation, 102
Lehner, J., 247
length (of an orbit), 44
level, 301, 308
lift, 203
limit set, 235, 332
linear fractional transformation, 17
Liouville's theorem, 319
Lobatchewsky, N.I., 221
local coordinate, 168
local uniformising parameter, 183
locally finite fundamental region, 244
logarithmic derivative, 88
loxodromic transformation, 35, 220
lune, 50
Lyndon, R.C., 42

Macbeath, A.M., 269
Maskit, B., 259
maximum-modulus principle, 323
meromorphic at oo, 5
meromorphic continuation, 125
meromorphic continuation along a path,

138
meromorphic continuation of a germ, 179
meromorphic function (on a Riemann

surface), 174
meromorphic function (on I), 6
Mobius, A.F., 17
Mobius band, 191
Mobius transformation, 17
modular function, 276
modular group, 232, 272
moduli space, 273
modulus (of a lattice), 272
monodromy group, 166
monodromy theorem, 146
monster simple group, 283
Morera's theorem, 319
multiple point, 7
multiplicity, 6
multiplier, 34

n-manifold, 168
natural boundary, 133
non-Euclidean geometry, 221
norm, 81
normal convergence (of an infinite

product), 86
normal convergence (of an infinite series),

81
normaliser, 240

Norton, S., 283
null-homotopic, 143
number of sheets, 206

omits a value, 292
one-point compactification, 4
open mapping, 12, 320
orbit, 44
orbit-space, 71
order (of a branch-point), 13, 207
order (of a meromorphic function at a

point), 10, 215
order (of a rational function), 8
order (of a transformation), 35
order (of an elliptic function), 73
ordinary set (of a Kleinian group), 332
orientable, 192
orientation, 193
orientation-preserving, 192

parabolic class number, 303
parabolic cyclic group, 232
parabolic subgroup, 303
parabolic transformation, 35, 219
parabolic vertex, 255
partial fractions, 16
path, 137
period (of a Fuchsian group), 246
period (of a function), 56
period (of a transformation), 35
periodic function, 56
Picard, C.E., 289
Picard's theorem, 292
Poincare, H., 221, 259, 331
point at oo, 2
polygonal subdivision, 193
presentation, 238, 325
principal congruence subgroup, 301
principal part, 7
principal value of log z, 83
principle of permanence of identical

relations, 180
product (of paths), 147
projective general linear group, 18, 20
projective special linear group, 19, 20
projective special unitary group, 41
properly discontinuous group action, 232
Puiseux, V., 183
Puiseux series, 183
Pythagoras' theorem, 68

quaternion algebra, 42
quaternion group, 42
quotient-space, 71, 248

Rado, T., 194
Ramanujan's tau-function, 283
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ramified covering map, 207
rational elliptic curve, 119
rational function, 8
real elliptic curve, 111
real lattice, 111
real meromorphic function, 111
real protective plane, 71
real rectangular lattice, 113
real rhombic lattice, 113
reduced word, 297
region, 1, 5
regular covering space, 209
regular function, 1
regular icosahedron, 49
regular octahedron, 49
regular point (for a function element), 133
regular point (for an algebraic function),

185
regular set (of a Kleinian group), 332
regular tetrahedron, 49
resultant, 116, 328
Riemann, B., 3, 167
Riemann mapping theorem, 199
Riemann space, 273, 285
Riemann sphere, 3, 169
Riemann surface, 169
Riemann surface of log z, 150
Riemann surface of z1/fl, 154
Riemann surface of yjp(z\ 157
Riemann zeta-function, 91, 280
Riemann-Hurwitz formula, 196
Riemann-Roch theorem, 106
right translation, 60
rotation (of I), 40

Schottky group, 332
Schwarz, H.A., 201, 264
Schwarz's lemma, 201
sheaf (of germs), 177
side (of a fundamental region), 245
signature, 257, 262
similar lattices, 202
simple path, 138
simple point, 7
simply connected, 143
simply periodic, 59
singular point, 133
smooth atlas, 191
smooth structure, 191
smooth surface, 191
space of moduli, 273
special linear group, 18, 19
special orthogonal group, 41

special unitary group, 41
spherical triangle, 50
stabiliser, 30
stereographic projection, 1
sufficient for continuation within a region,

180
surface, 71, 168
symmetric open set, 61

Teichmuller, O., 273
Teichmuller space, 273
tessellation, 67
Thompson, J.G., 283
3-manifold, 331
Thurston, W., 333
topological group, 60
torus, 70
total order of branching, 197
trace, 33
transitive, 22
triangle group, 238, 300

Ullman, J.L., 42
unbranched Riemann surface (of a germ or

an equation), 179
uniform convergence, 80, 81
uniform convergence on compact sets, 80,

82
uniformisation, 267
uniformisation theorem, 199-200
unimodular matrix, 20
unitary group, 41
unitary matrix, 41
universal covering surface, 210
upper half 3-space, 331

vertex (of a Dirichlet region), 244, 245
vertex (of a hyperbolic polygon), 229
vertex (of a polygonal subdivision), 193

Weierstrass' Af-test, 81
Weierstrass normal form, 274
Weierstrass pe-function, 92
Weierstrass sigma-function, 93
Weierstress' theorem, 320
Weierstrass zeta-function, 94
Weyl, H., 167
width (of a cusp), 306
winding number, 142, 149
Wohlfahrt, K., 310
word, 325

F-automorphic, 266
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